1
|
Wojtaszek JL, Williams RS. From the TOP: Formation, recognition and resolution of topoisomerase DNA protein crosslinks. DNA Repair (Amst) 2024; 142:103751. [PMID: 39180935 PMCID: PMC11404304 DOI: 10.1016/j.dnarep.2024.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Since the report of "DNA untwisting" activity in 1972, ∼50 years of research has revealed seven topoisomerases in humans (TOP1, TOP1mt, TOP2α, TOP2β, TOP3α, TOP3β and Spo11). These conserved regulators of DNA topology catalyze controlled breakage to the DNA backbone to relieve the torsional stress that accumulates during essential DNA transactions including DNA replication, transcription, and DNA repair. Each topoisomerase-catalyzed reaction involves the formation of a topoisomerase cleavage complex (TOPcc), a covalent protein-DNA reaction intermediate formed between the DNA phosphodiester backbone and a topoisomerase catalytic tyrosine residue. A variety of perturbations to topoisomerase reaction cycles can trigger failure of the enzyme to re-ligate the broken DNA strand(s), thereby generating topoisomerase DNA-protein crosslinks (TOP-DPC). TOP-DPCs pose unique threats to genomic integrity. These complex lesions are comprised of structurally diverse protein components covalently linked to genomic DNA, which are bulky DNA adducts that can directly impact progression of the transcription and DNA replication apparatus. A variety of genome maintenance pathways have evolved to recognize and resolve TOP-DPCs. Eukaryotic cells harbor tyrosyl DNA phosphodiesterases (TDPs) that directly reverse 3'-phosphotyrosyl (TDP1) and 5'-phoshotyrosyl (TDP2) protein-DNA linkages. The broad specificity Mre11-Rad50-Nbs1 and APE2 nucleases are also critical for mitigating topoisomerase-generated DNA damage. These DNA-protein crosslink metabolizing enzymes are further enabled by proteolytic degradation, with the proteasome, Spartan, GCNA, Ddi2, and FAM111A proteases implicated thus far. Strategies to target, unfold, and degrade the protein component of TOP-DPCs have evolved as well. Here we survey mechanisms for addressing Topoisomerase 1 (TOP1) and Topoisomerase 2 (TOP2) DPCs, highlighting systems for which molecular structure information has illuminated function of these critical DNA damage response pathways.
Collapse
Affiliation(s)
- Jessica L Wojtaszek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
2
|
Kundnani DL, Yang T, Gombolay AL, Mukherjee K, Newnam G, Meers C, Verma I, Chhatlani K, Mehta ZH, Mouawad C, Storici F. Distinct features of ribonucleotides within genomic DNA in Aicardi-Goutières syndrome ortholog mutants of Saccharomyces cerevisiae. iScience 2024; 27:110012. [PMID: 38868188 PMCID: PMC11166700 DOI: 10.1016/j.isci.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Ribonucleoside monophosphates (rNMPs) are abundantly found within genomic DNA of cells. The embedded rNMPs alter DNA properties and impact genome stability. Mutations in ribonuclease (RNase) H2, a key enzyme for rNMP removal, are associated with the Aicardi-Goutières syndrome (AGS), a severe neurological disorder. Here, we engineered orthologs of the human RNASEH2A-G37S and RNASEH2C-R69W AGS mutations in yeast Saccharomyces cerevisiae: rnh201-G42S and rnh203-K46W. Using the ribose-seq technique and the Ribose-Map bioinformatics toolkit, we unveiled rNMP abundance, composition, hotspots, and sequence context in these AGS-ortholog mutants. We found a high rNMP presence in the nuclear genome of rnh201-G42S-mutant cells, and an elevated rCMP content in both mutants, reflecting preferential cleavage of RNase H2 at rGMP. We discovered unique rNMP patterns in each mutant, showing differential activity of the AGS mutants on the leading or lagging replication strands. This study guides future research on rNMP characteristics in human genomes with AGS mutations.
Collapse
Affiliation(s)
- Deepali L. Kundnani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alli L. Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bacterial Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ishika Verma
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kirti Chhatlani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zeel H. Mehta
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Celine Mouawad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Cho JE, Shaltz S, Yakovleva L, Shuman S, Jinks-Robertson S. Deletions initiated by the vaccinia virus TopIB protein in yeast. DNA Repair (Amst) 2024; 137:103664. [PMID: 38484460 PMCID: PMC10994728 DOI: 10.1016/j.dnarep.2024.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The type IB topoisomerase of budding yeast (yTop1) generates small deletions in tandem repeats through a sequential cleavage mechanism and larger deletions with random endpoints through the nonhomologous end-joining (NHEJ) pathway. Vaccinia virus Top1 (vTop1) is a minimized version of the eukaryal TopIB enzymes and uniquely has a strong consensus cleavage sequence: the pentanucleotide (T/C)CCTTp↓. To define the relationship between the position of TopIB cleavage and mutagenic outcomes, we expressed vTop1 in yeast top1Δ strains containing reporter constructs with a single CCCTT site, tandem CCCTT sites, or CCCTT sites separated by 42 bp. vTop1 cleavage at a single CCCTT site was associated with small, NHEJ-dependent deletions. As observed with yTop1, vTop1 generated 5-bp deletions at tandem CCCTT sites. In contrast to yTop1-initiated deletions, however, 5-bp deletions associated with vTop1 expression were not affected by the level of ribonucleotides in genomic DNA. vTop1 expression was associated with a 47-bp deletion when CCCTT sites were separated by 42 bp. Unlike yTop1-initiated large deletions, the vTop1-mediated 47-bp deletion did not require NHEJ, consistent with a model in which re-ligation of enzyme-associated double-strand breaks is catalyzed by vTop1.
Collapse
Affiliation(s)
- Jang Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lyudmila Yakovleva
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Piguet B, Houseley J. Transcription as source of genetic heterogeneity in budding yeast. Yeast 2024; 41:171-185. [PMID: 38196235 DOI: 10.1002/yea.3926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription presents challenges to genome stability both directly, by altering genome topology and exposing single-stranded DNA to chemical insults and nucleases, and indirectly by introducing obstacles to the DNA replication machinery. Such obstacles include the RNA polymerase holoenzyme itself, DNA-bound regulatory factors, G-quadruplexes and RNA-DNA hybrid structures known as R-loops. Here, we review the detrimental impacts of transcription on genome stability in budding yeast, as well as the mitigating effects of transcription-coupled nucleotide excision repair and of systems that maintain DNA replication fork processivity and integrity. Interactions between DNA replication and transcription have particular potential to induce mutation and structural variation, but we conclude that such interactions must have only minor effects on DNA replication by the replisome with little if any direct mutagenic outcome. However, transcription can significantly impair the fidelity of replication fork rescue mechanisms, particularly Break Induced Replication, which is used to restart collapsed replication forks when other means fail. This leads to de novo mutations, structural variation and extrachromosomal circular DNA formation that contribute to genetic heterogeneity, but only under particular conditions and in particular genetic contexts, ensuring that the bulk of the genome remains extremely stable despite the seemingly frequent interactions between transcription and DNA replication.
