1
|
Li B, Du K, Gu S, Xie J, Liang T, Xu Z, Gao H, Ling Y, Lu S, Sun Z, Zhang H. Epigenetic DNA Modification N 6-Methyladenine Inhibits DNA Replication by DNA Polymerase of Pseudomonas aeruginosa Phage PaP1. Chem Res Toxicol 2019; 32:840-849. [PMID: 30938985 DOI: 10.1021/acs.chemrestox.8b00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N6-methyladenine (6mA), a newly identified epigenetic modification, plays important roles in regulation of various biological processes. However, the effect of 6mA on DNA replication has been little addressed. In this work, we investigated how 6mA affected DNA replication by DNA polymerase of Pseudomonas aeruginosa Phage PaP1 (gp90 exo-). The presence of 6mA, as well as its intermediate hypoxanthine (Hyp), inhibited DNA replication by gp90 exo-. The 6mA reduced dTTP incorporation efficiency by 10-fold and inhibited next-base extension efficiency by 100-fold. Differently, dCTP was preferentially incorporated opposite Hyp among four dNTPs. Gp90 exo- reduced the extension priority beyond the 6mA:T pair rather than the 6mA:C mispair and preferred to extend beyond Hyp:C rather than the Hyp:T pair. Incorporation of dTTP opposite 6mA and dCTP opposite Hyp showed fast burst phases. The burst rate and burst amplitude were both reduced for 6mA compared with unmodified A. Moreover, the total incorporation efficiency ( kpol/ Kd,dNTP) was decreased for dTTP incorporation opposite 6mA and dCTP incorporation opposite Hyp compared with dTTP incorporation opposite A. 6mA reduced the incorporation rate ( kpol), and Hyp increased the dissociation constant ( Kd,dNTP). However, 6mA or Hyp on template did not affect the binding of DNA polymerase to DNA in binary or ternary complexes. This work provides new insight into the inhibited effects of epigenetic modification of 6mA on DNA replication in PaP1.
Collapse
Affiliation(s)
- Bianbian Li
- School of Biological Engineering , Dalian Polytechnic University , Dalian , 116034 , China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Ke Du
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Shiling Gu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Jiayu Xie
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Tingting Liang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Zhongyan Xu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Hui Gao
- School of Biological Engineering , Dalian Polytechnic University , Dalian , 116034 , China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis , Guangzhou Medical University , Xinzao, Panyu District, Guangzhou , China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Science , Third Military Medical University , Chongqing , China
| | - Zhen Sun
- School of Biological Engineering , Dalian Polytechnic University , Dalian , 116034 , China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| |
Collapse
|
2
|
Million-Weaver S, Samadpour AN, Moreno-Habel DA, Nugent P, Brittnacher MJ, Weiss E, Hayden HS, Miller SI, Liachko I, Merrikh H. An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. Proc Natl Acad Sci U S A 2015; 112:E1096-105. [PMID: 25713353 PMCID: PMC4364195 DOI: 10.1073/pnas.1416651112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously reported that lagging-strand genes accumulate mutations faster than those encoded on the leading strand in Bacillus subtilis. Although we proposed that orientation-specific encounters between replication and transcription underlie this phenomenon, the mechanism leading to the increased mutagenesis of lagging-strand genes remained unknown. Here, we report that the transcription-dependent and orientation-specific differences in mutation rates of genes require the B. subtilis Y-family polymerase, PolY1 (yqjH). We find that without PolY1, association of the replicative helicase, DnaC, and the recombination protein, RecA, with lagging-strand genes increases in a transcription-dependent manner. These data suggest that PolY1 promotes efficient replisome progression through lagging-strand genes, thereby reducing potentially detrimental breaks and single-stranded DNA at these loci. Y-family polymerases can alleviate potential obstacles to replisome progression by facilitating DNA lesion bypass, extension of D-loops, or excision repair. We find that the nucleotide excision repair (NER) proteins UvrA, UvrB, and UvrC, but not RecA, are required for transcription-dependent asymmetry in mutation rates of genes in the two orientations. Furthermore, we find that the transcription-coupling repair factor Mfd functions in the same pathway as PolY1 and is also required for increased mutagenesis of lagging-strand genes. Experimental and SNP analyses of B. subtilis genomes show mutational footprints consistent with these findings. We propose that the interplay between replication and transcription increases lesion susceptibility of, specifically, lagging-strand genes, activating an Mfd-dependent error-prone NER mechanism. We propose that this process, at least partially, underlies the accelerated evolution of lagging-strand genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ivan Liachko
- Genome Sciences, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
3
|
