1
|
Micewicz ED, Kim K, Iwamoto KS, Ratikan JA, Cheng G, Boxx GM, Damoiseaux RD, Whitelegge JP, Ruchala P, Nguyen C, Purbey P, Loo J, Deng G, Jung ME, Sayre JW, Norris AJ, Schaue D, McBride WH. 4-(Nitrophenylsulfonyl)piperazines mitigate radiation damage to multiple tissues. PLoS One 2017; 12:e0181577. [PMID: 28732024 PMCID: PMC5521796 DOI: 10.1371/journal.pone.0181577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/03/2017] [Indexed: 01/08/2023] Open
Abstract
Our ability to use ionizing radiation as an energy source, as a therapeutic agent, and, unfortunately, as a weapon, has evolved tremendously over the past 120 years, yet our tool box to handle the consequences of accidental and unwanted radiation exposure remains very limited. We have identified a novel group of small molecule compounds with a 4-nitrophenylsulfonamide (NPS) backbone in common that dramatically decrease mortality from the hematopoietic acute radiation syndrome (hARS). The group emerged from an in vitro high throughput screen (HTS) for inhibitors of radiation-induced apoptosis. The lead compound also mitigates against death after local abdominal irradiation and after local thoracic irradiation (LTI) in models of subacute radiation pneumonitis and late radiation fibrosis. Mitigation of hARS is through activation of radiation-induced CD11b+Ly6G+Ly6C+ immature myeloid cells. This is consistent with the notion that myeloerythroid-restricted progenitors protect against WBI-induced lethality and extends the possible involvement of the myeloid lineage in radiation effects. The lead compound was active if given to mice before or after WBI and had some anti-tumor action, suggesting that these compounds may find broader applications to cancer radiation therapy.
Collapse
Affiliation(s)
- Ewa D. Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Kwanghee Kim
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Josephine A. Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Gayle M. Boxx
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Robert D. Damoiseaux
- Molecular Screening Shared Resource, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Piotr Ruchala
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Prabhat Purbey
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Joseph Loo
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Gang Deng
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - James W. Sayre
- School of Public Health, Biostatistics and Radiology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Andrew J. Norris
- BCN Biosciences, LLC, Pasadena, California, United States of America
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - William H. McBride
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Mitochondrial dysfunction in DDR-related cancer predisposition syndromes. Biochim Biophys Acta Rev Cancer 2016; 1865:184-9. [DOI: 10.1016/j.bbcan.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
|
3
|
Minieri V, Saviozzi S, Gambarotta G, Lo Iacono M, Accomasso L, Cibrario Rocchietti E, Gallina C, Turinetto V, Giachino C. Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells. J Cell Mol Med 2015; 19:734-43. [PMID: 25619736 PMCID: PMC4395188 DOI: 10.1111/jcmm.12387] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are adult multipotent stem cells located in various tissues, including the bone marrow. In contrast to terminally differentiated somatic cells, adult stem cells must persist and function throughout life to ensure tissue homeostasis and repair. For this reason, they must be equipped with DNA damage responses able to maintain genomic integrity while ensuring their lifelong persistence. Evaluation of hMSC response to genotoxic insults is of great interest considering both their therapeutic potential and their physiological functions. This study aimed to investigate the response of human bone marrow MSCs to the genotoxic agent Actinomycin D (ActD), a well-known anti-tumour drug. We report that hMSCs react by undergoing premature senescence driven by a persistent DNA damage response activation, as hallmarked by inhibition of DNA synthesis, p21 and p16 protein expression, marked Senescent Associated β-galactosidase activity and enlarged γH2AX foci co-localizing with 53BP1 protein. Senescent hMSCs overexpress several senescence-associated secretory phenotype (SASP) genes and promote motility of lung tumour and osteosarcoma cell lines in vitro. Our findings disclose a multifaceted consequence of ActD treatment on hMSCs that on the one hand helps to preserve this stem cell pool and prevents damaged cells from undergoing neoplastic transformation, and on the other hand alters their functional effects on the surrounding tissue microenvironment in a way that might worsen their tumour-promoting behaviour.