Collapse
|
5
|
Reijns MAM, Parry DA, Williams TC, Nadeu F, Hindshaw RL, Rios Szwed DO, Nicholson MD, Carroll P, Boyle S, Royo R, Cornish AJ, Xiang H, Ridout K, Schuh A, Aden K, Palles C, Campo E, Stankovic T, Taylor MS, Jackson AP. Signatures of TOP1 transcription-associated mutagenesis in cancer and germline. Nature 2022; 602:623-631. [PMID: 35140396 PMCID: PMC8866115 DOI: 10.1038/s41586-022-04403-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
The mutational landscape is shaped by many processes. Genic regions are vulnerable to mutation but are preferentially protected by transcription-coupled repair1. In microorganisms, transcription has been demonstrated to be mutagenic2,3; however, the impact of transcription-associated mutagenesis remains to be established in higher eukaryotes4. Here we show that ID4-a cancer insertion-deletion (indel) mutation signature of unknown aetiology5 characterized by short (2 to 5 base pair) deletions -is due to a transcription-associated mutagenesis process. We demonstrate that defective ribonucleotide excision repair in mammals is associated with the ID4 signature, with mutations occurring at a TNT sequence motif, implicating topoisomerase 1 (TOP1) activity at sites of genome-embedded ribonucleotides as a mechanistic basis. Such TOP1-mediated deletions occur somatically in cancer, and the ID-TOP1 signature is also found in physiological settings, contributing to genic de novo indel mutations in the germline. Thus, although topoisomerases protect against genome instability by relieving topological stress6, their activity may also be an important source of mutations in the human genome.
Collapse
Affiliation(s)
- Martin A M Reijns
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.
| | - David A Parry
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Thomas C Williams
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Biomedical Genomics, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Rebecca L Hindshaw
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Diana O Rios Szwed
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Michael D Nicholson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Paula Carroll
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Shelagh Boyle
- Genome Regulation, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Hang Xiang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kate Ridout
- Department of Oncology, University of Oxford, Oxford, UK
| | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Martin S Taylor
- Biomedical Genomics, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.
| | - Andrew P Jackson
- Disease Mechanisms, MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Flor A, Wolfgeher D, Li J, Hanakahi LA, Kron SJ. Lipid-derived electrophiles mediate the effects of chemotherapeutic topoisomerase I poisons. Cell Chem Biol 2021; 28:776-787.e8. [PMID: 33352117 PMCID: PMC8206239 DOI: 10.1016/j.chembiol.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Topoisomerase 1 (Top1) reversibly nicks chromosomal DNA to relax strain accumulated during transcription, replication, chromatin assembly, and chromosome condensation. The Top1 poison camptothecin targets cancer cells by trapping the enzyme in the covalent complex Top1cc, tethered to cleaved DNA by a tyrosine-3'-phosphate bond. In vitro mechanistic studies point to interfacial inhibition, where camptothecin binding to the Top1-DNA interface stabilizes Top1cc. Here we present a complementary covalent mechanism that is critical in vivo. We observed that camptothecins induce oxidative stress, leading to lipid peroxidation, lipid-derived electrophile accumulation, and Top1 poisoning via covalent modification. The electrophile 4-hydroxy-2-nonenal can induce Top1cc on its own and forms a Michael adduct to a cysteine thiol in the Top1 active site, potentially blocking tyrosine dephosphorylation and 3' DNA phosphate release. Thereby, camptothecins may leverage a physiological cysteine-based redox switch in Top1 to mediate their selective toxicity to rapidly proliferating cancer cells.
Collapse
Affiliation(s)
- Amy Flor
- University of Chicago, Department of Molecular Genetics and Cell Biology, Chicago IL 60637, USA,Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Amy Flor ()
| | - Donald Wolfgeher
- University of Chicago, Department of Molecular Genetics and Cell Biology, Chicago IL 60637, USA
| | - Jing Li
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, Rockford IL 61107, USA
| | - Leslyn A. Hanakahi
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, Rockford IL 61107, USA
| | - Stephen J. Kron
- University of Chicago, Department of Molecular Genetics and Cell Biology, Chicago IL 60637, USA,Corresponding author: 929 E. 57th St. W522A, Chicago IL 60637, USA;
| |
Collapse
|
7
|
Cristini A, Géraud M, Sordet O. Transcription-associated DNA breaks and cancer: A matter of DNA topology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:195-240. [PMID: 34507784 DOI: 10.1016/bs.ircmb.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription is an essential cellular process but also a major threat to genome integrity. Transcription-associated DNA breaks are particularly detrimental as their defective repair can induce gene mutations and oncogenic chromosomal translocations, which are hallmarks of cancer. The past few years have revealed that transcriptional breaks mainly originate from DNA topological problems generated by the transcribing RNA polymerases. Defective removal of transcription-induced DNA torsional stress impacts on transcription itself and promotes secondary DNA structures, such as R-loops, which can induce DNA breaks and genome instability. Paradoxically, as they relax DNA during transcription, topoisomerase enzymes introduce DNA breaks that can also endanger genome integrity. Stabilization of topoisomerases on chromatin by various anticancer drugs or by DNA alterations, can interfere with transcription machinery and cause permanent DNA breaks and R-loops. Here, we review the role of transcription in mediating DNA breaks, and discuss how deregulation of topoisomerase activity can impact on transcription and DNA break formation, and its connection with cancer.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| | - Mathéa Géraud
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| |
Collapse
|
8
|
The Functional Consequences of Eukaryotic Topoisomerase 1 Interaction with G-Quadruplex DNA. Genes (Basel) 2020; 11:genes11020193. [PMID: 32059547 PMCID: PMC7073998 DOI: 10.3390/genes11020193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022] Open
Abstract
Topoisomerase I in eukaryotic cells is an important regulator of DNA topology. Its catalytic function is to remove positive or negative superhelical tension by binding to duplex DNA, creating a reversible single-strand break, and finally religating the broken strand. Proper maintenance of DNA topological homeostasis, in turn, is critically important in the regulation of replication, transcription, DNA repair, and other processes of DNA metabolism. One of the cellular processes regulated by the DNA topology and thus by Topoisomerase I is the formation of non-canonical DNA structures. Non-canonical or non-B DNA structures, including the four-stranded G-quadruplex or G4 DNA, are potentially pathological in that they interfere with replication or transcription, forming hotspots of genome instability. In this review, we first describe the role of Topoisomerase I in reducing the formation of non-canonical nucleic acid structures in the genome. We further discuss the interesting recent discovery that Top1 and Top1 mutants bind to G4 DNA structures in vivo and in vitro and speculate on the possible consequences of these interactions.
Collapse
|
9
|
Martin SK, Wood RD. DNA polymerase ζ in DNA replication and repair. Nucleic Acids Res 2019; 47:8348-8361. [PMID: 31410467 PMCID: PMC6895278 DOI: 10.1093/nar/gkz705] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
Here, we survey the diverse functions of DNA polymerase ζ (pol ζ) in eukaryotes. In mammalian cells, REV3L (3130 residues) is the largest catalytic subunit of the DNA polymerases. The orthologous subunit in yeast is Rev3p. Pol ζ also includes REV7 subunits (encoded by Rev7 in yeast and MAD2L2 in mammalian cells) and two subunits shared with the replicative DNA polymerase, pol δ. Pol ζ is used in response to circumstances that stall DNA replication forks in both yeast and mammalian cells. The best-examined situation is translesion synthesis at sites of covalent DNA lesions such as UV radiation-induced photoproducts. We also highlight recent evidence that uncovers various roles of pol ζ that extend beyond translesion synthesis. For instance, pol ζ is also employed when the replisome operates sub-optimally or at difficult-to-replicate DNA sequences. Pol ζ also participates in repair by microhomology mediated break-induced replication. A rev3 deletion is tolerated in yeast but Rev3l disruption results in embryonic lethality in mice. Inactivation of mammalian Rev3l results in genomic instability and invokes cell death and senescence programs. Targeting of pol ζ function may be a useful strategy in cancer therapy, although chromosomal instability associated with pol ζ deficiency must be considered.
