1
|
Boldinova EO, Baranovskiy AG, Esyunina D, Tahirov TH, Makarova AV. DNA synthesis across DNA hairpins by human PrimPol. DNA Repair (Amst) 2024; 142:103741. [PMID: 39153403 PMCID: PMC11404562 DOI: 10.1016/j.dnarep.2024.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
PrimPol is a human DNA primase involved in DNA damage tolerance pathways by restarting DNA replication downstream of DNA lesions and non-canonical DNA structures. Activity and affinity to DNA relays on the interaction of PrimPol with replication protein A (RPA). In this work, we report that PrimPol has an intrinsic ability to copy DNA hairpins with a stem length of 5-9 base pairs (bp) but shows pronounced pausing of DNA synthesis. RPA greatly stimulates DNA synthesis across inverted DNA repeats by PrimPol. Moreover, deletion of the C-terminal RPA binding motif (RBM) facilitates DNA hairpin bypass and makes it independent of RPA. This work supports the idea that RBM is a negative regulator of PrimPol and its interaction with RPA is required to achieve the fully active state.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34 / 5, Moscow 119334, Russia
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daria Esyunina
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34 / 5, Moscow 119334, Russia
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alena V Makarova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34 / 5, Moscow 119334, Russia.
| |
Collapse
|
2
|
Das MK, Williams EP, Myhre MW, David WM, Kerwin SM. Calcium-Dependent Chemiluminescence Catalyzed by a Truncated c-MYC Promoter G-Triplex DNA. Molecules 2024; 29:4457. [PMID: 39339453 PMCID: PMC11434422 DOI: 10.3390/molecules29184457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The dynamic landscape of non-canonical DNA G-quadruplex (G4) folding into G-triplex intermediates has led to the study of G-triplex structures and their ability to serve as peroxidase-mimetic DNAzymes. Here we report the formation, stability, and catalytic activity of a 5'-truncated c-MYC promoter region G-triplex, c-MYC-G3. Through circular dichroism, we demonstrated that c-MYC-G3 adopts a stable, parallel-stranded G-triplex conformation. The chemiluminescent oxidation of luminol by the peroxidase mimicking DNAzyme activity of c-MYC-G3 was increased in the presence of Ca2+ ions. We utilized surface plasmon resonance to characterize both c-MYC-G3 G-triplex formation and its interaction with hemin. The detailed study of c-MYC-G3 and its ability to form a G-triplex structure and its DNAzyme activity identifies issues that can be addressed in future G-triplex DNAzyme designs.
Collapse
Affiliation(s)
- Malay Kumar Das
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX 78666, USA;
| | - Elizabeth P. Williams
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| | - Mitchell W. Myhre
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| | - Wendi M. David
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| | - Sean M. Kerwin
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX 78666, USA;
- Department of Chemistry & Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.P.W.); (M.W.M.); (W.M.D.)
| |
Collapse
|
3
|
Pipier A, Chetot T, Kalamatianou A, Martin N, Caroff M, Britton S, Chéron N, Trantírek L, Granzhan A, Monchaud D. Structural Optimization of Azacryptands for Targeting Three-Way DNA Junctions. Angew Chem Int Ed Engl 2024; 63:e202409780. [PMID: 38873877 DOI: 10.1002/anie.202409780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Transient melting of the duplex-DNA (B-DNA) during DNA transactions allows repeated sequences to fold into non-B-DNA structures, including DNA junctions and G-quadruplexes. These noncanonical structures can act as impediments to DNA polymerase progression along the duplex, thereby triggering DNA damage and ultimately jeopardizing genomic stability. Their stabilization by ad hoc ligands is currently being explored as a putative anticancer strategy since it might represent an efficient way to inflict toxic DNA damage specifically to rapidly dividing cancer cells. The relevance of this strategy is only emerging for three-way DNA junctions (TWJs) and, to date, no molecule has been recognized as a reference TWJ ligand, featuring both high affinity and selectivity. Herein, we characterize such reference ligands through a combination of in vitro techniques comprising affinity and selectivity assays (competitive FRET-melting and TWJ Screen assays), functional tests (qPCR and Taq stop assays) and structural analyses (molecular dynamics and NMR investigations). We identify novel azacryptands TrisNP-amphi and TrisNP-ana as the most promising ligands, interacting with TWJs with high affinity and selectivity. These ligands represent new molecular tools to investigate the cellular roles of TWJs and explore how they can be exploited in innovative anticancer therapies.
