1
|
Complex Mechanisms of Antimony Genotoxicity in Budding Yeast Involves Replication and Topoisomerase I-Associated DNA Lesions, Telomere Dysfunction and Inhibition of DNA Repair. Int J Mol Sci 2021; 22:ijms22094510. [PMID: 33925940 PMCID: PMC8123508 DOI: 10.3390/ijms22094510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022] Open
Abstract
Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast.
Collapse
|
2
|
Cano‐Linares MI, Yáñez‐Vilches A, García‐Rodríguez N, Barrientos‐Moreno M, González‐Prieto R, San‐Segundo P, Ulrich HD, Prado F. Non-recombinogenic roles for Rad52 in translesion synthesis during DNA damage tolerance. EMBO Rep 2021; 22:e50410. [PMID: 33289333 PMCID: PMC7788459 DOI: 10.15252/embr.202050410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023] Open
Abstract
DNA damage tolerance relies on homologous recombination (HR) and translesion synthesis (TLS) mechanisms to fill in the ssDNA gaps generated during passing of the replication fork over DNA lesions in the template. Whereas TLS requires specialized polymerases able to incorporate a dNTP opposite the lesion and is error-prone, HR uses the sister chromatid and is mostly error-free. We report that the HR protein Rad52-but not Rad51 and Rad57-acts in concert with the TLS machinery (Rad6/Rad18-mediated PCNA ubiquitylation and polymerases Rev1/Pol ζ) to repair MMS and UV light-induced ssDNA gaps through a non-recombinogenic mechanism, as inferred from the different phenotypes displayed in the absence of Rad52 and Rad54 (essential for MMS- and UV-induced HR); accordingly, Rad52 is required for efficient DNA damage-induced mutagenesis. In addition, Rad52, Rad51, and Rad57, but not Rad54, facilitate Rad6/Rad18 binding to chromatin and subsequent DNA damage-induced PCNA ubiquitylation. Therefore, Rad52 facilitates the tolerance process not only by HR but also by TLS through Rad51/Rad57-dependent and -independent processes, providing a novel role for the recombination proteins in maintaining genome integrity.
Collapse
Affiliation(s)
- María I Cano‐Linares
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Aurora Yáñez‐Vilches
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Néstor García‐Rodríguez
- Institute of Molecular Biology (IMB)MainzGermany
- Present address:
Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Marta Barrientos‐Moreno
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Román González‐Prieto
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
- Present address:
Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Pedro San‐Segundo
- Institute of Functional Biology and Genomics (IBFG)CSIC‐University of SalamancaSalamancaSpain
| | | | - Félix Prado
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| |
Collapse
|
3
|
The Anticancer Drug 3-Bromopyruvate Induces DNA Damage Potentially Through Reactive Oxygen Species in Yeast and in Human Cancer Cells. Cells 2020; 9:cells9051161. [PMID: 32397119 PMCID: PMC7290944 DOI: 10.3390/cells9051161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
3-bromopyruvate (3-BP) is a small molecule with anticancer and antimicrobial activities. 3-BP is taken up selectively by cancer cells’ mono-carboxylate transporters (MCTs), which are highly overexpressed by many cancers. When 3-BP enters cancer cells it inactivates several glycolytic and mitochondrial enzymes, leading to ATP depletion and the generation of reactive oxygen species. While mechanisms of 3-BP uptake and its influence on cell metabolism are well understood, the impact of 3-BP at certain concentrations on DNA integrity has never been investigated in detail. Here we have collected several lines of evidence suggesting that 3-BP induces DNA damage probably as a result of ROS generation, in both yeast and human cancer cells, when its concentration is sufficiently low and most cells are still viable. We also demonstrate that in yeast 3-BP treatment leads to generation of DNA double-strand breaks only in S-phase of the cell cycle, possibly as a result of oxidative DNA damage. This leads to DNA damage, checkpoint activation and focal accumulation of the DNA response proteins. Interestingly, in human cancer cells exposure to 3-BP also induces DNA breaks that trigger H2A.X phosphorylation. Our current data shed new light on the mechanisms by which a sufficiently low concentration of 3-BP can induce cytotoxicity at the DNA level, a finding that might be important for the future design of anticancer therapies.
Collapse
|
4
|
Physical proximity of chromatin to nuclear pores prevents harmful R loop accumulation contributing to maintain genome stability. Proc Natl Acad Sci U S A 2017; 114:10942-10947. [PMID: 28973905 DOI: 10.1073/pnas.1707845114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During transcription, the mRNA may hybridize with DNA, forming an R loop, which can be physiological or pathological, constituting in this case a source of genomic instability. To understand the mechanism by which eukaryotic cells prevent harmful R loops, we used human activation-induced cytidine deaminase (AID) to identify genes preventing R loops. A screening of 400 Saccharomyces cerevisiae selected strains deleted in nuclear genes revealed that cells lacking the Mlp1/2 nuclear basket proteins show AID-dependent genomic instability and replication defects that were suppressed by RNase H1 overexpression. Importantly, DNA-RNA hybrids accumulated at transcribed genes in mlp1/2 mutants, indicating that Mlp1/2 prevents R loops. Consistent with the Mlp1/2 role in gene gating to nuclear pores, artificial tethering to the nuclear periphery of a transcribed locus suppressed R loops in mlp1∆ cells. The same occurred in THO-deficient hpr1∆ cells. We conclude that proximity of transcribed chromatin to the nuclear pore helps restrain pathological R loops.