Collapse
Affiliation(s)
- Sara K Martin
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences
| |
Collapse
|
10
|
Deletions associated with stabilization of the Top1 cleavage complex in yeast are products of the nonhomologous end-joining pathway. Proc Natl Acad Sci U S A 2019; 116:22683-22691. [PMID: 31636207 PMCID: PMC6842612 DOI: 10.1073/pnas.1914081116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topoisomerase I (Top1) resolves supercoils by nicking one DNA strand and facilitating religation after torsional stress has been relieved. During its reaction cycle, Top1 forms a covalent cleavage complex (Top1cc) with the nicked DNA, and this intermediate can be converted into a toxic double-strand break (DSB) during DNA replication. We previously reported that Top1cc trapping in yeast increases DSB-independent, short deletions at tandemly repeated sequences. In the current study, we report a type of DSB-dependent mutation associated with Top1cc stabilization: large deletions (median size, ∼100 bp) with little or no homology at deletion junctions. Genetic analyses demonstrated that Top1cc-dependent large deletions are products of the nonhomologous end-joining (NHEJ) pathway and require Top1cc removal from DNA ends. Furthermore, these events accumulated in quiescent cells, suggesting that the causative DSBs may arise outside the context of replication. We propose a model in which the ends of different, Top1-associated DSBs are joined via NHEJ, which results in deletion of the intervening sequence. These findings have important implications for understanding the mutagenic effects of chemotherapeutic drugs that stabilize the Top1cc.
Collapse
|
11
|
Williams JS, Lujan SA, Zhou ZX, Burkholder AB, Clark AB, Fargo DC, Kunkel TA. Genome-wide mutagenesis resulting from topoisomerase 1-processing of unrepaired ribonucleotides in DNA. DNA Repair (Amst) 2019; 84:102641. [PMID: 31311768 DOI: 10.1016/j.dnarep.2019.102641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 01/10/2023]
Abstract
Ribonucleotides are the most common non-canonical nucleotides incorporated into DNA during replication, and their processing leads to mutations and genome instability. Yeast mutation reporter systems demonstrate that 2-5 base pair deletions (Δ2-5bp) in repetitive DNA are a signature of unrepaired ribonucleotides, and that these events are initiated by topoisomerase 1 (Top1) cleavage. However, a detailed understanding of the frequency and locations of ribonucleotide-dependent mutational events across the genome has been lacking. Here we present the results of genome-wide mutational analysis of yeast strains deficient in Ribonucleotide Excision Repair (RER). We identified mutations that accumulated over thousands of generations in strains expressing either wild-type or variant replicase alleles (M644G Pol ε, L612M Pol δ, L868M Pol α) that confer increased ribonucleotide incorporation into DNA. Using a custom-designed mutation-calling pipeline called muver (for mutationes verificatae), we observe a number of surprising mutagenic features. This includes a 24-fold preferential elevation of AG and AC relative to AT dinucleotide deletions in the absence of RER, suggesting specificity for Top1-initiated deletion mutagenesis. Moreover, deletion rates in di- and trinucleotide repeat tracts increase exponentially with tract length. Consistent with biochemical and reporter gene mutational analysis, these deletions are no longer observed upon deletion of TOP1. Taken together, results from these analyses demonstrate the global impact of genomic ribonucleotide processing by Top1 on genome integrity.
Collapse
Affiliation(s)
- Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Zhi-Xiong Zhou
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Alan B Clark
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - David C Fargo
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
12
|
Apn2 resolves blocked 3' ends and suppresses Top1-induced mutagenesis at genomic rNMP sites. Nat Struct Mol Biol 2019; 26:155-163. [PMID: 30778235 PMCID: PMC6515903 DOI: 10.1038/s41594-019-0186-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022]
Abstract
Ribonucleotides (rNMPs) mis-incorporated during DNA replication are removed by RNase H2 dependent excision repair or by Topoisomerase I – catalyzed cleavage. Top1 cleavage of rNMPs produces 3’ ends harboring terminal adducts, such as 2’, 3’ cyclic phosphate or Top1 cleavage complex (Top1cc), and leads to frequent mutagenesis and DNA damage checkpoint induction. We surveyed a range of candidate enzymes from Saccharomyces cerevisiae for potential roles in Top1 dependent genomic rNMP removal. Genetic and biochemical analyses reveal that Apn2 resolves phosphotyrosine-DNA conjugates, terminal 2’, 3’ cyclic phosphates and their hydrolyzed products. APN2 also suppresses 2-bp slippage mutagenesis in RNH201-deficient cells. Our results define additional activities of Apn2 in resolving a wide range of 3’- end blocks and identify a role of Apn2 in maintaining genome integrity during rNMP repair.
Collapse
|
13
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
14
|
Abstract
Topoisomerase I (Top1) resolves torsional stress that accumulates during transcription, replication and chromatin remodeling by introducing a transient single-strand break in DNA. The cleavage activity of Top1 has opposing roles, either promoting or destabilizing genome integrity depending on the context. Resolution of transcription-associated negative supercoils, for example, prevents pairing of the nascent RNA with the DNA template (R-loops) as well as DNA secondary structure formation. Reduced Top1 levels thus enhance CAG repeat contraction, somatic hypermutation, and class switch recombination. Actively transcribed ribosomal DNA is also destabilized in the absence of Top1, reflecting the importance of Top1 in ensuring efficient transcription. In terms of promoting genome instability, an aborted Top1 catalytic cycle stimulates deletions at short tandem repeats and the enzyme's transesterification activity supports illegitimate recombination. Finally, Top1 incision at ribonucleotides embedded in DNA generates deletions in tandem repeats, and induces gross chromosomal rearrangements and mitotic recombination.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA.
| |
Collapse
|
15
|
Sloan R, Huang SYN, Pommier Y, Jinks-Robertson S. Effects of camptothecin or TOP1 overexpression on genetic stability in Saccharomyces cerevisiae. DNA Repair (Amst) 2017; 59:69-75. [PMID: 28961461 DOI: 10.1016/j.dnarep.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
Topoisomerase I (Top1) removes DNA torsional stress by nicking and resealing one strand of DNA, and is essential in higher eukaryotes. The enzyme is frequently overproduced in tumors and is the sole target of the chemotherapeutic drug camptothecin (CPT) and its clinical derivatives. CPT stabilizes the covalent Top1-DNA cleavage intermediate, which leads to toxic double-strand breaks (DSBs) when encountered by a replication fork. In the current study, we examined genetic instability associated with CPT treatment or with Top1 overexpression in the yeast Saccharomyces cerevisiae. Two types of instability were monitored: Top1-dependent deletions in haploid strains, which do not require processing into a DSB, and instability at the repetitive ribosomal DNA (rDNA) locus in diploid strains, which reflects DSB formation. Three 2-bp deletion hotspots were examined and mutations at each were elevated either when a wild-type strain was treated with CPT or when TOP1 was overexpressed, with the mutation frequency correlating with the level of TOP1 overexpression. Under both conditions, deletions at novel positions were enriched. rDNA stability was examined by measuring loss-of-heterozygosity and as was observed previously upon CPT treatment of a wild-type strain, Top1 overexpression destabilized rDNA. We conclude that too much, as well as too little of Top1 is detrimental to eukaryotic genomes, and that CPT has destabilizing effects that extend beyond those associated with DSB formation.
Collapse
Affiliation(s)
- Roketa Sloan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
16
|
Abstract
Topoisomerases manage the torsional stress associated with the separation of DNA strands during transcription and DNA replication. Eukaryotic Topoisomerase I (Top1) is a Type IB enzyme that nicks and rejoins only one strand of duplex DNA, and it is especially important during transcription. By resolving transcription-associated torsional stress, Top1 reduces the accumulation of genome-destabilizing R-loops and non-B DNA structures. The DNA nicking activity of Top1, however, can also initiate genome instability in the form of illegitimate recombination, homologous recombination and mutagenesis. In this review, we focus on the diverse, and often opposing, roles of Top1 in regulating eukaryotic genome stability.
