1
|
HMGA1 Regulates the Expression of Replication-Dependent Histone Genes and Cell-Cycle in Breast Cancer Cells. Int J Mol Sci 2022; 24:ijms24010594. [PMID: 36614035 PMCID: PMC9820469 DOI: 10.3390/ijms24010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the primary cause of cancer mortality in women and the triple-negative breast cancer (TNBC) is the most aggressive subtype characterized by poor differentiation and high proliferative properties. High mobility group A1 (HMGA1) is an oncogenic factor involved in the onset and progression of the neoplastic transformation in BC. Here, we unraveled that the replication-dependent-histone (RD-HIST) gene expression is enriched in BC tissues and correlates with HMGA1 expression. We explored the role of HMGA1 in modulating the RD-HIST genes expression in TNBC cells and show that MDA-MB-231 cells, depleted of HMGA1, express low levels of core histones. We show that HMGA1 participates in the activation of the HIST1H4H promoter and that it interacts with the nuclear protein of the ataxia-telangiectasia mutated locus (NPAT), the coordinator of the transcription of the RD-HIST genes. Moreover, we demonstrate that HMGA1 silencing increases the percentage of cells in G0/G1 phase both in TNBC and epirubicin resistant TNBC cells. Moreover, HMGA1 silencing causes an increase in epirubicin IC50 both in parental and epirubicin resistant cells thus suggesting that targeting HMGA1 could affect the efficacy of epirubicin treatment.
Collapse
|
2
|
Khan S, Cvammen W, Anabtawi N, Choi JH, Kemp MG. XPA is susceptible to proteolytic cleavage by cathepsin L during lysis of quiescent cells. DNA Repair (Amst) 2022; 109:103260. [PMID: 34883264 PMCID: PMC8748394 DOI: 10.1016/j.dnarep.2021.103260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The xeroderma pigmentosum group A (XPA) protein plays an essential role in the removal of UV photoproducts and other bulky lesions from DNA as a component of the nucleotide excision repair (NER) machinery. Using cell lysates prepared from confluent cultures of human cells and from human skin epidermis, we observed an additional XPA antibody-reactive band on immunoblots that was approximately 3-4 kDa smaller than the native, full-length XPA protein. Biochemical studies revealed this smaller molecular weight XPA species to be due to proteolysis at the C-terminus of the protein, which negatively impacted the ability of XPA to interact with the NER protein TFIIH. Further work identified the endopeptidase cathepsin L, which is expressed at higher levels in quiescent cells, as the protease responsible for cleaving XPA during cell lysis. These results suggest that supplementation of lysis buffers with inhibitors of cathepsin L is important to prevent cleavage of XPA during lysis of confluent cells.
Collapse
Affiliation(s)
- Saman Khan
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - William Cvammen
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Nadeen Anabtawi
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Jun-Hyuk Choi
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea;,Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-340, Republic of Korea
| | - Michael G. Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio;,Dayton Veterans Administration Medical Center, Dayton, Ohio,To whom correspondence should be addressed:
| |
Collapse
|
3
|
Goel RK, Meyer M, Paczkowska M, Reimand J, Vizeacoumar F, Vizeacoumar F, Lam TT, Lukong KE. Global phosphoproteomic analysis identifies SRMS-regulated secondary signaling intermediates. Proteome Sci 2018; 16:16. [PMID: 30140170 PMCID: PMC6098843 DOI: 10.1186/s12953-018-0143-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023] Open
Abstract
Background The non-receptor tyrosine kinase, SRMS (Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites) is a member of the BRK family kinases (BFKs) which represents an evolutionarily conserved relative of the Src family kinases (SFKs). Tyrosine kinases are known to regulate a number of cellular processes and pathways via phosphorylating substrate proteins directly and/or by partaking in signaling cross-talks leading to the indirect modulation of various signaling intermediates. In a previous study, we profiled the tyrosine-phosphoproteome of SRMS and identified multiple candidate substrates of the kinase. The broader cellular signaling intermediates of SRMS are unknown. Methods In order to uncover the broader SRMS-regulated phosphoproteome and identify the SRMS-regulated indirect signaling intermediates, we performed label-free global phosphoproteomics analysis on cells expressing wild-type SRMS. Using computational database searching and bioinformatics analyses we characterized the dataset. Results Our analyses identified 60 hyperphosphorylated (phosphoserine/phosphothreonine) proteins mapped from 140 hyperphosphorylated peptides. Bioinfomatics analyses identified a number of significantly enriched biological and cellular processes among which DNA repair pathways were found to be upregulated while apoptotic pathways were found to be downregulated. Analyses of motifs derived from the upregulated phosphosites identified Casein kinase 2 alpha (CK2α) as one of the major potential kinases contributing to the SRMS-dependent indirect regulation of signaling intermediates. Conclusions Overall, our phosphoproteomics analyses identified serine/threonine phosphorylation dynamics as important secondary events of the SRMS-regulated phosphoproteome with implications in the regulation of cellular and biological processes. Electronic supplementary material The online version of this article (10.1186/s12953-018-0143-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- 1Department of Biochemistry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| | - Mona Meyer