Collapse
|
5
|
Mazina OM, Keskin H, Hanamshet K, Storici F, Mazin AV. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair. Mol Cell 2017; 67:19-29.e3. [PMID: 28602639 DOI: 10.1016/j.molcel.2017.05.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/09/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022]
Abstract
RNA can serve as a template for DNA double-strand break repair in yeast cells, and Rad52, a member of the homologous recombination pathway, emerged as an important player in this process. However, the exact mechanism of how Rad52 contributes to RNA-dependent DSB repair remained unknown. Here, we report an unanticipated activity of yeast and human Rad52: inverse strand exchange, in which Rad52 forms a complex with dsDNA and promotes strand exchange with homologous ssRNA or ssDNA. We show that in eukaryotes, inverse strand exchange between homologous dsDNA and RNA is a distinctive activity of Rad52; neither Rad51 recombinase nor the yeast Rad52 paralog Rad59 has this activity. In accord with our in vitro results, our experiments in budding yeast provide evidence that Rad52 inverse strand exchange plays an important role in RNA-templated DSB repair in vivo.
Collapse
Affiliation(s)
- Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Havva Keskin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kritika Hanamshet
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
6
|
Zan H, Tat C, Qiu Z, Taylor JR, Guerrero JA, Shen T, Casali P. Rad52 competes with Ku70/Ku86 for binding to S-region DSB ends to modulate antibody class-switch DNA recombination. Nat Commun 2017; 8:14244. [PMID: 28176781 PMCID: PMC5309807 DOI: 10.1038/ncomms14244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Antibody class-switch DNA recombination (CSR) is initiated by AID-introduced DSBs in the switch (S) regions targeted for recombination, as effected by Ku70/Ku86-mediated NHEJ. Ku-deficient B cells, however, undergo (reduced) CSR through an alternative(A)-NHEJ pathway, which introduces microhomologies in S-S junctions. As microhomology-mediated end-joining requires annealing of single-strand DNA ends, we addressed the contribution of single-strand annealing factors HR Rad52 and translesion DNA polymerase θ to CSR. Compared with their Rad52+/+ counterparts, which display normal CSR, Rad52-/- B cells show increased CSR, fewer intra-Sμ region recombinations, no/minimal microhomologies in S-S junctions, decreased c-Myc/IgH translocations and increased Ku70/Ku86 recruitment to S-region DSB ends. Rad52 competes with Ku70/Ku86 for binding to S-region DSB ends. It also facilitates a Ku-independent DSB repair, which favours intra-S region recombination and mediates, particularly in Ku absence, inter-S-S recombination, as emphasized by the significantly greater CSR reduction in Rad52-/- versus Rad52+/+ B cells on Ku86 knockdown.
Collapse
Affiliation(s)
- Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Connie Tat
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Zhifang Qiu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Julia R. Taylor
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Justin A. Guerrero
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Tian Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Paolo Casali
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| |
Collapse
|
7
|
Replication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1. Nat Commun 2016; 7:13157. [PMID: 27779184 PMCID: PMC5093310 DOI: 10.1038/ncomms13157] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Cells have evolved mechanisms to protect, restart and repair perturbed replication forks, allowing full genome duplication, even under replication stress. Interrogating the interplay between nuclease-helicase Dna2 and Holliday junction (HJ) resolvase Yen1, we find the Dna2 helicase activity acts parallel to homologous recombination (HR) in promoting DNA replication and chromosome detachment at mitosis after replication fork stalling. Yen1, but not the HJ resolvases Slx1-Slx4 and Mus81-Mms4, safeguards chromosome segregation by removing replication intermediates that escape Dna2. Post-replicative DNA damage checkpoint activation in Dna2 helicase-defective cells causes terminal G2/M arrest by precluding Yen1-dependent repair, whose activation requires progression into anaphase. These findings explain the exquisite replication stress sensitivity of Dna2 helicase-defective cells, and identify a non-canonical role for Yen1 in the processing of replication intermediates that is distinct from HJ resolution. The involvement of Dna2 helicase activity in completing replication may have implications for DNA2-associated pathologies, including cancer and Seckel syndrome.
DNA replication stress drives genome instability and cancer. Here, Ölmezer and colleagues show that the helicase activity of multifunctional enzyme Dna2 suppresses dead-end replication structures that impair chromosome segregation if not removed by Holliday junction resolvase Yen1 in yeast.
Collapse
|
8
|
Reappearance from Obscurity: Mammalian Rad52 in Homologous Recombination. Genes (Basel) 2016; 7:genes7090063. [PMID: 27649245 PMCID: PMC5042393 DOI: 10.3390/genes7090063] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 01/28/2023] Open
Abstract
Homologous recombination (HR) plays an important role in maintaining genomic integrity. It is responsible for repair of the most harmful DNA lesions, DNA double-strand breaks and inter-strand DNA cross-links. HR function is also essential for proper segregation of homologous chromosomes in meiosis, maintenance of telomeres, and resolving stalled replication forks. Defects in HR often lead to genetic diseases and cancer. Rad52 is one of the key HR proteins, which is evolutionarily conserved from yeast to humans. In yeast, Rad52 is important for most HR events; Rad52 mutations disrupt repair of DNA double-strand breaks and targeted DNA integration. Surprisingly, in mammals, Rad52 knockouts showed no significant DNA repair or recombination phenotype. However, recent work demonstrated that mutations in human RAD52 are synthetically lethal with mutations in several other HR proteins including BRCA1 and BRCA2. These new findings indicate an important backup role for Rad52, which complements the main HR mechanism in mammals. In this review, we focus on the Rad52 activities and functions in HR and the possibility of using human RAD52 as therapeutic target in BRCA1 and BRCA2-deficient familial breast cancer and ovarian cancer.