Collapse
|
17
|
Abstract
Genomic DNA is transiently contaminated with ribonucleotide residues during the process of DNA replication through misincorporation by the replicative DNA polymerases α, δ and ε, and by the normal replication process on the lagging strand, which uses RNA primers. These ribonucleotides are efficiently removed during replication by RNase H enzymes and the lagging strand synthesis machinery. However, when ribonucleotides remain in DNA they can distort the DNA helix, affect machineries for DNA replication, transcription and repair, and can stimulate genomic instabilities which are manifest as increased mutation, recombination and chromosome alterations. The genomic instabilities associated with embedded ribonucleotides are considered here, along with a discussion of the origin of the lesions that stimulate particular classes of instabilities.
Collapse
Affiliation(s)
- Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
18
|
A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5. Genetics 2017; 206:1683-1697. [PMID: 28476868 DOI: 10.1534/genetics.117.200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022] Open
Abstract
The vast majority of processes within the cell are carried out by proteins working in conjunction. The Yeast Two-Hybrid (Y2H) methodology allows the detection of physical interactions between any two interacting proteins. Here, we describe a novel systematic genetic methodology, "Reverse Yeast Two-Hybrid Array" (RYTHA), that allows the identification of proteins required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the physical interaction of interest can be detected by growth on media lacking histidine, in the context of the Y2H methodology. By combining the synthetic genetic array technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify trans-acting mutations that disrupt the physical interaction of interest. We apply this novel method in a screen for mutants that disrupt the interaction between the N-terminus of Elg1 and the Slx5 protein. Elg1 is part of an alternative replication factor C-like complex that unloads PCNA during DNA replication and repair. Slx5 forms, together with Slx8, a SUMO-targeted ubiquitin ligase (STUbL) believed to send proteins to degradation. Our results show that the interaction requires both the STUbL activity and the PCNA unloading by Elg1, and identify topoisomerase I DNA-protein cross-links as a major factor in separating the two activities. Thus, we demonstrate that RYTHA can be applied to gain insights about particular pathways in yeast, by uncovering the connection between the proteasomal ubiquitin-dependent degradation pathway, DNA replication, and repair machinery, which can be separated by the topoisomerase-mediated cross-links to DNA.
Collapse
|
19
|
Huang SYN, Williams JS, Arana ME, Kunkel TA, Pommier Y. Topoisomerase I-mediated cleavage at unrepaired ribonucleotides generates DNA double-strand breaks. EMBO J 2016; 36:361-373. [PMID: 27932446 DOI: 10.15252/embj.201592426] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 01/02/2023] Open
Abstract
Ribonuclease activity of topoisomerase I (Top1) causes DNA nicks bearing 2',3'-cyclic phosphates at ribonucleotide sites. Here, we provide genetic and biochemical evidence that DNA double-strand breaks (DSBs) can be directly generated by Top1 at sites of genomic ribonucleotides. We show that RNase H2-deficient yeast cells displayed elevated frequency of Rad52 foci, inactivation of RNase H2 and RAD52 led to synthetic lethality, and combined loss of RNase H2 and RAD51 induced slow growth and replication stress. Importantly, these phenotypes were rescued upon additional deletion of TOP1, implicating homologous recombination for the repair of Top1-induced damage at ribonuclelotide sites. We demonstrate biochemically that irreversible DSBs are generated by subsequent Top1 cleavage on the opposite strand from the Top1-induced DNA nicks at ribonucleotide sites. Analysis of Top1-linked DNA from pull-down experiments revealed that Top1 is covalently linked to the end of DNA in RNase H2-deficient yeast cells, supporting this model. Taken together, these results define Top1 as a source of DSBs and genome instability when ribonucleotides incorporated by the replicative polymerases are not removed by RNase H2.
Collapse
Affiliation(s)
- Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Mercedes E Arana
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
20
|
Cho JE, Jinks-Robertson S. Ribonucleotides and Transcription-Associated Mutagenesis in Yeast. J Mol Biol 2016; 429:3156-3167. [PMID: 27511624 DOI: 10.1016/j.jmb.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022]
Abstract
High levels of transcription stimulate mutation rates in microorganisms, and this occurs primarily through an enhanced accumulation of DNA damage. The major source of transcription-associated damage in yeast is Topoisomerase I (Top1), an enzyme that removes torsional stress that accumulates when DNA strands are separated. Top1 relieves torsional stress by nicking and resealing one DNA strand, and some Top1-dependent mutations are due to trapping and processing of the covalent cleavage intermediate. Most, however, reflect enzyme incision at ribonucleotides, which are the most abundant noncanonical component of DNA. In either case, Top1 generates a distinctive mutation signature composed of short deletions in tandem repeats; in the specific case of ribonucleotide-initiated events, mutations reflect sequential cleavage by the enzyme. Top1-dependent mutations do not require highly activated transcription, but their levels are greatly increased by transcription, which partially reflects an interaction of Top1 with RNA polymerase. Recent studies have demonstrated that Top1-dependent mutations exhibit a strand bias, with the nature of the bias differing depending on the transcriptional status of the underlying DNA. Under low-transcription conditions, most Top1-dependent mutations arise in the context of replication and reflect incision at ribonucleotides incorporated during leading-strand synthesis. Under high-transcription conditions, most Top1-dependent events arise when the enzyme cleaves the non-transcribed strand of DNA. In addition to increasing genetic instability in growing cells, Top1 activity in transcriptionally active regions may be a source of mutations in quiescent cells.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Epshtein A, Potenski CJ, Klein HL. Increased Spontaneous Recombination in RNase H2-Deficient Cells Arises From Multiple Contiguous rNMPs and Not From Single rNMP Residues Incorporated by DNA Polymerase Epsilon. MICROBIAL CELL 2016; 3:248-254. [PMID: 28203566 PMCID: PMC5305187 DOI: 10.15698/mic2016.06.506] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ribonucleotides can become embedded in DNA from insertion by DNA polymerases,
failure to remove Okazaki fragment primers, R-loops that can prime replication,
and RNA/cDNA-mediated recombination. RNA:DNA hybrids are removed by RNase H
enzymes. Single rNMPs in DNA are removed by RNase H2 and if they remain on the
leading strand, can lead to mutagenesis in a Top1-dependent pathway. rNMPs in
DNA can also stimulate genome instability, among which are homologous
recombination gene conversion events. We previously found that, similar to the
rNMP-stimulated mutagenesis, rNMP-stimulated recombination was also
Top1-dependent. However, in contrast to mutagenesis, we report here that
recombination is not stimulated by rNMPs incorporated by the replicative
polymerase epsilon. Instead, recombination seems to be stimulated by multiple
contiguous rNMPs, which may arise from R-loops or replication priming
events.
Collapse
Affiliation(s)
- Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | | - Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| |
Collapse
|
22
|
Williams JS, Lujan SA, Kunkel TA. Processing ribonucleotides incorporated during eukaryotic DNA replication. Nat Rev Mol Cell Biol 2016; 17:350-63. [PMID: 27093943 PMCID: PMC5445644 DOI: 10.1038/nrm.2016.37] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The information encoded in DNA is influenced by the presence of non-canonical nucleotides, the most frequent of which are ribonucleotides. In this Review, we discuss recent discoveries about ribonucleotide incorporation into DNA during replication by the three major eukaryotic replicases, DNA polymerases α, δ and ε. The presence of ribonucleotides in DNA causes short deletion mutations and may result in the generation of single- and double-strand DNA breaks, leading to genome instability. We describe how these ribonucleotides are removed from DNA through ribonucleotide excision repair and by topoisomerase I. We discuss the biological consequences and the physiological roles of ribonucleotides in DNA, and consider how deficiencies in their removal from DNA may be important in the aetiology of disease.
