1
|
The Tip of an Iceberg: Replication-Associated Functions of the Tumor Suppressor p53. Cancers (Basel) 2018; 10:cancers10080250. [PMID: 30060597 PMCID: PMC6115784 DOI: 10.3390/cancers10080250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor p53 is a transcriptional factor broadly mutated in cancer. Most inactivating and gain of function mutations disrupt the sequence-specific DNA binding domain, which activates target genes. This is perhaps the main reason why most research has focused on the relevance of such transcriptional activity for the prevention or elimination of cancer cells. Notwithstanding, transcriptional regulation may not be the only mechanism underlying its role in tumor suppression and therapeutic responses. In the past, a direct role of p53 in DNA repair transactions that include the regulation of homologous recombination has been suggested. More recently, the localization of p53 at replication forks has been demonstrated and the effect of p53 on nascent DNA elongation has been explored. While some data sets indicate that the regulation of ongoing replication forks by p53 may be mediated by p53 targets such as MDM2 (murine double minute 2) and polymerase (POL) eta other evidences demonstrate that p53 is capable of controlling DNA replication by directly interacting with the replisome and altering its composition. In addition to discussing such findings, this review will also analyze the impact that p53-mediated control of ongoing DNA replication has on treatment responses and tumor suppressor abilities of this important anti-oncogene.
Collapse
|
2
|
Belousova EA, Lavrik OI. Repair of Clustered Damage and DNA Polymerase Iota. BIOCHEMISTRY (MOSCOW) 2016; 80:1010-8. [PMID: 26547069 DOI: 10.1134/s0006297915080064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.
Collapse
Affiliation(s)
- E A Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | |
Collapse
|
3
|
DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression. Proc Natl Acad Sci U S A 2016; 113:E4311-9. [PMID: 27407148 DOI: 10.1073/pnas.1605828113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.
Collapse
|
4
|
Cipolla L, Maffia A, Bertoletti F, Sabbioneda S. The Regulation of DNA Damage Tolerance by Ubiquitin and Ubiquitin-Like Modifiers. Front Genet 2016; 7:105. [PMID: 27379156 PMCID: PMC4904029 DOI: 10.3389/fgene.2016.00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
DNA replication is an extremely complex process that needs to be executed in a highly accurate manner in order to propagate the genome. This task requires the coordination of a number of enzymatic activities and it is fragile and prone to arrest after DNA damage. DNA damage tolerance provides a last line of defense that allows completion of DNA replication in the presence of an unrepaired template. One of such mechanisms is called post-replication repair (PRR) and it is used by the cells to bypass highly distorted templates caused by damaged bases. PRR is extremely important for the cellular life and performs the bypass of the damage both in an error-free and in an error-prone manner. In light of these two possible outcomes, PRR needs to be tightly controlled in order to prevent the accumulation of mutations leading ultimately to genome instability. Post-translational modifications of PRR proteins provide the framework for this regulation with ubiquitylation and SUMOylation playing a pivotal role in choosing which pathway to activate, thus controlling the different outcomes of damage bypass. The proliferating cell nuclear antigen (PCNA), the DNA clamp for replicative polymerases, plays a central role in the regulation of damage tolerance and its modification by ubiquitin, and SUMO controls both the error-free and error-prone branches of PRR. Furthermore, a significant number of polymerases are involved in the bypass of DNA damage possess domains that can bind post-translational modifications and they are themselves target for ubiquitylation. In this review, we will focus on how ubiquitin and ubiquitin-like modifications can regulate the DNA damage tolerance systems and how they control the recruitment of different proteins to the replication fork.
Collapse
Affiliation(s)
- Lina Cipolla
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| | - Antonio Maffia
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| | - Federica Bertoletti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| |
Collapse
|
5
|
Gening LV, Lakhin AV, Makarova IV, Nenasheva VV, Andreeva LE, Tarantul VZ. Alterations in Synthesis and Repair of DNA during the Development of Loach Misgurnus fossilis. J Dev Biol 2016; 4:jdb4010006. [PMID: 29615575 PMCID: PMC5831811 DOI: 10.3390/jdb4010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 01/01/2023] Open
Abstract
Using a modified radiolabeled primer extension method (we named this modification misGvA—“misincorporation of G versus A”) we have investigated the DNA synthesis and repair at early and late stages of development of loach Misgurnus fossilis. The misincorporation activity of DNA polymerase iota (Pol ι) in wild-type loach could not be detected by this method at any stage of loach development. In transgenic loach overexpressing human Pol ι we have shown that the bypassing of DNA synthesis arrest after incorporation of mismatched nucleotide by Pol ι (the T-stop) was not associated with this enzyme. Non-transgenic loach larvae are virtually lacking the capacity for error correction of DNA duplex containing a mismatched nucleotide. Such repair activity develops only in the adult fish. It appears that the initial stages of development are characterized by more intensive DNA synthesis, while in terminal stages the repair activities become more prominent. The misGvA approach clearly indicates substantial changes in the DNA synthesis intensity, although the role of particular replicative and repair DNA polymerases in this process requires further study.