Collapse
|
9
|
PCNA SUMOylation protects against PCNA polyubiquitination-mediated, Rad59-dependent, spontaneous, intrachromosomal gene conversion. Mutat Res 2016; 791-792:10-18. [PMID: 27505077 DOI: 10.1016/j.mrfmmm.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/29/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022]
Abstract
Homologous recombination is crucial in both the maintenance of genome stability and the generation of genetic diversity. Recently, multiple aspects of the recombination machinery functioning at arrested DNA replication forks have been established, yet the roles of diverse modifications of PCNA, the key platform organizing the replication complex, in intrachromosomal recombination have not been comprehensively elucidated. Here, we report how PCNA SUMOylation and/or polyubiquitination affects recombination between direct repeats in S. cerevisiae. Our results show that these PCNA modifications primarily affect gene conversion, whereas their effect on the recombination-mediated deletion of intervening sequence is much less obvious. Siz1-dependent PCNA SUMOylation strongly limits Rad52/Rad51/Rad59-dependent gene conversion. A 5- to 10-fold increase in the frequency of such recombination events is observed in Siz1-defective strains, but this increase is fully suppressed when PCNA polyubiquitination is also compromised. PCNA polyubiquitination can stimulate gene conversion in both PCNA SUMOylation-proficient and SUMOylation-deficient strains. On the other hand, in PCNA polyubiquitination-deficient strains, the lack of PCNA SUMOylation does not affect GC levels. Therefore, we postulate that the antirecombinogenic activity of Siz1 mainly concerns recombination induced by PCNA polyubiquitination. In the absence of PCNA SUMOylation, the frequency of PCNA polyubiquitination-mediated gene conversion is not only increased, but it is also channeled into the Rad59-dependent pathway. Additionally, we show a weak inhibitory effect of Rad5 on Rad52/Rad59-directed single-strand annealing.
Collapse
|
10
|
Silva S, Altmannova V, Eckert-Boulet N, Kolesar P, Gallina I, Hang L, Chung I, Arneric M, Zhao X, Buron LD, Mortensen UH, Krejci L, Lisby M. SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination. DNA Repair (Amst) 2016; 42:11-25. [PMID: 27130983 DOI: 10.1016/j.dnarep.2016.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022]
Abstract
Homologous recombination (HR) is essential for maintenance of genome stability through double-strand break (DSB) repair, but at the same time HR can lead to loss of heterozygosity and uncontrolled recombination can be genotoxic. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to modulate recombination, but the exact mechanism of this regulation remains unclear. Here we show that SUMOylation stabilizes the interaction between the recombination mediator Rad52 and its paralogue Rad59 in Saccharomyces cerevisiae. Although Rad59 SUMOylation is not required for survival after genotoxic stress, it affects the outcome of recombination to promote conservative DNA repair. In some genetic assays, Rad52 and Rad59 SUMOylation act synergistically. Collectively, our data indicate that the described SUMO modifications affect the balance between conservative and non-conservative mechanisms of HR.
Collapse
Affiliation(s)
- Sonia Silva
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Veronika Altmannova
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic
| | - Nadine Eckert-Boulet
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Peter Kolesar
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic
| | - Irene Gallina
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Lisa Hang
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Inn Chung
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Milica Arneric
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Line Due Buron
- Department of Systems Biology, Technical University of Denmark, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Uffe H Mortensen
- Department of Systems Biology, Technical University of Denmark, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, Brno 625 00, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
11
|
Lee M, Lee CH, Demin AA, Munashingha PR, Amangyeld T, Kwon B, Formosa T, Seo YS. Rad52/Rad59-dependent recombination as a means to rectify faulty Okazaki fragment processing. J Biol Chem 2014; 289:15064-79. [PMID: 24711454 DOI: 10.1074/jbc.m114.548388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The correct removal of 5'-flap structures by Rad27 and Dna2 during Okazaki fragment maturation is crucial for the stable maintenance of genetic materials and cell viability. In this study, we identified RAD52, a key recombination protein, as a multicopy suppressor of dna2-K1080E, a lethal helicase-negative mutant allele of DNA2 in yeasts. In contrast, the overexpression of Rad51, which works conjointly with Rad52 in canonical homologous recombination, failed to suppress the growth defect of the dna2-K1080E mutation, indicating that Rad52 plays a unique and distinct role in Okazaki fragment metabolism. We found that the recombination-defective Rad52-QDDD/AAAA mutant did not rescue dna2-K1080E, suggesting that Rad52-mediated recombination is important for suppression. The Rad52-mediated enzymatic stimulation of Dna2 or Rad27 is not a direct cause of suppression observed in vivo, as both Rad52 and Rad52-QDDD/AAAA proteins stimulated the endonuclease activities of both Dna2 and Rad27 to a similar extent. The recombination mediator activity of Rad52 was dispensable for the suppression, whereas both the DNA annealing activity and its ability to interact with Rad59 were essential. In addition, we found that several cohesion establishment factors, including Rsc2 and Elg1, were required for the Rad52-dependent suppression of dna2-K1080E. Our findings suggest a novel Rad52/Rad59-dependent, but Rad51-independent recombination pathway that could ultimately lead to the removal of faulty flaps in conjunction with cohesion establishment factors.