Collapse
Affiliation(s)
- Jessica S. Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Scott A. Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Thomas A. Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| |
Collapse
|
23
|
Cho JE, Huang SYN, Burgers PM, Shuman S, Pommier Y, Jinks-Robertson S. Parallel analysis of ribonucleotide-dependent deletions produced by yeast Top1 in vitro and in vivo. Nucleic Acids Res 2016; 44:7714-21. [PMID: 27257064 PMCID: PMC5027487 DOI: 10.1093/nar/gkw495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Ribonucleotides are the most abundant non-canonical component of yeast genomic DNA and their persistence is associated with a distinctive mutation signature characterized by deletion of a single repeat unit from a short tandem repeat. These deletion events are dependent on DNA topoisomerase I (Top1) and are initiated by Top1 incision at the relevant ribonucleotide 3′-phosphodiester. A requirement for the re-ligation activity of Top1 led us to propose a sequential cleavage model for Top1-dependent mutagenesis at ribonucleotides. Here, we test key features of this model via parallel in vitro and in vivo analyses. We find that the distance between two Top1 cleavage sites determines the deletion size and that this distance is inversely related to the deletion frequency. Following the creation of a gap by two Top1 cleavage events, the tandem repeat provides complementarity that promotes realignment to a nick and subsequent Top1-mediated ligation. Complementarity downstream of the gap promotes deletion formation more effectively than does complementarity upstream of the gap, consistent with constraints to realignment of the strand to which Top1 is covalently bound. Our data fortify sequential Top1 cleavage as the mechanism for ribonucleotide-dependent deletions and provide new insight into the component steps of this process.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
24
|
Cerritelli SM, Crouch RJ. The Balancing Act of Ribonucleotides in DNA. Trends Biochem Sci 2016; 41:434-445. [PMID: 26996833 DOI: 10.1016/j.tibs.2016.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 11/28/2022]
Abstract
The abundance of ribonucleotides in DNA remained undetected until recently because they are efficiently removed by the ribonucleotide excision repair (RER) pathway, a process similar to Okazaki fragment (OF) processing after incision by Ribonuclease H2 (RNase H2). All DNA polymerases incorporate ribonucleotides during DNA synthesis. How many, when, and why they are incorporated has been the focus of intense work during recent years by many labs. In this review, we discuss recent advances in ribonucleotide incorporation by eukaryotic DNA polymerases that suggest an evolutionarily conserved role for ribonucleotides in DNA. We also review the data that indicate that removal of ribonucleotides has an important role in maintaining genome stability.
Collapse
Affiliation(s)
- Susana M Cerritelli
- Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Niu H, Potenski CJ, Epshtein A, Sung P, Klein HL. Roles of DNA helicases and Exo1 in the avoidance of mutations induced by Top1-mediated cleavage at ribonucleotides in DNA. Cell Cycle 2015; 15:331-6. [PMID: 26716562 DOI: 10.1080/15384101.2015.1128594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The replicative DNA polymerases insert ribonucleotides into DNA at a frequency of approximately 1/6500 nucleotides replicated. The rNMP residues make the DNA backbone more susceptible to hydrolysis and can also distort the helix, impeding the transcription and replication machineries. rNMPs in DNA are efficiently removed by RNaseH2 by a process called ribonucleotides excision repair (RER). In the absence of functional RNaseH2, rNMPs are subject to cleavage by Topoisomerase I, followed by further processing to result in deletion mutations due to slippage in simple DNA repeats. The topoisomerase I-mediated cleavage at rNMPs results in DNA ends that cannot be ligated by DNA ligase I, a 5'OH end and a 2'-3' cyclic phosphate end. In the budding yeast, the mutation level in RNaseH2 deficient cells is kept low via the action of the Srs2 helicase and the Exo1 nuclease, which collaborate to process the Top1-induced nick with subsequent non-mutagenic gap filling. We have surveyed other helicases and nucleases for a possible role in reducing mutagenesis at Top1 nicks at rNMPs and have uncovered a novel role for the RecQ family helicase Sgs1 in this process.
Collapse
Affiliation(s)
- Hengyao Niu
- a Molecular Biophysics and Biochemistry, Yale University School of Medicine , New Haven , CT, USA.,b Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , IN , USA
| | - Catherine J Potenski
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA.,d Nature Publishing Group , New York , NY , USA
| | - Anastasiya Epshtein
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Patrick Sung
- a Molecular Biophysics and Biochemistry, Yale University School of Medicine , New Haven , CT, USA
| | - Hannah L Klein
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| |
Collapse
|
26
|
Yadav P, Owiti N, Kim N. The role of topoisomerase I in suppressing genome instability associated with a highly transcribed guanine-rich sequence is not restricted to preventing RNA:DNA hybrid accumulation. Nucleic Acids Res 2015; 44:718-29. [PMID: 26527723 PMCID: PMC4737143 DOI: 10.1093/nar/gkv1152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022] Open
Abstract
Highly transcribed guanine-run containing sequences, in Saccharomyces cerevisiae, become unstable when topoisomerase I (Top1) is disrupted. Topological changes, such as the formation of extended RNA:DNA hybrids or R-loops or non-canonical DNA structures including G-quadruplexes has been proposed as the major underlying cause of the transcription-linked genome instability. Here, we report that R-loop accumulation at a guanine-rich sequence, which is capable of assembling into the four-stranded G4 DNA structure, is dependent on the level and the orientation of transcription. In the absence of Top1 or RNase Hs, R-loops accumulated to substantially higher extent when guanine-runs were located on the non-transcribed strand. This coincides with the orientation where higher genome instability was observed. However, we further report that there are significant differences between the disruption of RNase Hs and Top1 in regards to the orientation-specific elevation in genome instability at the guanine-rich sequence. Additionally, genome instability in Top1-deficient yeasts is not completely suppressed by removal of negative supercoils and further aggravated by expression of mutant Top1. Together, our data provide a strong support for a function of Top1 in suppressing genome instability at the guanine-run containing sequence that goes beyond preventing the transcription-associated RNA:DNA hybrid formation.
Collapse
Affiliation(s)
- Puja Yadav
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Norah Owiti
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
27
|
Donigan KA, Cerritelli SM, McDonald JP, Vaisman A, Crouch RJ, Woodgate R. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae. DNA Repair (Amst) 2015; 35:1-12. [PMID: 26340535 PMCID: PMC4651834 DOI: 10.1016/j.dnarep.2015.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 11/26/2022]
Abstract
DNA polymerase η (pol η) is best characterized for its ability to perform accurate and efficient translesion DNA synthesis (TLS) through cyclobutane pyrimidine dimers (CPDs). To ensure accurate bypass the polymerase is not only required to select the correct base, but also discriminate between NTPs and dNTPs. Most DNA polymerases have a conserved "steric gate" residue which functions to prevent incorporation of NMPs during DNA synthesis. Here, we demonstrate that the Phe35 residue of Saccharomyces cerevisiae pol η functions as a steric gate to limit the use of ribonucleotides during polymerization both in vitro and in vivo. Unlike the related pol ι enzyme, wild-type pol η does not readily incorporate NMPs in vitro. In contrast, a pol η F35A mutant incorporates NMPs on both damaged and undamaged DNA in vitro with a high degree of base selectivity. An S.cerevisiae strain expressing pol η F35A (rad30-F35A) that is also deficient for nucleotide excision repair (rad1Δ) and the TLS polymerase, pol ζ (rev3Δ), is extremely sensitive to UV-light. The sensitivity is due, in part, to RNase H2 activity, as an isogenic rnh201Δ strain is roughly 50-fold more UV-resistant than its RNH201(+) counterpart. Interestingly the rad1Δ rev3Δ rad30-F35A rnh201Δ strain exhibits a significant increase in the extent of spontaneous mutagenesis with a spectrum dominated by 1bp deletions at runs of template Ts. We hypothesize that the increased mutagenesis is due to rA incorporation at these sites and that the short poly rA tract is subsequently repaired in an error-prone manner by a novel repair pathway that is specifically targeted to polyribonucleotide tracks. These data indicate that under certain conditions, pol η can compete with the cell's replicases and gain access to undamaged genomic DNA. Such observations are consistent with a role for pol η in replicating common fragile sites (CFS) in human cells.