- 2Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3 Canada
| | - Marta Paczkowska
- 2Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3 Canada
| | - Jüri Reimand
- 2Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3 Canada.,3Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7 Canada
| | - Frederick Vizeacoumar
- 4Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
| | - Franco Vizeacoumar
- 4Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada.,5Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| | - TuKiet T Lam
- 6Department of Molecular Biophysics and Biochemistry and MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT USA
| | - Kiven Erique Lukong
- 1Department of Biochemistry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| |
Collapse
|
4
|
Sumter TF, Xian L, Huso T, Koo M, Chang YT, Almasri TN, Chia L, Inglis C, Reid D, Resar LMS. The High Mobility Group A1 (HMGA1) Transcriptome in Cancer and Development. Curr Mol Med 2016; 16:353-93. [PMID: 26980699 DOI: 10.2174/1566524016666160316152147] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/15/2016] [Accepted: 03/10/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND & OBJECTIVES Chromatin structure is the single most important feature that distinguishes a cancer cell from a normal cell histologically. Chromatin remodeling proteins regulate chromatin structure and high mobility group A (HMGA1) proteins are among the most abundant, nonhistone chromatin remodeling proteins found in cancer cells. These proteins include HMGA1a/HMGA1b isoforms, which result from alternatively spliced mRNA. The HMGA1 gene is overexpressed in cancer and high levels portend a poor prognosis in diverse tumors. HMGA1 is also highly expressed during embryogenesis and postnatally in adult stem cells. Overexpression of HMGA1 drives neoplastic transformation in cultured cells, while inhibiting HMGA1 blocks oncogenic and cancer stem cell properties. Hmga1 transgenic mice succumb to aggressive tumors, demonstrating that dysregulated expression of HMGA1 causes cancer in vivo. HMGA1 is also required for reprogramming somatic cells into induced pluripotent stem cells. HMGA1 proteins function as ancillary transcription factors that bend chromatin and recruit other transcription factors to DNA. They induce oncogenic transformation by activating or repressing specific genes involved in this process and an HMGA1 "transcriptome" is emerging. Although prior studies reveal potent oncogenic properties of HMGA1, we are only beginning to understand the molecular mechanisms through which HMGA1 functions. In this review, we summarize the list of putative downstream transcriptional targets regulated by HMGA1. We also briefly discuss studies linking HMGA1 to Alzheimer's disease and type-2 diabetes. CONCLUSION Further elucidation of HMGA1 function should lead to novel therapeutic strategies for cancer and possibly for other diseases associated with aberrant HMGA1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - L M S Resar
- Department of Medicine, Faculty of the Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, MD 21205-2109, USA.
| |
Collapse
|
5
|
The Architectural Chromatin Factor High Mobility Group A1 Enhances DNA Ligase IV Activity Influencing DNA Repair. PLoS One 2016; 11:e0164258. [PMID: 27723831 PMCID: PMC5056749 DOI: 10.1371/journal.pone.0164258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022] Open
Abstract
The HMGA1 architectural transcription factor is an oncogene overexpressed in the vast majority of human cancers. HMGA1 is a highly connected node in the nuclear molecular network and the key aspect of HMGA1 involvement in cancer development is that HMGA1 simultaneously confers cells multiple oncogenic hits, ranging from global chromatin structural and gene expression modifications up to the direct functional alterations of key cellular proteins. Interestingly, HMGA1 also modulates DNA damage repair pathways. In this work, we provide evidences linking HMGA1 with Non-Homologous End Joining DNA repair. We show that HMGA1 is in complex with and is a substrate for DNA-PK. HMGA1 enhances Ligase IV activity and it counteracts the repressive histone H1 activity towards DNA ends ligation. Moreover, breast cancer cells overexpressing HMGA1 show a faster recovery upon induction of DNA double-strand breaks, which is associated with a higher survival. These data suggest that resistance to DNA-damaging agents in cancer cells could be partially attributed to HMGA1 overexpression thus highlighting the relevance of considering HMGA1 expression levels in the selection of valuable and effective pharmacological regimens.