Collapse
Affiliation(s)
- Leonid V Gening
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Square, 123182 Moscow, Russia.
| | - Andrei V Lakhin
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Square, 123182 Moscow, Russia.
| | - Irina V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Square, 123182 Moscow, Russia.
| | - Valentina V Nenasheva
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Square, 123182 Moscow, Russia.
| | - Ludmila E Andreeva
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Square, 123182 Moscow, Russia.
| | - Vyacheslav Z Tarantul
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Square, 123182 Moscow, Russia.
| |
Collapse
|
6
|
Iguchi M, Osanai M, Hayashi Y, Koentgen F, Lee GH. The error-prone DNA polymerase ι provides quantitative resistance to lung tumorigenesis and mutagenesis in mice. Oncogene 2013; 33:3612-7. [DOI: 10.1038/onc.2013.331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/19/2013] [Accepted: 06/25/2013] [Indexed: 12/24/2022]
|
7
|
Yuan F, Xu Z, Yang M, Wei Q, Zhang Y, Yu J, Zhi Y, Liu Y, Chen Z, Yang J. Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer. PLoS One 2013; 8:e69317. [PMID: 23922701 PMCID: PMC3724822 DOI: 10.1371/journal.pone.0069317] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/12/2013] [Indexed: 12/21/2022] Open
Abstract
Human DNA polymerase iota (pol ι) possesses high error-prone DNA replication features and performs translesion DNA synthesis. It may be specialized and strictly regulated in normal mammalian cells. Dysregulation of pol ι may contribute to the acquisition of a mutator phenotype. However, there are few reports describing the transcription regulatory mechanism of pol ι, and there is controversy regarding its role in carcinogenesis. In this study, we performed the deletion and point-mutation experiment, EMSA, ChIP, RNA interference and western blot assay to prove that c-Jun activated by c-Jun N-terminal kinase (JNK) regulates the transcription of pol ι in normal and cancer cells. Xeroderma pigmentosum group C protein (XPC) and ataxia-telangiectasia mutated related protein (ATR) promote early JNK activation in response to DNA damage and consequently enhance the expression of pol ι, indicating that the novel role of JNK signal pathway is involved in DNA damage response. Furthermore, associated with elevated c-Jun activity, the overexpression of pol ι is positively correlated with the clinical tumor grade in 97 bladder cancer samples and may contribute to the hypermutagenesis. The overexpressed pol ι-involved mutagenesis is dependent on JNK/c-Jun pathway in bladder cancer cells identifying by the special mutation spectra. Our results support the conclusion that dysregulation of pol ι by JNK/c-Jun is involved in carcinogenesis and offer a novel understanding of the role of pol ι or c-Jun in mutagenesis.
Collapse
Affiliation(s)
- Fang Yuan
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Zhigang Xu
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, The Third Military Medical University, Chongqing, China
| | - Quanfang Wei
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
| | - Jin Yu
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
| | - Yi Zhi
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Liu
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Zhiwen Chen
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
- * E-mail: (ZC); (J. Yang)
| | - Jin Yang
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
- * E-mail: (ZC); (J. Yang)
| |
Collapse
|
8
|
Makarova AV, Kulbachinskiy AV. Structure of human DNA polymerase iota and the mechanism of DNA synthesis. BIOCHEMISTRY (MOSCOW) 2012; 77:547-61. [PMID: 22817454 DOI: 10.1134/s0006297912060016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.
Collapse
Affiliation(s)
- A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, pl. Kurchatova 2, 123182 Moscow, Russia.
| | | |
Collapse
|
9
|
Makarova AV, Grabow C, Gening LV, Tarantul VZ, Tahirov TH, Bessho T, Pavlov YI. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota. PLoS One 2011; 6:e16612. [PMID: 21304950 PMCID: PMC3031609 DOI: 10.1371/journal.pone.0016612] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/04/2011] [Indexed: 12/29/2022] Open
Abstract
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.