Collapse
Affiliation(s)
- Miju Lee
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Chul-Hwan Lee
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Annie Albert Demin
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Palinda Ruvan Munashingha
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Tamir Amangyeld
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Buki Kwon
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Tim Formosa
- the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Yeon-Soo Seo
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| |
Collapse
|
12
|
Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 2014; 77:476-96. [PMID: 24006472 DOI: 10.1128/mmbr.00007-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells.
Collapse
|
13
|
Liddell LC, Manthey GM, Owens SN, Fu BXH, Bailis AM. Alleles of the homologous recombination gene, RAD59, identify multiple responses to disrupted DNA replication in Saccharomyces cerevisiae. BMC Microbiol 2013; 13:229. [PMID: 24125552 PMCID: PMC3852934 DOI: 10.1186/1471-2180-13-229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/04/2013] [Indexed: 11/26/2022] Open
Abstract
Background In Saccharomyces cerevisiae, Rad59 is required for multiple homologous recombination mechanisms and viability in DNA replication-defective rad27 mutant cells. Recently, four rad59 missense alleles were found to have distinct effects on homologous recombination that are consistent with separation-of-function mutations. The rad59-K166A allele alters an amino acid in a conserved α-helical domain, and, like the rad59 null allele diminishes association of Rad52 with double-strand breaks. The rad59-K174A and rad59-F180A alleles alter amino acids in the same domain and have genetically similar effects on homologous recombination. The rad59-Y92A allele alters a conserved amino acid in a separate domain, has genetically distinct effects on homologous recombination, and does not diminish association of Rad52 with double-strand breaks. Results In this study, rad59 mutant strains were crossed with a rad27 null mutant to examine the effects of the rad59 alleles on the link between viability, growth and the stimulation of homologous recombination in replication-defective cells. Like the rad59 null allele, rad59-K166A was synthetically lethal in combination with rad27. The rad59-K174A and rad59-F180A alleles were not synthetically lethal in combination with rad27, had effects on growth that coincided with decreased ectopic gene conversion, but did not affect mutation, unequal sister-chromatid recombination, or loss of heterozygosity. The rad59-Y92A allele was not synthetically lethal when combined with rad27, stimulated ectopic gene conversion and heteroallelic recombination independently from rad27, and was mutually epistatic with srs2. Unlike rad27, the stimulatory effect of rad59-Y92A on homologous recombination was not accompanied by effects on growth rate, cell cycle distribution, mutation, unequal sister-chromatid recombination, or loss of heterozygosity. Conclusions The synthetic lethality conferred by rad59 null and rad59-K166A alleles correlates with their inhibitory effect on association of Rad52 with double-strand breaks, suggesting that this may be essential for rescuing replication lesions in rad27 mutant cells. The rad59-K174A and rad59-F180A alleles may fractionally reduce this same function, which proportionally reduced repair of replication lesions by homologous recombination and growth rate. In contrast, rad59-Y92A stimulates homologous recombination, perhaps by affecting association of replication lesions with the Rad51 recombinase. This suggests that Rad59 influences the rescue of replication lesions by multiple recombination factors.
Collapse
Affiliation(s)
- Lauren C Liddell
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, 91010 Duarte, CA, USA.
| | | | | | | | | |
Collapse
|
14
|
Campos-Góngora E, Andaluz E, Bellido A, Ruiz-Herrera J, Larriba G. The RAD52 ortholog of Yarrowia lipolytica is essential for nuclear integrity and DNA repair. FEMS Yeast Res 2013; 13:441-52. [PMID: 23566019 DOI: 10.1111/1567-1364.12047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 11/27/2022] Open
Abstract
Yarrowia lipolytica (Yl) is a dimorphic fungus that has become a well-established model for a number of biological processes, including secretion of heterologous and chimerical proteins. However, little is known on the recombination machinery responsible for the integration in the genome of the exogenous DNA encoding for those proteins. We have carried out a phenotypic analysis of rad52 deletants of Y. lipolytica. YlRad52 exhibited 20-30% identity with Rad52 homologues of other eukaryotes, including Saccharomyces cerevisiae and Candida albicans. Ylrad52-Δ strains formed colonies on YPD-agar plates which were spinier and smaller than those from wild type, whereas in YPD liquid cultures they exhibited a decreased grow rate and contained cells with aberrant morphology and fragmented chromatin, supporting a role for homologous recombination (HR) in genome stability under nondamaging conditions. In addition, Ylrad52 mutants showed moderate to high sensitivity to UV light, oxidizing agents and compounds that cause single- (SSB) and double-strand breaks (DSB), indicating an important role for Rad52 in DNA repair. These findings extend to Yl previous observations indicating that RAD52 is a crucial gene for DNA repair in other fungi, including S. cerevisiae, C. albicans and Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Eduardo Campos-Góngora
- Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | | | | | | | | |
Collapse
|
15
|
Mbantenkhu M, Wierzbicki S, Wang X, Guo S, Wilkens S, Chen XJ. A short carboxyl-terminal tail is required for single-stranded DNA binding, higher-order structural organization, and stability of the mitochondrial single-stranded annealing protein Mgm101. Mol Biol Cell 2013; 24:1507-18. [PMID: 23536705 PMCID: PMC3655812 DOI: 10.1091/mbc.e13-01-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mgm101 is a Rad52-type single-stranded annealing protein (SSAP) required for mitochondrial DNA (mtDNA) repair and maintenance. Structurally, Mgm101 forms large oligomeric rings. Here we determine the function(s) of a 32-amino acid carboxyl-terminal tail (Mgm101(238-269)) conserved in the Mgm101 family of proteins. Mutagenic analysis shows that Lys-253, Trp-257, Arg-259, and Tyr-268 are essential for mtDNA maintenance. Mutations in Lys-251, Arg-252, Lys-260, and Tyr-266 affect mtDNA stability at 37°C and under oxidative stress. The Y268A mutation severely affects single-stranded DNA (ssDNA) binding without altering the ring structure. Mutations in the Lys-251-Arg-252-Lys-253 positive triad also affect ssDNA binding. Moreover, the C-tail alone is sufficient to mediate ssDNA binding. Finally, we find that the W257A and R259A mutations dramatically affect the conformation and oligomeric state of Mgm101. These structural alterations correlate with protein degradation in vivo. The data thus indicate that the C-tail of Mgm101, likely displayed on the ring surface, is required for ssDNA binding, higher-order structural organization, and protein stability. We speculate that an initial electrostatic and base-stacking interaction with ssDNA could remodel ring organization. This may facilitate the formation of nucleoprotein filaments competent for mtDNA repair. These findings could have broad implications for understanding how SSAPs promote DNA repair and genome maintenance.