Collapse
Affiliation(s)
- Katherine A Donigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Susana M Cerritelli
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Robert J Crouch
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
28
|
Wallace BD, Williams RS. Ribonucleotide triggered DNA damage and RNA-DNA damage responses. RNA Biol 2015; 11:1340-6. [PMID: 25692233 DOI: 10.4161/15476286.2014.992283] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Research indicates that the transient contamination of DNA with ribonucleotides exceeds all other known types of DNA damage combined. The consequences of ribose incorporation into DNA, and the identity of protein factors operating in this RNA-DNA realm to protect genomic integrity from RNA-triggered events are emerging. Left unrepaired, the presence of ribonucleotides in genomic DNA impacts cellular proliferation and is associated with chromosome instability, gross chromosomal rearrangements, mutagenesis, and production of previously unrecognized forms of ribonucleotide-triggered DNA damage. Here, we highlight recent findings on the nature and structure of DNA damage arising from ribonucleotides in DNA, and the identification of cellular factors acting in an RNA-DNA damage response (RDDR) to counter RNA-triggered DNA damage.
Collapse
Affiliation(s)
- Bret D Wallace
- a Genome Integrity and Structural Biology Laboratory; National Institute of Environmental Health Sciences; NIH; DHHS ; Research Triangle Park , NC USA
| | | |
Collapse
|
29
|
Ding J, Taylor MS, Jackson AP, Reijns MAM. Genome-wide mapping of embedded ribonucleotides and other noncanonical nucleotides using emRiboSeq and EndoSeq. Nat Protoc 2015; 10:1433-44. [PMID: 26313479 DOI: 10.1038/nprot.2015.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ribonucleotides are the most common noncanonical nucleotides incorporated into the genome of replicating cells. They are efficiently removed by ribonucleotide excision repair initiated by RNase H2 cleavage. In the absence of RNase H2, such embedded ribonucleotides can be used to track DNA polymerase activity in vivo. To determine their precise location in Saccharomyces cerevisiae, we developed embedded ribonucleotide sequencing (emRiboSeq), which uses recombinant RNase H2 to selectively create ligatable 3'-hydroxyl groups, in contrast to alternative methods that use alkaline hydrolysis. EmRiboSeq allows reproducible, strand-specific and potentially quantitative detection of embedded ribonucleotides at single-nucleotide resolution. For the genome-wide mapping of other noncanonical bases, RNase H2 can be replaced with specific nicking endonucleases in this protocol; we term this method endonuclease sequencing (EndoSeq). With the protocol taking <5 d to complete, these methods allow the in vivo study of DNA replication and repair, including the identification of replication origins and termination regions.
Collapse
Affiliation(s)
- James Ding
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Martin S Taylor
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Andrew P Jackson
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Martin A M Reijns
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Cho JE, Kim N, Jinks-Robertson S. Topoisomerase 1-dependent deletions initiated by incision at ribonucleotides are biased to the non-transcribed strand of a highly activated reporter. Nucleic Acids Res 2015; 43:9306-13. [PMID: 26271994 PMCID: PMC4627074 DOI: 10.1093/nar/gkv824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/03/2015] [Indexed: 11/14/2022] Open
Abstract
DNA polymerases incorporate ribonucleoside monophosphates (rNMPs) into genomic DNA at a low level and such rNMPs are efficiently removed in an error-free manner by ribonuclease (RNase) H2. In the absence of RNase H2 in budding yeast, persistent rNMPs give rise to short deletions via a mutagenic process initiated by Topoisomerase 1 (Top1). We examined the activity of a 2-bp, rNMP-dependent deletion hotspot [the (TG)2 hotspot] when on the transcribed or non-transcribed strand (TS or NTS, respectively) of a reporter placed in both orientations near a strong origin of replication. Under low-transcription conditions, hotspot activity depended on whether the (TG)2 sequence was part of the newly synthesized leading or lagging strand of replication. In agreement with an earlier study, deletions occurred at a much higher rate when (TG)2 was on the nascent leading strand. Under high-transcription conditions, however, hotspot activity was not dependent on replication direction, but rather on whether the (TG)2 sequence was on the TS or NTS of the reporter. Deletion rates were several orders of magnitude higher when (TG)2 was on the NTS. These results highlight the complex interplay between replication and transcription in regulating Top1-dependent genetic instability.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nayun Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
31
|
Huang SYN, Ghosh S, Pommier Y. Topoisomerase I alone is sufficient to produce short DNA deletions and can also reverse nicks at ribonucleotide sites. J Biol Chem 2015; 290:14068-76. [PMID: 25887397 DOI: 10.1074/jbc.m115.653345] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide monophosphates (rNMPs) are among the most frequent form of DNA aberration, as high ratios of ribonucleotide triphosphate:deoxyribonucleotide triphosphate pools result in approximately two misincorporated rNMPs/kb of DNA. The main pathway for the removal of rNMPs is by RNase H2. However, in a RNase H2 knock-out yeast strain, a topoisomerase I (Top1)-dependent mutator effect develops with accumulation of short deletions within tandem repeats. Proposed models for these deletions implicated processing of Top1-generated nicks at rNMP sites and/or sequential Top1 binding, but experimental support has been lacking thus far. Here, we investigated the biochemical mechanism of the Top1-induced short deletions at the rNMP sites by generating nicked DNA substrates bearing 2',3'-cyclic phosphates at the nick sites, mimicking the Top1-induced nicks. We demonstrate that a second Top1 cleavage complex adjacent to the nick and subsequent faulty Top1 religation led to the short deletions. Moreover, when acting on the nicked DNA substrates containing 2',3'-cyclic phosphates, Top1 generated not only the short deletion, but also a full-length religated DNA product. A catalytically inactive Top1 mutant (Top1-Y723F) also induced the full-length products, indicating that Top1 binding independent of its enzymatic activity promotes the sealing of DNA backbones via nucleophilic attacks by the 5'-hydroxyl on the 2',3'-cyclic phosphate. The resealed DNA would allow renewed attempt for repair by the error-free RNase H2-dependent pathway in vivo. Our results provide direct evidence for the generation of short deletions by sequential Top1 cleavage events and for the promotion of nick religation at rNMP sites by Top1.
Collapse
Affiliation(s)
- Shar-Yin Naomi Huang
- From the Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Sanchari Ghosh
- From the Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Yves Pommier
- From the Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
32
|
Williams JS, Clausen AR, Lujan SA, Marjavaara L, Clark AB, Burgers PM, Chabes A, Kunkel TA. Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific. Nat Struct Mol Biol 2015; 22:291-7. [PMID: 25751426 PMCID: PMC4835660 DOI: 10.1038/nsmb.2989] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/11/2015] [Indexed: 01/26/2023]
Abstract
Ribonucleotides incorporated during DNA replication are removed by RNase H2-dependent ribonucleotide excision repair (RER). In RER-defective yeast, topoisomerase 1 (Top1) incises DNA at unrepaired ribonucleotides, initiating their removal, but this is accompanied by RNA-DNA-damage phenotypes. Here we show that these phenotypes are incurred by a high level of ribonucleotides incorporated by a leading strand-replicase variant, DNA polymerase (Pol) ɛ, but not by orthologous variants of the lagging-strand replicases, Pols α or δ. Moreover, loss of both RNases H1 and H2 is lethal in combination with increased ribonucleotide incorporation by Pol ɛ but not by Pols α or δ. Several explanations for this asymmetry are considered, including the idea that Top1 incision at ribonucleotides relieves torsional stress in the nascent leading strand but not in the nascent lagging strand, in which preexisting nicks prevent the accumulation of superhelical tension.