Collapse
Affiliation(s)
- Angélique Pipier
- Institut de Chimie Moléculaire, ICMUB CNRS UMR6302, 9, Avenue Alain Savary, 21078, Dijon, France
| | - Titouan Chetot
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405, Orsay, France
| | - Apollonia Kalamatianou
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405, Orsay, France
| | - Nicolas Martin
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405, Orsay, France
| | - Maëlle Caroff
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Nicolas Chéron
- PASTEUR, Département de chimie, École Normale Supérieure (ENS), PSL University, Sorbonne Université, CNRS UMR8640, 75005, Paris, France
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405, Orsay, France
| | - David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR6302, 9, Avenue Alain Savary, 21078, Dijon, France
| |
Collapse
|
4
|
El-Khoury R, Cabrero C, Movilla S, Kaur H, Friedland D, Domínguez A, Thorpe J, Roman M, Orozco M, González C, Damha MJ. Formation of left-handed helices by C2'-fluorinated nucleic acids under physiological salt conditions. Nucleic Acids Res 2024; 52:7414-7428. [PMID: 38874502 PMCID: PMC11260457 DOI: 10.1093/nar/gkae508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024] Open
Abstract
Recent findings in cell biology have rekindled interest in Z-DNA, the left-handed helical form of DNA. We report here that two minimally modified nucleosides, 2'F-araC and 2'F-riboG, induce the formation of the Z-form under low ionic strength. We show that oligomers entirely made of these two nucleosides exclusively produce left-handed duplexes that bind to the Zα domain of ADAR1. The effect of the two nucleotides is so dramatic that Z-form duplexes are the only species observed in 10 mM sodium phosphate buffer and neutral pH, and no B-form is observed at any temperature. Hence, in contrast to other studies reporting formation of Z/B-form equilibria by a preference for purine glycosidic angles in syn, our NMR and computational work revealed that sequential 2'F…H2N and intramolecular 3'H…N3' interactions stabilize the left-handed helix. The equilibrium between B- and Z- forms is slow in the 19F NMR time scale (≥ms), and each conformation exhibited unprecedented chemical shift differences in the 19F signals. This observation led to a reliable estimation of the relative population of B and Z species and enabled us to monitor B-Z transitions under different conditions. The unique features of 2'F-modified DNA should thus be a valuable addition to existing techniques for specific detection of new Z-binding proteins and ligands.
Collapse
Affiliation(s)
- Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Cristina Cabrero
- Instituto de Química Física Blas Cabrera, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Santiago Movilla
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Harneesh Kaur
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - David Friedland
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Arnau Domínguez
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - James D Thorpe
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Morgane Roman
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Carlos González
- Instituto de Química Física Blas Cabrera, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
5
|
Garavís M, Edwards PJB, Serrano-Chacón I, Doluca O, Filichev V, González C. Understanding intercalative modulation of G-rich sequence folding: solution structure of a TINA-conjugated antiparallel DNA triplex. Nucleic Acids Res 2024; 52:2686-2697. [PMID: 38281138 PMCID: PMC10954471 DOI: 10.1093/nar/gkae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024] Open
Abstract
We present here the high-resolution structure of an antiparallel DNA triplex in which a monomer of para-twisted intercalating nucleic acid (para-TINA: (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol) is covalently inserted as a bulge in the third strand of the triplex. TINA is a potent modulator of the hybridization properties of DNA sequences with extremely useful properties when conjugated in G-rich oligonucleotides. The insertion of para-TINA between two guanines of the triplex imparts a high thermal stabilization (ΔTM = 9ºC) to the structure and enhances the quality of NMR spectra by increasing the chemical shift dispersion of proton signals near the TINA location. The structural determination reveals that TINA intercalates between two consecutive triads, causing only local distortions in the structure. The two aromatic moieties of TINA are nearly coplanar, with the phenyl ring intercalating between the flanking guanine bases in the sequence, and the pyrene moiety situated between the Watson-Crick base pair of the two first strands. The precise position of TINA within the triplex structure reveals key TINA-DNA interactions, which explains the high stabilization observed and will aid in the design of new and more efficient binders to DNA.