Collapse
Affiliation(s)
- MacMillan Mbantenkhu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
16
|
Pannunzio NR, Manthey GM, Liddell LC, Fu BXH, Roberts CM, Bailis AM. Rad59 regulates association of Rad52 with DNA double-strand breaks. Microbiologyopen 2012; 1:285-97. [PMID: 23170228 PMCID: PMC3496973 DOI: 10.1002/mbo3.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/06/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022] Open
Abstract
Homologous recombination among repetitive sequences is an important mode of DNA repair in eukaryotes following acute radiation exposure. We have developed an assay in Saccharomyces cerevisiae that models how multiple DNA double-strand breaks form chromosomal translocations by a nonconservative homologous recombination mechanism, single-strand annealing, and identified the Rad52 paralog, Rad59, as an important factor. We show through genetic and molecular analyses that Rad59 possesses distinct Rad52-dependent and -independent functions, and that Rad59 plays a critical role in the localization of Rad52 to double-strand breaks. Our analysis further suggests that Rad52 and Rad59 act in multiple, sequential processes that determine genome structure following acute exposure to DNA damaging agents.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope Duarte, California, 91010, USA ; The Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope Duarte, California, 91010, USA
| | | | | | | | | | | |
Collapse
|
17
|
Mbantenkhu M, Wang X, Nardozzi JD, Wilkens S, Hoffman E, Patel A, Cosgrove MS, Chen XJ. Mgm101 is a Rad52-related protein required for mitochondrial DNA recombination. J Biol Chem 2011; 286:42360-42370. [PMID: 22027892 DOI: 10.1074/jbc.m111.307512] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination is a conserved molecular process that has primarily evolved for the repair of double-stranded DNA breaks and stalled replication forks. However, the recombination machinery in mitochondria is poorly understood. Here, we show that the yeast mitochondrial nucleoid protein, Mgm101, is related to the Rad52-type recombination proteins that are widespread in organisms from bacteriophage to humans. Mgm101 is required for repeat-mediated recombination and suppression of mtDNA fragmentation in vivo. It preferentially binds to single-stranded DNA and catalyzes the annealing of ssDNA precomplexed with the mitochondrial ssDNA-binding protein, Rim1. Transmission electron microscopy showed that Mgm101 forms large oligomeric rings of ∼14-fold symmetry and highly compressed helical filaments. Specific mutations affecting ring formation reduce protein stability in vitro. The data suggest that the ring structure may provide a scaffold for stabilization of Mgm101 by preventing the aggregation of the otherwise unstable monomeric conformation. Upon binding to ssDNA, Mgm101 is remobilized from the rings to form distinct nucleoprotein filaments. These studies reveal a recombination protein of likely bacteriophage origin in mitochondria and support the notion that recombination is indispensable for mtDNA integrity.
Collapse
Affiliation(s)
- MacMillan Mbantenkhu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Xiaowen Wang
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Jonathan D Nardozzi
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Elizabeth Hoffman
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Anamika Patel
- Department of Biology, Syracuse University, Syracuse, New York 13244
| | | | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
18
|
Liefshitz B, Kupiec M. Roles of RSC, Rad59, and cohesin in double-strand break repair. Mol Cell Biol 2011; 31:3921-3. [PMID: 21844225 PMCID: PMC3187367 DOI: 10.1128/mcb.05974-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Batia Liefshitz
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
19
|
Oum JH, Seong C, Kwon Y, Ji JH, Sid A, Ramakrishnan S, Ira G, Malkova A, Sung P, Lee SE, Shim EY. RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks. Mol Cell Biol 2011; 31:3924-37. [PMID: 21807899 PMCID: PMC3187356 DOI: 10.1128/mcb.01269-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 07/18/2011] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination repairs DNA double-strand breaks by searching for, invading, and copying information from a homologous template, typically the homologous chromosome or sister chromatid. Tight wrapping of DNA around histone octamers, however, impedes access of repair proteins to DNA damage. To facilitate DNA repair, modifications of histones and energy-dependent remodeling of chromatin are required, but the precise mechanisms by which chromatin modification and remodeling enzymes contribute to homologous DNA repair are unknown. Here we have systematically assessed the role of budding yeast RSC (remodel structure of chromatin), an abundant, ATP-dependent chromatin-remodeling complex, in the cellular response to spontaneous and induced DNA damage. RSC physically interacts with the recombination protein Rad59 and functions in homologous recombination. Multiple recombination assays revealed that RSC is uniquely required for recombination between sister chromatids by virtue of its ability to recruit cohesin at DNA breaks and thereby promoting sister chromatid cohesion. This study provides molecular insights into how chromatin remodeling contributes to DNA repair and maintenance of chromatin fidelity in the face of DNA damage.