Collapse
Affiliation(s)
- Valentina Minieri
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:541230. [PMID: 24876913 PMCID: PMC4024404 DOI: 10.1155/2014/541230] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/24/2014] [Indexed: 02/07/2023]
Abstract
Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients.
Collapse
Affiliation(s)
- Giovanni Pagano
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Annarita Aiello Talamanca
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Giuseppe Castello
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Mario D. Cordero
- Research Laboratory, Dental School, Sevilla University, 41009 Sevilla, Spain
| | - Marco d'Ischia
- Department of Chemical Sciences, Federico II University, 80126 Naples, Italy
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, 70126 Bari, Italy
| | | | - Sandra Petrović
- “Vinca” Institute of Nuclear Sciences, University of Belgrade, 11070 Belgrade, Serbia
| | - Luca Tiano
- Department of Clinical and Dental Sciences, Polytechnical University of Marche, 60100 Ancona, Italy
| | | |
Collapse
|
5
|
Pagano G, Shyamsunder P, Verma RS, Lyakhovich A. Damaged mitochondria in Fanconi anemia - an isolated event or a general phenomenon? Oncoscience 2014; 1:287-95. [PMID: 25594021 PMCID: PMC4278298 DOI: 10.18632/oncoscience.29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/20/2014] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia (FA) is known as an inherited bone marrow failure syndrome associated with cancer predisposition and susceptibility to a number of DNA damaging stimuli, along with a number of clinical features such as upper limb malformations, increased diabetes incidence and typical anomalies in skin pigmentation. The proteins encoded by FA-defective genes (FANC proteins) display well-established roles in DNA damage and repair pathways. Moreover, some independent studies have revealed that mitochondrial dysfunction (MDF) is also involved in FA phenotype. Unconfined to FA, we have shown that other syndromes featuring DNA damage and repair (such as ataxia-telangiectasia, AT, and Werner syndrome, WS) display MDF-related phenotypes, along with oxidative stress (OS) that, altogether, may play major roles in these diseases. Experimental and clinical studies are warranted in the prospect of future therapies to be focused on compounds scavenging reactive oxygen species (ROS) as well as protecting mitochondrial functions.
Collapse
Affiliation(s)
- Giovanni Pagano
- Italian National Cancer Institute, G Pascale Foundation, CROM, Mercogliano, AV, Italy
| | - Pavithra Shyamsunder
- Stem Cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai
| | - Rama S Verma
- Stem Cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai
| | - Alex Lyakhovich
- Duke-NUS Graduate Medical School, Singapore ; Novosibirsk Institute of Molecular Biology and Biophysics, Russian Federation ; Queen's University Belfast, UK
| |
Collapse
|
6
|
Murad NAA, Cullen JK, McKenzie M, Ryan MT, Thorburn D, Gueven N, Kobayashi J, Birrell G, Yang J, Dörk T, Becherel O, Grattan-Smith P, Lavin MF. Mitochondrial dysfunction in a novel form of autosomal recessive ataxia. Mitochondrion 2012. [PMID: 23178371 DOI: 10.1016/j.mito.2012.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defects in the recognition and/or repair of damage to DNA are responsible for a sub-group of autosomal recessive ataxias. Included in this group is a novel form of ataxia with oculomotor apraxia characterised by sensitivity to DNA damaging agents, a defect in p53 stabilisation, oxidative stress and resistance to apoptosis. We provide evidence here that the defect in this patient's cells is at the level of the mitochondrion. Mitochondrial membrane potential was markedly reduced in cells from the patient and ROS levels were elevated. This was accompanied by lipid peroxidation of mitochondrial proteins involved in electron transport and RNA synthesis. However, no gross changes or alteration in composition or activity of mitochondrial electron transport complexes was evident. Sequencing of mitochondrial DNA revealed a mutation, I349T, in the mitochondrial cytochrome b gene. These results describe a patient with an apparently novel form of AOA characterised by a defect at the level of the mitochondrion.