Collapse
Affiliation(s)
- Jessica S. Williams
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Anders R. Clausen
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott A. Lujan
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Alan B. Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Peter M. Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
33
|
Genome-destabilizing effects associated with top1 loss or accumulation of top1 cleavage complexes in yeast. PLoS Genet 2015; 11:e1005098. [PMID: 25830313 PMCID: PMC4382028 DOI: 10.1371/journal.pgen.1005098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/23/2015] [Indexed: 12/29/2022] Open
Abstract
Topoisomerase 1 (Top1), a Type IB topoisomerase, functions to relieve transcription- and replication-associated torsional stress in DNA. We investigated the effects of Top1 on genome stability in Saccharomyces cerevisiae using two different assays. First, a sectoring assay that detects loss of heterozygosity (LOH) on a specific chromosome was used to measure reciprocal crossover (RCO) rates. Features of individual RCO events were then molecularly characterized using chromosome-specific microarrays. In the second assay, cells were sub-cultured for 250 generations and LOH was examined genome-wide using microarrays. Though loss of Top1 did not destabilize single-copy genomic regions, RCO events were more complex than in a wild-type strain. In contrast to the stability of single-copy regions, sub-culturing experiments revealed that top1 mutants had greatly elevated levels of instability within the tandemly-repeated ribosomal RNA genes (in agreement with previous results). An intermediate in the enzymatic reaction catalyzed by Top1 is the covalent attachment of Top1 to the cleaved DNA. The resulting Top1 cleavage complex (Top1cc) is usually transient but can be stabilized by the drug camptothecin (CPT) or by the top1-T722A allele. We found that increased levels of the Top1cc resulted in a five- to ten-fold increase in RCOs and greatly increased instability within the rDNA and CUP1 tandem arrays. A detailed analysis of the events in strains with elevated levels of Top1cc suggests that recombinogenic DNA lesions are introduced during or after DNA synthesis. These results have important implications for understanding the effects of CPT as a chemotherapeutic agent. Topoisomerase I (Top1) nicks one strand of DNA to relieve torsional stress associated with replication, transcription and chromatin remodeling. The enzyme forms a transient, covalent intermediate with the nicked DNA and stabilization of the cleavage complex (Top1cc) leads to genetic instability. We examined the effect of Top1 loss or Top1cc stabilization on genome-wide mitotic stability and on mitotic crossovers that lead to loss of heterozygosity (LOH) in budding yeast. The level of Top1cc was elevated using the chemotherapeutic drug camptothecin or a mutant form of the enzyme. Whereas loss of Top1 only destabilized ribosomal DNA repeats, Top1cc accumulation was additionally associated with elevated LOH and genome-wide instability. In particular, the Top1cc greatly elevated copy number variation at the CUP1 tandem-repeat locus, consistent with elevated sister chromatid recombination. Molecular examination of LOH events associated with the Top1cc was also consistent with generation of recombination-initiating lesions during or after DNA synthesis. These results demonstrate that the use of topoisomerase inhibitors results in widespread genome instability that may contribute to secondary neoplasms.
Collapse
|
34
|
Sparks JL, Burgers PM. Error-free and mutagenic processing of topoisomerase 1-provoked damage at genomic ribonucleotides. EMBO J 2015; 34:1259-69. [PMID: 25777529 DOI: 10.15252/embj.201490868] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/25/2015] [Indexed: 11/09/2022] Open
Abstract
Genomic ribonucleotides incorporated during DNA replication are commonly repaired by RNase H2-dependent ribonucleotide excision repair (RER). When RNase H2 is compromised, such as in Aicardi-Goutières patients, genomic ribonucleotides either persist or are processed by DNA topoisomerase 1 (Top1) by either error-free or mutagenic repair. Here, we present a biochemical analysis of these pathways. Top1 cleavage at genomic ribonucleotides can produce ribonucleoside-2',3'-cyclic phosphate-terminated nicks. Remarkably, this nick is rapidly reverted by Top1, thereby providing another opportunity for repair by RER. However, the 2',3'-cyclic phosphate-terminated nick is also processed by Top1 incision, generally 2 nucleotides upstream of the nick, which produces a covalent Top1-DNA complex with a 2-nucleotide gap. We show that these covalent complexes can be processed by proteolysis, followed by removal of the phospho-peptide by Tdp1 and the 3'-phosphate by Tpp1 to mediate error-free repair. However, when the 2-nucleotide gap is associated with a dinucleotide repeat sequence, sequence slippage re-alignment followed by Top1-mediated religation can occur which results in 2-nucleotide deletion. The efficiency of deletion formation shows strong sequence-context dependence.
Collapse
Affiliation(s)
- Justin L Sparks
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
35
|
Ashour ME, Atteya R, El-Khamisy SF. Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat Rev Cancer 2015; 15:137-51. [PMID: 25693836 DOI: 10.1038/nrc3892] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mammalian genome is constantly challenged by exogenous and endogenous threats. Although much is known about the mechanisms that maintain DNA and RNA integrity, we know surprisingly little about the mechanisms that underpin the pathology and tissue specificity of many disorders caused by defective responses to DNA or RNA damage. Of the different types of endogenous damage, protein-linked DNA breaks (PDBs) are emerging as an important player in cancer development and therapy. PDBs can arise during the abortive activity of DNA topoisomerases, a class of enzymes that modulate DNA topology during several chromosomal transactions, such as gene transcription and DNA replication, recombination and repair. In this Review, we discuss the mechanisms underpinning topoisomerase-induced PDB formation and repair with a focus on their role during gene transcription and the development of tissue-specific cancers.
Collapse
Affiliation(s)
- Mohamed E Ashour
- 1] Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK. [2] Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| | - Sherif F El-Khamisy
- 1] Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK. [2] Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| |
Collapse
|
36
|
Koh KD, Balachander S, Hesselberth JR, Storici F. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat Methods 2015; 12:251-7, 3 p following 257. [PMID: 25622106 DOI: 10.1038/nmeth.3259] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023]
Abstract
Abundant ribonucleotide incorporation in DNA during replication and repair has profound consequences for genome stability, but the global distribution of ribonucleotide incorporation is unknown. We developed ribose-seq, a method for capturing unique products generated by alkaline cleavage of DNA at embedded ribonucleotides. High-throughput sequencing of these fragments in DNA from the yeast Saccharomyces cerevisiae revealed widespread ribonucleotide distribution, with a strong preference for cytidine and guanosine, and identified hotspots of ribonucleotide incorporation in nuclear and mitochondrial DNA. Ribonucleotides were primarily incorporated on the newly synthesized leading strand of nuclear DNA and were present upstream of (G+C)-rich tracts in the mitochondrial genome. Ribose-seq is a powerful tool for the systematic profiling of ribonucleotide incorporation in genomic DNA.
Collapse
Affiliation(s)
- Kyung Duk Koh
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sathya Balachander
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, Colorado, USA
| | - Francesca Storici
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Andres SN, Schellenberg MJ, Wallace BD, Tumbale P, Williams RS. Recognition and repair of chemically heterogeneous structures at DNA ends. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:1-21. [PMID: 25111769 PMCID: PMC4303525 DOI: 10.1002/em.21892] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/28/2014] [Indexed: 05/13/2023]
Abstract
Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not "clean." Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase β (POLβ). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini.