Collapse
Affiliation(s)
- Ji-Hyun Oum
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245
| | - Changhyun Seong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jae-Hoon Ji
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245
| | - Amy Sid
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245
| | - Sreejith Ramakrishnan
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5132
| | - Grzegorz Ira
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Anna Malkova
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5132
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sang Eun Lee
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245
| | - Eun Yong Shim
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245
| |
Collapse
|
20
|
Clausing E, Mayer A, Chanarat S, Müller B, Germann SM, Cramer P, Lisby M, Strässer K. The transcription elongation factor Bur1-Bur2 interacts with replication protein A and maintains genome stability during replication stress. J Biol Chem 2010; 285:41665-74. [PMID: 21075850 DOI: 10.1074/jbc.m110.193292] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Multiple DNA-associated processes such as DNA repair, replication, and recombination are crucial for the maintenance of genome integrity. Here, we show a novel interaction between the transcription elongation factor Bur1-Bur2 and replication protein A (RPA), the eukaryotic single-stranded DNA-binding protein with functions in DNA repair, recombination, and replication. Bur1 interacted via its C-terminal domain with RPA, and bur1-ΔC mutants showed a deregulated DNA damage response accompanied by increased sensitivity to DNA damage and replication stress as well as increased levels of persisting Rad52 foci. Interestingly, the DNA damage sensitivity of an rfa1 mutant was suppressed by bur1 mutation, further underscoring a functional link between these two protein complexes. The transcription elongation factor Bur1-Bur2 interacts with RPA and maintains genome integrity during DNA replication stress.
Collapse
Affiliation(s)
- Emanuel Clausing
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität Münich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR. Improved vanillin production in baker's yeast through in silico design. Microb Cell Fact 2010; 9:84. [PMID: 21059201 PMCID: PMC2992047 DOI: 10.1186/1475-2859-9-84] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. RESULTS Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1) were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. CONCLUSION Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA) as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories.
Collapse
Affiliation(s)
- Ana Rita Brochado
- Center for Microbial Biotechnology, Technical University of Denmark, DK - 2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
22
|
The decarboxylation of the weak-acid preservative, sorbic acid, is encoded by linked genes in Aspergillus spp. Fungal Genet Biol 2010; 47:683-92. [PMID: 20452450 DOI: 10.1016/j.fgb.2010.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 01/16/2023]
Abstract
The ability to resist anti-microbial compounds is of key evolutionary benefit to microorganisms. Aspergillus niger has previously been shown to require the activity of a phenylacrylic acid decarboxylase (encoded by padA1) for the decarboxylation of the weak-acid preservative sorbic acid (2,4-hexadienoic acid) to 1,3-pentadiene. It is now shown that this decarboxylation process also requires the activity of a putative 4-hydroxybenzoic acid (3-octaprenyl-4-hydroxybenzoic acid) decarboxylase, encoded by a gene termed ohbA1, and a putative transcription factor, sorbic acid decarboxylase regulator, encoded by sdrA. The padA1,ohbA1 and sdrA genes are in close proximity to each other on chromosome 6 in the A. niger genome and further bioinformatic analysis revealed conserved synteny at this locus in several Aspergillus species and other ascomycete fungi indicating clustering of metabolic function. This cluster is absent from the genomes of A. fumigatus and A. clavatus and, as a consequence, neither species is capable of decarboxylating sorbic acid.