Collapse
Affiliation(s)
- Nor Azian Abdul Murad
- Cancer and Cell Biology, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
He J, Qi Z, Su Y, He Q, Liu J, Yu L, Al-Attas OS, Hussain T, De Rosas ET, Ji L, Ding S. Pifithrin-μ increases mitochondrial COX biogenesis and MnSOD activity in skeletal muscle of middle-aged mice. Mitochondrion 2012; 12:630-9. [PMID: 23006892 DOI: 10.1016/j.mito.2012.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 08/28/2012] [Accepted: 09/13/2012] [Indexed: 12/31/2022]
Abstract
We investigated the biogenesis and mitochondrial antioxidant capacity of cytochrome c oxidase (COX) within the skeletal muscle under the treatments of p53 inhibitors (pifithrin, PFTα and PFTμ). Significantly, PFTμ increased mtDNA content and COX biogenesis. These changes coincided with increases in the activity and expression of manganese superoxide dismutase (MnSOD), the key antioxidant enzyme in mitochondria. Conversely, PFTα caused muscle loss, increased oxidative damage and decreased MnSOD activity in intermyofibrillar (IMF) mitochondria. Mechanically, PFTμ inhibited p53 translocation to mitochondria and thus increased its transcriptional activity for expression of synthesis of cytochrome c oxidase 2 (SCO2), an important assembly protein for COX. This study provides in vivo evidence that PFTμ, superior to PFTα, preserves muscle mass and increases mitochondrial antioxidant activity.
Collapse
Affiliation(s)
- Jie He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, Shanghai 200241, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Klymkowsky M. Mitochondrial activity, embryogenesis, and the dialogue between the big and little brains of the cell. Mitochondrion 2011; 11:814-9. [DOI: 10.1016/j.mito.2010.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 11/02/2010] [Accepted: 11/18/2010] [Indexed: 12/31/2022]
|
9
|
Luo DX, Peng XH, Xiong Y, Liao DF, Cao D, Li L. Dual role of insulin-like growth factor-1 in acetyl-CoA carboxylase-alpha activity in human colon cancer cells HCT-8: downregulating its expression and phosphorylation. Mol Cell Biochem 2011; 357:255-62. [PMID: 21638027 DOI: 10.1007/s11010-011-0896-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/18/2011] [Indexed: 02/03/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) plays the role in cellular lipid synthesis and cell proliferation. However, the role of IGF-1 on the growth of colon cancer cell line HCT-8 is not clear. In this study, HCT-8 cells were exposed to IGF-1 at 0, 10, 50, or 100 ng/ml in serum-free medium. Fatty acid/lipid synthesis in HCT-8 cells was examined by 2-14C-acetate incorporation. HCT-8 cell growth and proliferation were determined by MTT assay and Trypan blue exclusive viable cell counting. We found that in serum starvation conditions, IGF-1 at 10-100 ng/ml induced dose-dependent down regulation of both the ACCα expression and the phosphorylation in HCT-8 cells, maintaining a balance in ACCα activity and lipid synthesis. IGF-1 reduced p-ATM, p-AMPK, and then p-ACCα protein levels in HCT-8 cells. IGF-1 increased p-Akt levels, but decreased p-ERK1/2 levels, leading to the decrease in ACCα protein and mRNA levels. Similarly, ERK1/2 inhibitor PD98059 reduced ACCα expression. IGF-1 influences neither HCT-8 cell growth nor their p53 protein levels and PARP cleavage. In a word, IGF-1 reduced ACCα phosphorylation via an ATM/AMPK signaling pathway and suppressed ACCα expression through an ERK1/2 transduction, playing a dual role in regulating ACCα activity and lipogenesis. This may render a cell with survival advantages under a serum starvation crisis, representing a novel mitogenic role of IGF-1.
Collapse
Affiliation(s)
- Di-Xian Luo
- School of Pharmaceutics, Central South University, Changsha, 410083, China
| | | | | | | | | | | |
Collapse
|