Collapse
Affiliation(s)
- Miguel Garavís
- Instituto de Química Física ‘Blas Cabrera’, (IQF-CSIC), Madrid 28006, Spain
| | - Patrick J B Edwards
- School of Natural Sciences, Massey University, Palmerston North 4412, New Zealand
| | | | - Osman Doluca
- School of Natural Sciences, Massey University, Palmerston North 4412, New Zealand
| | | | - Carlos González
- Instituto de Química Física ‘Blas Cabrera’, (IQF-CSIC), Madrid 28006, Spain
| |
Collapse
|
6
|
Flynn JM, Yamashita YM. The implications of satellite DNA instability on cellular function and evolution. Semin Cell Dev Biol 2024; 156:152-159. [PMID: 37852904 DOI: 10.1016/j.semcdb.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Abundant tandemly repeated satellite DNA is present in most eukaryotic genomes. Previous limitations including a pervasive view that it was uninteresting junk DNA, combined with challenges in studying it, are starting to dissolve - and recent studies have found important functions for satellite DNAs. The observed rapid evolution and implied instability of satellite DNA now has important significance for their functions and maintenance within the genome. In this review, we discuss the processes that lead to satellite DNA copy number instability, and the importance of mechanisms to manage the potential negative effects of instability. Satellite DNA is vulnerable to challenges during replication and repair, since it forms difficult-to-process secondary structures and its homology within tandem arrays can result in various types of recombination. Satellite DNA instability may be managed by DNA or chromatin-binding proteins ensuring proper nuclear localization and repair, or by proteins that process aberrant structures that satellite DNAs tend to form. We also discuss the pattern of satellite DNA mutations from recent mutation accumulation (MA) studies that have tracked changes in satellite DNA for up to 1000 generations with minimal selection. Finally, we highlight examples of satellite evolution from studies that have characterized satellites across millions of years of Drosophila fruit fly evolution, and discuss possible ways that selection might act on the satellite DNA composition.
Collapse
Affiliation(s)
- Jullien M Flynn
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Baranovskiy AG, Morstadt LM, Babayeva ND, Tahirov TH. Human primosome requires replication protein A when copying DNA with inverted repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584335. [PMID: 38559116 PMCID: PMC10979909 DOI: 10.1101/2024.03.11.584335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human primosome, a four-subunit complex of primase and DNA polymerase alpha (Polα), initiates DNA synthesis on both chromosome strands by generating chimeric RNA-DNA primers for loading DNA polymerases delta and epsilon (Polε). Replication protein A (RPA) tightly binds to single-stranded DNA strands, protecting them from nucleolytic digestion and unauthorized transactions. We report here that RPA plays a critical role for the human primosome during DNA synthesis across inverted repeats prone to hairpin formation. On other alternatively structured DNA forming a G-quadruplex, RPA provides no assistance for primosome. A stimulatory effect of RPA on DNA synthesis across hairpins was also observed for the catalytic domain of Polα but not of Polε. The important factors for an efficient hairpin bypass by primosome are the high affinity of RPA to DNA based on four DNA-binding domains and the interaction of the winged-helix-turn-helix domain of RPA with Polα. Binding studies indicate that this interaction stabilizes the RPA/Polα complex on the primed template. This work provides insight into a cooperative action of RPA and primosome on DNA, which is critical for DNA synthesis across inverted repeats.