Collapse
|
23
|
Lin YH, Chang CC, Wong CW, Teng SC. Recruitment of Rad51 and Rad52 to short telomeres triggers a Mec1-mediated hypersensitivity to double-stranded DNA breaks in senescent budding yeast. PLoS One 2009; 4:e8224. [PMID: 20011546 PMCID: PMC2790616 DOI: 10.1371/journal.pone.0008224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 11/16/2009] [Indexed: 01/05/2023] Open
Abstract
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. Here we demonstrated that the budding yeast Saccharomyces cerevisiae type I survivors derived from telomerase-deficient cells were hypersensitive to DNA damaging agents. Assays to track telomere lengths and drug sensitivity of telomerase-deficient cells from spore colonies to survivors suggested a correlation between telomere shortening and bleomycin sensitivity. Our genetic studies demonstrated that this sensitivity depends on Mec1, which signals checkpoint activation, leading to prolonged cell-cycle arrest in senescent budding yeasts. Moreover, we also observed that when cells equipped with short telomeres, recruitments of homologous recombination proteins, Rad51 and Rad52, were reduced at an HO-endonuclease-catalyzed double-strand break (DSB), while their associations were increased at chromosome ends. These results suggested that the sensitive phenotype may be attributed to the sequestration of repair proteins to compromised telomeres, thus limiting the repair capacity at bona fide DSB sites.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ching Chang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chui-Wei Wong
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Pannunzio NR, Manthey GM, Bailis AM. RAD59 and RAD1 cooperate in translocation formation by single-strand annealing in Saccharomyces cerevisiae. Curr Genet 2009; 56:87-100. [PMID: 20012294 PMCID: PMC2808509 DOI: 10.1007/s00294-009-0282-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 11/30/2022]
Abstract
Studies in the budding yeast, Saccharomyces cerevisiae, have demonstrated that a substantial fraction of double-strand break repair following acute radiation exposure involves homologous recombination between repetitive genomic elements. We have previously described an assay in S. cerevisiae that allows us to model how repair of multiple breaks leads to the formation of chromosomal translocations by single-strand annealing (SSA) and found that Rad59, a paralog of the single-stranded DNA annealing protein Rad52, is critically important in this process. We have constructed several rad59 missense alleles to study its function more closely. Characterization of these mutants revealed proportional defects in both translocation formation and spontaneous direct-repeat recombination, which is also thought to occur by SSA. Combining the rad59 missense alleles with a null allele of RAD1, which encodes a subunit of a nuclease required for the removal of non-homologous tails from annealed intermediates, substantially suppressed the low frequency of translocations observed in rad1-null single mutants. These data suggest that at least one role of Rad59 in translocation formation by SSA is supporting the machinery required for cleavage of non-homologous tails.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
25
|
Plate I, Hallwyl SCL, Shi I, Krejci L, Müller C, Albertsen L, Sung P, Mortensen UH. Interaction with RPA is necessary for Rad52 repair center formation and for its mediator activity. J Biol Chem 2008; 283:29077-85. [PMID: 18703507 PMCID: PMC2570898 DOI: 10.1074/jbc.m804881200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/12/2008] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination (HR) is a major DNA repair pathway and therefore essential for maintaining the integrity of the genome. HR is catalyzed by proteins encoded by genes of the RAD52 epistasis group, including the recombinase Rad51 and its mediator Rad52. HR proteins fused with green fluorescent protein form foci at damaged DNA reflecting the assembly of repair centers that harbor a high concentration of repair proteins. Rad52 mediates the recruitment of Rad51 and other HR proteins to DNA damage. To understand the mechanism for the assembly of Rad52-dependent DNA repair centers, we used a mutational strategy to identify a Rad52 domain essential for its recruitment to DNA repair foci. We present evidence to implicate an acidic domain in Rad52 in DNA repair focus formation. Mutations in this domain confer marked DNA damage sensitivity and recombination deficiency. Importantly, these Rad52 mutants are specifically compromised for interaction with the single-stranded DNA-binding factor RPA. Based on these findings, we propose a model where Rad52 displaces RPA from single-stranded DNA using the acidic domain as a molecular lever.
Collapse
Affiliation(s)
- Iben Plate
- Center for Microbial Biotechnology, Technical University of Denmark, Lyng by 2800, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kagawa W, Kagawa A, Saito K, Ikawa S, Shibata T, Kurumizaka H, Yokoyama S. Identification of a second DNA binding site in the human Rad52 protein. J Biol Chem 2008; 283:24264-73. [PMID: 18593704 DOI: 10.1074/jbc.m802204200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad52 plays essential roles in homology-dependent double-strand break repair. Various studies have established the functions of Rad52 in Rad51-dependent and Rad51-independent repair processes. However, the precise molecular mechanisms of Rad52 in these processes remain unknown. In the present study we have identified a novel DNA binding site within Rad52 by a structure-based alanine scan mutagenesis. This site is closely aligned with the putative single-stranded DNA binding site determined previously. Mutations in this site impaired the ability of the Rad52-single-stranded DNA complex to form a ternary complex with double-stranded DNA and subsequently catalyze the formation of D-loops. We found that Rad52 introduces positive supercoils into double-stranded DNA and that the second DNA binding site is essential for this activity. Our findings suggest that Rad52 aligns two recombining DNA molecules within the first and second DNA binding sites to stimulate the homology search and strand invasion processes.
Collapse
Affiliation(s)
- Wataru Kagawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
The Rad52 homologs Rad22 and Rti1 of Schizosaccharomyces pombe are not essential for meiotic interhomolog recombination, but are required for meiotic intrachromosomal recombination and mating-type-related DNA repair. Genetics 2008; 178:2399-412. [PMID: 18430957 DOI: 10.1534/genetics.107.085696] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins of the RAD52 epistasis group play an essential role in repair of some types of DNA damage and genetic recombination. In Schizosaccharomyces pombe, Rad22 (a Rad52 ortholog) has been shown to be as necessary for repair and recombination events during vegetative growth as its Saccharomyces cerevisiae counterpart. This finding contrasts with previous reports where, due to suppressor mutations in the fbh1 gene, rad22 mutants did not display a severe defect. We have analyzed the roles of Rad22 and Rti1, another Rad52 homolog, during meiotic recombination and meiosis in general. Both proteins play an important role in spore viability. During meiotic prophase I, they partially colocalize and partially localize to Rad51 foci and linear elements. Genetic analysis showed that meiotic interchromosomal crossover and conversion events were unexpectedly not much affected by deletion of either or both genes. A strong decrease of intrachromosomal recombination assayed by a gene duplication construct was observed. Therefore, we propose that the most important function of Rad22 and Rti1 in S. pombe meiosis is repair of double-strand breaks with involvement of the sister chromatids. In addition, a novel mating-type-related repair function of Rad22 specific to meiosis and spore germination is described.