Collapse
|
6
|
Maurizio E, Wiśniewski JR, Ciani Y, Amato A, Arnoldo L, Penzo C, Pegoraro S, Giancotti V, Zambelli A, Piazza S, Manfioletti G, Sgarra R. Translating Proteomic Into Functional Data: An High Mobility Group A1 (HMGA1) Proteomic Signature Has Prognostic Value in Breast Cancer. Mol Cell Proteomics 2015; 15:109-23. [PMID: 26527623 PMCID: PMC4762532 DOI: 10.1074/mcp.m115.050401] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer is a very heterogeneous disease, and biological variability adds a further level of complexity, thus limiting the ability to identify new genes involved in cancer development. Oncogenes whose expression levels control cell aggressiveness are very useful for developing cellular models that permit differential expression screenings in isogenic contexts. HMGA1 protein has this unique property because it is a master regulator in breast cancer cells that control the transition from a nontumorigenic epithelial-like phenotype toward a highly aggressive mesenchymal-like one. The proteins extracted from HMGA1-silenced and control MDA-MB-231 cells were analyzed using label-free shotgun mass spectrometry. The differentially expressed proteins were cross-referenced with DNA microarray data obtained using the same cellular model and the overlapping genes were filtered for factors linked to poor prognosis in breast cancer gene expression meta-data sets, resulting in an HMGA1 protein signature composed of 21 members (HRS, HMGA1 reduced signature). This signature had a prognostic value (overall survival, relapse-free survival, and distant metastasis-free survival) in breast cancer. qRT-PCR, Western blot, and immunohistochemistry analyses validated the link of three members of this signature (KIFC1, LRRC59, and TRIP13) with HMGA1 expression levels both in vitro and in vivo and wound healing assays demonstrated that these three proteins are involved in modulating tumor cell motility. Combining proteomic and genomic data with the aid of bioinformatic tools, our results highlight the potential involvement in neoplastic transformation of a restricted list of factors with an as-yet-unexplored role in cancer. These factors are druggable targets that could be exploited for the development of new, targeted therapeutic approaches in triple-negative breast cancer.
Collapse
Affiliation(s)
- Elisa Maurizio
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Jacek R Wiśniewski
- §Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Yari Ciani
- ¶Laboratorio Nazionale CIB, (LNCIB), Area Science Park, 34149 Trieste, Italy
| | - Angela Amato
- ¶¶Laboratory of Experimental Oncology and Pharmacogenomics IRCCS - Salvatore Maugeri Foundation, 27100 Pavia, Italy
| | - Laura Arnoldo
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Carlotta Penzo
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Silvia Pegoraro
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Vincenzo Giancotti
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alberto Zambelli
- ‖Department of Medical Oncology, Hospital Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Silvano Piazza
- ¶Laboratorio Nazionale CIB, (LNCIB), Area Science Park, 34149 Trieste, Italy
| | | | - Riccardo Sgarra
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
7
|
Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst) 2015; 36:122-136. [PMID: 26411874 DOI: 10.1016/j.dnarep.2015.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat 'individualistic' impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|
8
|
Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol 2014; 1105:419-37. [PMID: 24623245 DOI: 10.1007/978-1-62703-739-6_31] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this chapter, we describe a gene-specific quantitative PCR (QPCR)-based assay for the measurement of DNA damage, using amplification of long DNA targets. This assay has been used extensively to measure the integrity of both nuclear and mitochondrial genomes exposed to different genotoxins and has proven to be particularly valuable in identifying reactive oxygen species-mediated mitochondrial DNA damage. QPCR can be used to quantify both the formation of DNA damage as well as the kinetics of damage removal. One of the main strengths of the assay is that it permits monitoring the integrity of mtDNA directly from total cellular DNA without the need for isolating mitochondria or a separate step of mitochondrial DNA purification. Here we discuss advantages and limitations of using QPCR to assay DNA damage in mammalian cells. In addition, we give a detailed protocol of the QPCR assay that helps facilitate its successful deployment in any molecular biology laboratory.