Eliminating both canonical and short-patch mismatch repair in Drosophila melanogaster suggests a new meiotic recombination model. PLoS Genet 2014; 10:e1004583. [PMID: 25188408 PMCID: PMC4154643 DOI: 10.1371/journal.pgen.1004583] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/08/2014] [Indexed: 01/31/2023] Open
Abstract
In most meiotic systems, recombination is essential to form connections between homologs that ensure their accurate segregation from one another. Meiotic recombination is initiated by DNA double-strand breaks that are repaired using the homologous chromosome as a template. Studies of recombination in budding yeast have led to a model in which most early repair intermediates are disassembled to produce noncrossovers. Selected repair events are stabilized so they can proceed to form double-Holliday junction (dHJ) intermediates, which are subsequently resolved into crossovers. This model is supported in yeast by physical isolation of recombination intermediates, but the extent to which it pertains to animals is unknown. We sought to test this model in Drosophila melanogaster by analyzing patterns of heteroduplex DNA (hDNA) in recombination products. Previous attempts to do this have relied on knocking out the canonical mismatch repair (MMR) pathway, but in both yeast and Drosophila the resulting recombination products are complex and difficult to interpret. We show that, in Drosophila, this complexity results from a secondary, short-patch MMR pathway that requires nucleotide excision repair. Knocking out both canonical and short-patch MMR reveals hDNA patterns that reveal that many noncrossovers arise after both ends of the break have engaged with the homolog. Patterns of hDNA in crossovers could be explained by biased resolution of a dHJ; however, considering the noncrossover and crossover results together suggests a model in which a two-end engagement intermediate with unligated HJs can be disassembled by a helicase to a produce noncrossover or nicked by a nuclease to produce a crossover. While some aspects of this model are similar to the model from budding yeast, production of both noncrossovers and crossovers from a single, late intermediate is a fundamental difference that has important implications for crossover control. During meiosis, breaks are introduced into the DNA, then repaired to give either crossovers between homologous chromosomes (these help to ensure correct segregation of these chromosomes from one another), or non-crossover products. Meiotic break repair mechanisms have been best studied in budding yeast, leading to detailed molecular models. Technical limitations have prevented directly testing these models in multi-cellular organisms. One approach that has been tried is to map segments of DNA that are mismatched, since different models predict different arrangements. Mismatches are usually repaired quickly, so analyzing these patterns requires eliminating mismatch repair processes. Although others have knocked out the primary mismatch repair system, we have now, for the first time in an animal, identified the secondary repair pathway and eliminated it and the primary pathway simultaneously. We then analyzed mismatches produced during meiosis. Though the results can be fit to the most popular current model from yeast, if some modifications are made, we also consider a simpler model that incorporates elements of the current model and of earlier models.
Collapse
|
4
|
Guo X, Jinks-Robertson S. Roles of exonucleases and translesion synthesis DNA polymerases during mitotic gap repair in yeast. DNA Repair (Amst) 2013; 12:1024-30. [PMID: 24210827 DOI: 10.1016/j.dnarep.2013.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/03/2013] [Indexed: 11/27/2022]
Abstract
Transformation-based gap-repair assays have long been used to model the repair of mitotic double-strand breaks (DSBs) by homologous recombination in yeast. In the current study, we examine genetic requirements of two key processes involved in DSB repair: (1) the processive 5'-end resection that is required to efficiently engage a repair template and (2) the filling of resected ends by DNA polymerases. The specific gap-repair assay used allows repair events resolved as crossover versus noncrossover products to be distinguished, as well as the extent of heteroduplex DNA formed during recombination to be measured. To examine end resection, the efficiency and outcome of gap repair were monitored in the absence of the Exo1 exonuclease and the Sgs1 helicase. We found that either Exo1 or Sgs1 presence is sufficient to inhibit gap-repair efficiency over 10-fold, consistent with resection-mediated destruction of the introduced plasmid. In terms of DNA polymerase requirements for gap repair, we focused specifically on potential roles of the Pol ζ and Pol η translesion synthesis DNA polymerases. We found that both Pol ζ and Pol η are necessary for efficient gap repair and that each functions independently of the other. These polymerases may be involved either in the initiation of DNA synthesis from the an invading end, or in a gap-filling process that is required to complete recombination.
Collapse
Affiliation(s)
- Xiaoge Guo
- Graduate Program in Pharmacology and Molecular Cancer Biology, United States
| | | |
Collapse
|