Collapse
|
28
|
McIlwraith MJ, West SC. DNA repair synthesis facilitates RAD52-mediated second-end capture during DSB repair. Mol Cell 2008; 29:510-6. [PMID: 18313388 DOI: 10.1016/j.molcel.2007.11.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 09/27/2007] [Accepted: 11/05/2007] [Indexed: 11/27/2022]
Abstract
Homologous recombination (HR) is essential for the repair of DNA double-strand breaks (DSBs) in mitotic and meiotic cells. HR occurs through a series of steps involving DSB resection, invasion of single-stranded DNA into homologous duplex DNA to form a D loop, repair synthesis, and second-end capture. We show that DNA repair synthesis, catalyzed by human DNA polymerase eta (poleta) acting upon the priming strand of a D loop, leads to capture and annealing of the second end of a resected DSB in reactions mediated by RAD52 protein. Second-end capture products were not detected when poleta was replaced by other polymerases such as poldelta or poliota. RAD52 could not be replaced by RAD51. We also found that the RAD52-dependent reaction was stimulated by the single-strand binding protein RPA, but not by E. coli SSB. Following repair synthesis and second-end capture, de novo DNA synthesis was observed from the captured second DNA end.
Collapse
Affiliation(s)
- Michael J McIlwraith
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | |
Collapse
|
29
|
RAD59 is required for efficient repair of simultaneous double-strand breaks resulting in translocations in Saccharomyces cerevisiae. DNA Repair (Amst) 2008; 7:788-800. [PMID: 18373960 DOI: 10.1016/j.dnarep.2008.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 01/25/2008] [Accepted: 02/08/2008] [Indexed: 01/08/2023]
Abstract
Exposure to ionizing radiation results in a variety of genome rearrangements that have been linked to tumor formation. Many of these rearrangements are thought to arise from the repair of double-strand breaks (DSBs) by several mechanisms, including homologous recombination (HR) between repetitive sequences dispersed throughout the genome. Doses of radiation sufficient to create DSBs in or near multiple repetitive elements simultaneously could initiate single-strand annealing (SSA), a highly efficient, though mutagenic, mode of DSB repair. We have investigated the genetic control of the formation of translocations that occur spontaneously and those that form after the generation of DSBs adjacent to homologous sequences on two, non-homologous chromosomes in Saccharomyces cerevisiae. We found that mutations in a variety of DNA repair genes have distinct effects on break-stimulated translocation. Furthermore, the genetic requirements for repair using 300bp and 60bp recombination substrates were different, suggesting that the SSA apparatus may be altered in response to changing substrate lengths. Notably, RAD59 was found to play a particularly significant role in recombination between the short substrates that was partially independent of that of RAD52. The high frequency of these events suggests that SSA may be an important mechanism of genome rearrangement following acute radiation exposure.
Collapse
|
30
|
Plate I, Albertsen L, Lisby M, Hallwyl SC, Feng Q, Seong C, Rothstein R, Sung P, Mortensen UH. Rad52 multimerization is important for its nuclear localization in Saccharomyces cerevisiae. DNA Repair (Amst) 2007; 7:57-66. [PMID: 17888746 PMCID: PMC2278025 DOI: 10.1016/j.dnarep.2007.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rad52 is essential for all homologous recombination and DNA double strand break repair events in Saccharomyces cerevisiae. This protein is multifunctional and contains several domains that allow it to interact with DNA as well as with different repair proteins. However, it has been unclear how Rad52 enters the nucleus. In the present study, we have used a combination of mutagenesis and sequence analysis to show that Rad52 from S. cerevisiae contains a single functional pat7 type NLS essential for its nuclear localization. The region containing the NLS seems only to be involved in nuclear transport as it plays no role in repair of MMS-induced DNA damage. The NLS in Rad52 is weak, as monomeric protein species that harbor this NLS are mainly located in the cytosol. In contrast, multimeric protein complexes wherein each subunit contains a single NLS(Rad52) sort efficiently to the nucleus. Based on the results we propose a model where the additive effect of multiple NLS(Rad52) sequences in a Rad52 ring-structure ensures efficient nuclear localization of Rad52.
Collapse
Affiliation(s)
- Iben Plate
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Bldg. 223, DK-2800 Kgs. Lyngby, Denmark
| | - Line Albertsen
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Bldg. 223, DK-2800 Kgs. Lyngby, Denmark
| | - Michael Lisby
- Department of Molecular Biology, University of Copenhagen, Ole Maaløesvej 5, DK-2200 Copenhagen N, Denmark
| | - Swee C.L Hallwyl
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Bldg. 223, DK-2800 Kgs. Lyngby, Denmark
| | - Qi Feng
- Department of Genetics & Development, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032-2704, USA
| | - Changhyun Seong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032-2704, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Uffe H. Mortensen
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Bldg. 223, DK-2800 Kgs. Lyngby, Denmark
- *Corresponding author. Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Tel.: +45 4525 2701; Fax: +45 4588 4148, E-mail:
| |
Collapse
|
31
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|