Collapse
|
9
|
|
10
|
Sharma A, Ray R, Rajeswari MR. High-Mobility Group A1 (HMGA1) Protein Expression Correlates With Cisplatin-Induced Cell Death in Squamous Cell Carcinoma of Skin. Cancer Invest 2010. [DOI: 10.1080/07357900903286933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Zhang Q, Wang Y. HMG modifications and nuclear function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:28-36. [PMID: 20123066 DOI: 10.1016/j.bbagrm.2009.11.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/26/2009] [Accepted: 11/03/2009] [Indexed: 12/26/2022]
Abstract
High mobility group (HMG) proteins assume important roles in regulating chromatin dynamics, transcriptional activities of genes and other cellular processes. Post-translational modifications of HMG proteins can alter their interactions with DNA and proteins, and consequently, affect their biological activities. Although the mechanisms through which these modifications are involved in regulating biological processes in different cellular contexts are not fully understood, new insights into these modification "codes" have emerged from the increasing appreciation of the functions of these proteins. In this review, we focus on the chemical modifications of mammalian HMG proteins and highlight their roles in nuclear functions.
Collapse
Affiliation(s)
- Qingchun Zhang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | |
Collapse
|
12
|
The maize HMGA protein is localized to the nucleolus and can be acetylated in vitro at its globular domain, and phosphorylation by CDK reduces its binding activity to AT-rich DNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:751-7. [DOI: 10.1016/j.bbagrm.2009.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/16/2009] [Indexed: 11/23/2022]
|
13
|
Reeves R. Nuclear functions of the HMG proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:3-14. [PMID: 19748605 DOI: 10.1016/j.bbagrm.2009.09.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/04/2009] [Indexed: 12/12/2022]
Abstract
Although the three families of mammalian HMG proteins (HMGA, HMGB and HMGN) participate in many of the same nuclear processes, each family plays its own unique role in modulating chromatin structure and regulating genomic function. This review focuses on the similarities and differences in the mechanisms by which the different HMG families impact chromatin structure and influence cellular phenotype. The biological implications of having three architectural transcription factor families with complementary, but partially overlapping, nuclear functions are discussed.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, Washington State University, Biotechnology/Life Sciences Bldg., Rm. 143, Pullman, WA 99164-7520, USA.
| |
Collapse
|
14
|
HMGA1 levels influence mitochondrial function and mitochondrial DNA repair efficiency. Mol Cell Biol 2009; 29:5426-40. [PMID: 19687300 DOI: 10.1128/mcb.00105-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HMGA chromatin proteins, a family of gene regulatory factors found at only low concentrations in normal cells, are almost universally overexpressed in cancer cells. HMGA proteins are located in the nuclei of normal cells except during the late S/G(2) phases of the cell cycle, when HMGA1, one of the members of the family, reversibly migrates to the mitochondria, where it binds to mitochondrial DNA (mtDNA). In many cancer cells, this controlled shuttling is lost and HMGA1 is found in mitochondria throughout the cell cycle. To investigate the effects of HMGA1 on mitochondria, we employed a genetically engineered line of human MCF-7 cells in which the levels of transgenic HMGA1 protein could be reversibly controlled. "Turn-ON" and "turn-OFF" time course experiments were performed with these cells to either increase or decrease intracellular HMGA1 levels, and various mitochondrial changes were monitored. Results demonstrated that changes in both mtDNA levels and mitochondrial mass inversely paralleled changes in HMGA1 concentrations, strongly implicating HMGA1 in the regulation of these parameters. Additionally, the level of cellular reactive oxygen species (ROS) increased and the efficiency of repair of oxidatively damaged mtDNA decreased as consequences of elevated HMGA1 expression. Increased ROS levels and reduced repair efficiency in HMGA1-overexpressing cells likely contribute to the increased occurrence of mutations in mtDNA frequently observed in cancer cells.
Collapse
|