Collapse
|
8
|
Wang Y, Wei S. Influence of hydrogen bonds on the reaction of guanine and hydroxyl radical: DFT calculations in C(H +)GC motif. Phys Chem Chem Phys 2024; 26:5683-5692. [PMID: 38288746 DOI: 10.1039/d3cp05885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A comprehensive theoretical investigation was performed to illuminate the influence of hydrogen bonds (H-bonds) on the obscure reaction of a hydroxyl radical (HO˙) and guanine (G) by selecting the building block of parallel triplex DNA, C(H+)GC, as the model. By mapping the energy profiles for addition and hydrogen abstraction reactions, the favorable pathway is predicted. The results reveal that in the C(H+)GC context, barrierless hydrogen abstraction from N2 of G leading to a neutral radical G(N2-H)˙ appears to become significant, but electrophilic attack by HO˙ on C8 of G resulting in 8-oxoG is the most thermodynamically favorable course. This shows a strong structural dependence due to the context constrained by the H-bond, which is dramatically different from the situation in unencumbered G. More interestingly, it proves that the stability order of resulting adduct radicals is not altered by H-bonding, but the activity for possible sites of the hydroxylation reaction changes. The significant influence of the H-bond on elementary reactions involved in the reaction is emphasized in the C(H+)GC context but is not restricted to the H-abstraction reaction. It is greatly anticipated that the present study could provide thoughtful insights into the vague hydroxyl radical-induced oxidation chemistry.
Collapse
Affiliation(s)
- Yinghui Wang
- College of Science, Chang'an University, Xi'an 710064, China.
| | - Simin Wei
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| |
Collapse
|
9
|
Xu Q, del Mundo IMA, Zewail-Foote M, Luke BT, Vasquez KM, Kowalski J. MoCoLo: a testing framework for motif co-localization. Brief Bioinform 2024; 25:bbae019. [PMID: 38521050 PMCID: PMC10960634 DOI: 10.1093/bib/bbae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/25/2024] Open
Abstract
Sequence-level data offers insights into biological processes through the interaction of two or more genomic features from the same or different molecular data types. Within motifs, this interaction is often explored via the co-occurrence of feature genomic tracks using fixed-segments or analytical tests that respectively require window size determination and risk of false positives from over-simplified models. Moreover, methods for robustly examining the co-localization of genomic features, and thereby understanding their spatial interaction, have been elusive. We present a new analytical method for examining feature interaction by introducing the notion of reciprocal co-occurrence, define statistics to estimate it and hypotheses to test for it. Our approach leverages conditional motif co-occurrence events between features to infer their co-localization. Using reverse conditional probabilities and introducing a novel simulation approach that retains motif properties (e.g. length, guanine-content), our method further accounts for potential confounders in testing. As a proof-of-concept, motif co-localization (MoCoLo) confirmed the co-occurrence of histone markers in a breast cancer cell line. As a novel analysis, MoCoLo identified significant co-localization of oxidative DNA damage within non-B DNA-forming regions that significantly differed between non-B DNA structures. Altogether, these findings demonstrate the potential utility of MoCoLo for testing spatial interactions between genomic features via their co-localization.