Collapse
Affiliation(s)
- Sara N Andres
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, North Carolina
| | | | | | | | | |
Collapse
|
38
|
Abstract
Transcription requires unwinding complementary DNA strands, generating torsional stress, and sensitizing the exposed single strands to chemical reactions and endogenous damaging agents. In addition, transcription can occur concomitantly with the other major DNA metabolic processes (replication, repair, and recombination), creating opportunities for either cooperation or conflict. Genetic modifications associated with transcription are a global issue in the small genomes of microorganisms in which noncoding sequences are rare. Transcription likewise becomes significant when one considers that most of the human genome is transcriptionally active. In this review, we focus specifically on the mutagenic consequences of transcription. Mechanisms of transcription-associated mutagenesis in microorganisms are discussed, as is the role of transcription in somatic instability of the vertebrate immune system.
Collapse
Affiliation(s)
- Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710;
| | | |
Collapse
|
39
|
Potenski CJ, Klein HL. How the misincorporation of ribonucleotides into genomic DNA can be both harmful and helpful to cells. Nucleic Acids Res 2014; 42:10226-34. [PMID: 25159610 PMCID: PMC4176331 DOI: 10.1093/nar/gku773] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotides are misincorporated into replicating DNA due to the similarity of deoxyribonucleotides and ribonucleotides, the high concentration of ribonucleotides in the nucleus and the imperfect accuracy of replicative DNA polymerases in choosing the base with the correct sugar. Embedded ribonucleotides change certain properties of the DNA and can interfere with normal DNA transactions. Therefore, misincorporated ribonucleotides are targeted by the cell for removal. Failure to remove ribonucleotides from DNA results in an increase in genome instability, a phenomenon that has been characterized in various systems using multiple assays. Recently, however, another side to ribonucleotide misincorporation has emerged, where there is evidence for a functional role of misinserted ribonucleotides in DNA, leading to beneficial consequences for the cell. This review examines examples of both positive and negative effects of genomic ribonucleotide misincorporation in various organisms, aiming to highlight the diversity and the utility of this common replication variation.
Collapse
Affiliation(s)
- Catherine J Potenski
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
40
|
Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature 2014; 511:251-4. [PMID: 24896181 PMCID: PMC4140095 DOI: 10.1038/nature13292] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/28/2014] [Indexed: 11/09/2022]
Abstract
Srs2 helicase is known to dismantle nucleofilaments of Rad51 recombinase to prevent spurious recombination events and unwind trinucleotide sequences that are prone to hairpin formation. Here we document a new, unexpected genome maintenance role of Srs2 in the suppression of mutations arising from mis-insertion of ribonucleoside monophosphates during DNA replication. In cells lacking RNase H2, Srs2 unwinds DNA from the 5' side of a nick generated by DNA topoisomerase I at a ribonucleoside monophosphate residue. In addition, Srs2 interacts with and enhances the activity of the nuclease Exo1, to generate a DNA gap in preparation for repair. Srs2-Exo1 thus functions in a new pathway of nick processing-gap filling that mediates tolerance of ribonucleoside monophosphates in the genome. Our results have implications for understanding the basis of Aicardi-Goutières syndrome, which stems from inactivation of the human RNase H2 complex.
Collapse
|
41
|
Abstract
While primordial life is thought to have been RNA-based (Cech, Cold Spring Harbor Perspect. Biol. 4 (2012) a006742), all living organisms store genetic information in DNA, which is chemically more stable. Distinctions between the RNA and DNA worlds and our views of "DNA" synthesis continue to evolve as new details emerge on the incorporation, repair and biological effects of ribonucleotides in DNA genomes of organisms from bacteria through humans.
Collapse
Affiliation(s)
- Jessica S Williams
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States
| | - Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
42
|
Kim N, Cho JE, Li YC, Jinks-Robertson S. RNA∶DNA hybrids initiate quasi-palindrome-associated mutations in highly transcribed yeast DNA. PLoS Genet 2013; 9:e1003924. [PMID: 24244191 PMCID: PMC3820800 DOI: 10.1371/journal.pgen.1003924] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
RNase H enzymes promote genetic stability by degrading aberrant RNA∶DNA hybrids and by removing ribonucleotide monophosphates (rNMPs) that are present in duplex DNA. Here, we report that loss of RNase H2 in yeast is associated with mutations that extend identity between the arms of imperfect inverted repeats (quasi-palindromes or QPs), a mutation type generally attributed to a template switch during DNA synthesis. QP events were detected using frameshift-reversion assays and were only observed under conditions of high transcription. In striking contrast to transcription-associated short deletions that also are detected by these assays, QP events do not require Top1 activity. QP mutation rates are strongly affected by the direction of DNA replication and, in contrast to their elevation in the absence of RNase H2, are reduced when RNase H1 is additionally eliminated. Finally, transcription-associated QP events are limited by components of the nucleotide excision repair pathway and are promoted by translesion synthesis DNA polymerases. We suggest that QP mutations reflect either a transcription-associated perturbation of Okazaki-fragment processing, or the use of a nascent transcript to resume replication following a transcription-replication conflict. Mutation rates are correlated with the level of gene expression in budding yeast, demonstrating a link between transcription and stability of the underlying DNA template. In the current work, we describe a novel type of transcription-associated mutation that converts imperfect inverted repeats (quasi-palindromes or QPs) to perfect inverted repeats. Using appropriate mutation reporters, we demonstrate that QP mutations are strongly affected by the direction of DNA replication and have distinctive genetic requirements. Most notably, rates of transcription-associated QP events are regulated by the RNase H class of enzymes, which are specialized to process the RNA component of RNA∶DNA hybrids. The source of the RNA∶DNA hybrids that initiate QP mutations is unclear, but could reflect transcripts that remain stably base-paired with the DNA template, or aberrant processing of the RNA primers normally used to initiate DNA synthesis. These studies further expand the diverse ways that transcription affects the mutation landscape, and establish a novel way that RNA∶DNA hybrids can contribute to genetic instability. The high conservation of basic DNA-related metabolic processes suggests that results in yeast will be broadly applicable in higher eukaryotes.
Collapse
Affiliation(s)
- Nayun Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yue C. Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
43
|
Lujan SA, Williams JS, Clausen AR, Clark AB, Kunkel TA. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol Cell 2013; 50:437-43. [PMID: 23603118 PMCID: PMC3658170 DOI: 10.1016/j.molcel.2013.03.017] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/30/2013] [Accepted: 03/14/2013] [Indexed: 01/22/2023]
Abstract
To maintain genome stability, mismatch repair of nuclear DNA replication errors must be directed to the nascent strand, likely by DNA ends and PCNA. Here we show that the efficiency of mismatch repair in Saccharomyces cerevisiae is reduced by inactivating RNase H2, which nicks DNA containing ribonucleotides incorporated during replication. In strains encoding mutator polymerases, this reduction is preferential for repair of mismatches made by leading-strand DNA polymerase ε as compared to lagging-strand DNA polymerase δ. The results suggest that RNase-H2-dependent processing of ribonucleotides transiently present in DNA after replication may direct mismatch repair to the continuously replicated nascent leading strand.
Collapse
Affiliation(s)
- Scott A. Lujan
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, U. S. A
| | - Jessica S. Williams
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, U. S. A
| | - Anders R. Clausen
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, U. S. A
| | - Alan B. Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, U. S. A
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, U. S. A
| |
Collapse
|
44
|
Gaillard H, Herrera-Moyano E, Aguilera A. Transcription-associated genome instability. Chem Rev 2013; 113:8638-61. [PMID: 23597121 DOI: 10.1021/cr400017y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla , Av. Américo Vespucio s/n, 41092 Seville, Spain
| | | | | |
Collapse
|