Collapse
Affiliation(s)
- Alena V. Makarova
- Institute of Molecular Genetics of Russian Academy of Science, Moscow, Russian Federation
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Corinn Grabow
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Leonid V. Gening
- Institute of Molecular Genetics of Russian Academy of Science, Moscow, Russian Federation
| | - Vyacheslav Z. Tarantul
- Institute of Molecular Genetics of Russian Academy of Science, Moscow, Russian Federation
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Tadayoshi Bessho
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
10
|
Postreplication gaps at UV lesions are signals for checkpoint activation. Proc Natl Acad Sci U S A 2010; 107:8219-24. [PMID: 20404181 DOI: 10.1073/pnas.1003449107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exposure of eukaryotic cells to UV light induces a checkpoint response that delays cell-cycle progression after cells enter S phase. It has been hypothesized that this checkpoint response provides time for repair by signaling the presence of structures generated when the replication fork encounters UV-induced DNA damage. To gain insight into the nature of the signaling structures, we used time-lapse microscopy to determine the effects of deficiencies in translesion DNA polymerases on the checkpoint response of the fission yeast Schizosaccharomyces pombe. We found that disruption of the genes encoding translesion DNA polymerases Polkappa and Poleta significantly prolonged the checkpoint response, indicating that the substrates of these enzymes are signals for checkpoint activation. Surprisingly, we found no evidence that the translesion polymerases Rev1 and Polzeta repair structures that are recognized by the checkpoint despite their role in maintaining viability after UV irradiation. Quantitative flow cytometry revealed that cells lacking translesion polymerases replicate UV-damaged DNA at the same rate at WT cells, indicating that the enhanced checkpoint response of cells lacking Polkappa and Poleta is not the result of stalled replication forks. These observations support a model in which postreplication DNA gaps with unrepaired UV lesions in the template strand act both as substrates for translesion polymerases and as signals for checkpoint activation.
Collapse
|
11
|
Donny-Clark K, Broyde S. Influence of local sequence context on damaged base conformation in human DNA polymerase iota: molecular dynamics studies of nucleotide incorporation opposite a benzo[a]pyrene-derived adenine lesion. Nucleic Acids Res 2010; 37:7095-109. [PMID: 19767609 PMCID: PMC2790882 DOI: 10.1093/nar/gkp745] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human DNA polymerase iota is a lesion bypass polymerase of the Y family, capable of incorporating nucleotides opposite a variety of lesions in both near error-free and error-prone bypass. With undamaged templating purines polymerase iota normally favors Hoogsteen base pairing. Polymerase iota can incorporate nucleotides opposite a benzo[a]pyrene-derived adenine lesion (dA*); while mainly error-free, the identity of misincorporated bases is influenced by local sequence context. We performed molecular modeling and molecular dynamics simulations to elucidate the structural basis for lesion bypass. Our results suggest that hydrogen bonds between the benzo[a]pyrenyl moiety and nearby bases limit the movement of the templating base to maintain the anti glycosidic bond conformation in the binary complex in a 5'-CAGA*TT-3' sequence. This facilitates correct incorporation of dT via a Watson-Crick pair. In a 5'-TTTA*GA-3' sequence the lesion does not form these hydrogen bonds, permitting dA* to rotate around the glycosidic bond to syn and incorporate dT via a Hoogsteen pair. With syn dA*, there is also an opportunity for increased misincorporation of dGTP. These results expand our understanding of the versatility and flexibility of polymerase iota and its lesion bypass functions in humans.
Collapse
|
12
|
Separate roles of structured and unstructured regions of Y-family DNA polymerases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 78:99-146. [PMID: 20663485 DOI: 10.1016/s1876-1623(08)78004-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
All organisms have multiple DNA polymerases specialized for translesion DNA synthesis (TLS) on damaged DNA templates. Mammalian TLS DNA polymerases include Pol eta, Pol iota, Pol kappa, and Rev1 (all classified as "Y-family" members) and Pol zeta (a "B-family" member). Y-family DNA polymerases have highly structured catalytic domains; however, some of these proteins adopt different structures when bound to DNA (such as archaeal Dpo4 and human Pol kappa), while others maintain similar structures independently of DNA binding (such as archaeal Dbh and Saccharomyces cerevisiae Pol eta). DNA binding-induced structural conversions of TLS polymerases depend on flexible regions present within the catalytic domains. In contrast, noncatalytic regions of Y-family proteins, which contain multiple domains and motifs for interactions with other proteins, are predicted to be mostly unstructured, except for short regions corresponding to ubiquitin-binding domains. In this review we discuss how the organization of structured and unstructured regions in TLS polymerases is relevant to their regulation and function during lesion bypass.
Collapse
|