Collapse
Affiliation(s)
- Qi Xu
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Imee M A del Mundo
- Dell Pediatric Research Institute, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, 78723, USA
| | - Maha Zewail-Foote
- Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX, 78626, USA
| | - Brian T Luke
- Bioinformatics and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21701, USA
| | - Karen M Vasquez
- Dell Pediatric Research Institute, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, 78723, USA
| | - Jeanne Kowalski
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
10
|
Laspata N, Muoio D, Fouquerel E. Multifaceted Role of PARP1 in Maintaining Genome Stability Through Its Binding to Alternative DNA Structures. J Mol Biol 2024; 436:168207. [PMID: 37481154 PMCID: PMC11552663 DOI: 10.1016/j.jmb.2023.168207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Alternative DNA structures that differ from the canonical B-form of DNA can arise from repetitive sequences and play beneficial roles in many cellular processes such as gene regulation and chromatin organization. However, they also threaten genomic stability in several ways including mutagenesis and collisions with replication and/or transcription machinery, which lead to genomic instability that is associated with human disease. Thus, the careful regulation of non-B-DNA structure formation and resolution is crucial for the maintenance of genome integrity. Several protein factors have been demonstrated to associate with alternative DNA structures to facilitate their removal, one of which is the ADP-ribose transferase (ART) PARP1 (also called ADP-ribosyltransferase diphtheria toxin-like 1 or ARTD1), a multifaceted DNA repair enzyme that recognizes single- and double-stranded DNA breaks and synthesizes chains of poly (ADP-ribose) (PAR) to recruit DNA repair proteins. It is now well appreciated that PARP1 recognizes several nucleic acid structures beyond DNA lesions, including stalled replication forks, DNA hairpins and cruciforms, R-loops, and DNA G-quadruplexes (G4 DNA). In this review, we summarize the current evidence of a direct association of PARP1 with each of these aforementioned alternative DNA structures, as well as discuss the role of PARP1 in the prevention of non-B-DNA structure-induced genetic instability. We will focus on the mechanisms of the recognition and binding by PARP1 to each alternative structure and the structure-based stimulation of PARP1 catalytic activity upon binding. Finally, we will discuss some of the outstanding gaps in the literature and offer speculative insight for questions that remain to be experimentally addressed.
Collapse
Affiliation(s)
- Natalie Laspata
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15232, USA; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniela Muoio
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15232, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15232, USA.
| |
Collapse
|
11
|
Rastokina A, Cebrián J, Mozafari N, Mandel NH, Smith CI, Lopes M, Zain R, Mirkin S. Large-scale expansions of Friedreich's ataxia GAA•TTC repeats in an experimental human system: role of DNA replication and prevention by LNA-DNA oligonucleotides and PNA oligomers. Nucleic Acids Res 2023; 51:8532-8549. [PMID: 37216608 PMCID: PMC10484681 DOI: 10.1093/nar/gkad441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 05/24/2023] Open
Abstract
Friedreich's ataxia (FRDA) is caused by expansions of GAA•TTC repeats in the first intron of the human FXN gene that occur during both intergenerational transmissions and in somatic cells. Here we describe an experimental system to analyze large-scale repeat expansions in cultured human cells. It employs a shuttle plasmid that can replicate from the SV40 origin in human cells or be stably maintained in S. cerevisiae utilizing ARS4-CEN6. It also contains a selectable cassette allowing us to detect repeat expansions that accumulated in human cells upon plasmid transformation into yeast. We indeed observed massive expansions of GAA•TTC repeats, making it the first genetically tractable experimental system to study large-scale repeat expansions in human cells. Further, GAA•TTC repeats stall replication fork progression, while the frequency of repeat expansions appears to depend on proteins implicated in replication fork stalling, reversal, and restart. Locked nucleic acid (LNA)-DNA mixmer oligonucleotides and peptide nucleic acid (PNA) oligomers, which interfere with triplex formation at GAA•TTC repeats in vitro, prevented the expansion of these repeats in human cells. We hypothesize, therefore, that triplex formation by GAA•TTC repeats stall replication fork progression, ultimately leading to repeat expansions during replication fork restart.
Collapse
Affiliation(s)
| | - Jorge Cebrián
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Negin Mozafari
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | | | - C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
- Center for Rare Diseases, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
12
|
Umerenkov D, Herbert A, Konovalov D, Danilova A, Beknazarov N, Kokh V, Fedorov A, Poptsova M. Z-flipon variants reveal the many roles of Z-DNA and Z-RNA in health and disease. Life Sci Alliance 2023; 6:e202301962. [PMID: 37164635 PMCID: PMC10172764 DOI: 10.26508/lsa.202301962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
Identifying roles for Z-DNA remains challenging given their dynamic nature. Here, we perform genome-wide interrogation with the DNABERT transformer algorithm trained on experimentally identified Z-DNA forming sequences (Z-flipons). The algorithm yields large performance enhancements (F1 = 0.83) over existing approaches and implements computational mutagenesis to assess the effects of base substitution on Z-DNA formation. We show Z-flipons are enriched in promoters and telomeres, overlapping quantitative trait loci for RNA expression, RNA editing, splicing, and disease-associated variants. We cross-validate across a number of orthogonal databases and define BZ junction motifs. Surprisingly, many effects we delineate are likely mediated through Z-RNA formation. A shared Z-RNA motif is identified in SCARF2, SMAD1, and CACNA1 transcripts, whereas other motifs are present in noncoding RNAs. We provide evidence for a Z-RNA fold that promotes adaptive immunity through alternative splicing of KRAB domain zinc finger proteins. An analysis of OMIM and presumptive gnomAD loss-of-function datasets reveals an overlap of Z-flipons with disease-causing variants in 8.6% and 2.9% of Mendelian disease genes, respectively, greatly extending the range of phenotypes mapped to Z-flipons.
Collapse
Affiliation(s)
| | - Alan Herbert
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
- InsideOutBio, Charlestown, MA, USA
| | - Dmitrii Konovalov
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
| | - Anna Danilova
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
| | - Nazar Beknazarov
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
| | | | - Aleksandr Fedorov
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
| |
Collapse
|
13
|
Hosseini M, Palmer A, Manka W, Grady PGS, Patchigolla V, Bi J, O'Neill RJ, Chi Z, Aguiar D. Deep statistical modelling of nanopore sequencing translocation times reveals latent non-B DNA structures. Bioinformatics 2023; 39:i242-i251. [PMID: 37387144 DOI: 10.1093/bioinformatics/btad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Non-canonical (or non-B) DNA are genomic regions whose three-dimensional conformation deviates from the canonical double helix. Non-B DNA play an important role in basic cellular processes and are associated with genomic instability, gene regulation, and oncogenesis. Experimental methods are low-throughput and can detect only a limited set of non-B DNA structures, while computational methods rely on non-B DNA base motifs, which are necessary but not sufficient indicators of non-B structures. Oxford Nanopore sequencing is an efficient and low-cost platform, but it is currently unknown whether nanopore reads can be used for identifying non-B structures. RESULTS We build the first computational pipeline to predict non-B DNA structures from nanopore sequencing. We formalize non-B detection as a novelty detection problem and develop the GoFAE-DND, an autoencoder that uses goodness-of-fit (GoF) tests as a regularizer. A discriminative loss encourages non-B DNA to be poorly reconstructed and optimizing Gaussian GoF tests allows for the computation of P-values that indicate non-B structures. Based on whole genome nanopore sequencing of NA12878, we show that there exist significant differences between the timing of DNA translocation for non-B DNA bases compared with B-DNA. We demonstrate the efficacy of our approach through comparisons with novelty detection methods using experimental data and data synthesized from a new translocation time simulator. Experimental validations suggest that reliable detection of non-B DNA from nanopore sequencing is achievable. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/bayesomicslab/ONT-nonb-GoFAE-DND.
Collapse
Affiliation(s)
- Marjan Hosseini
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| | - Aaron Palmer
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| | - William Manka
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| | - Patrick G S Grady
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3003, United States
| | - Venkata Patchigolla
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| | - Jinbo Bi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3003, United States
| | - Zhiyi Chi
- Department of Statistics, University of Connecticut, Storrs, CT 06269-4120, United States
| | - Derek Aguiar
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| |
Collapse
|
14
|
Gaur P, Bain FE, Honda M, Granger SL, Spies M. Single-Molecule Analysis of the Improved Variants of the G-Quadruplex Recognition Protein G4P. Int J Mol Sci 2023; 24:10274. [PMID: 37373425 PMCID: PMC10299155 DOI: 10.3390/ijms241210274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al. synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro, and to display better selectivity toward G4s than the previously published BG4 antibody. To get insight into G4P- G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein's affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.
Collapse
Affiliation(s)
| | | | | | | | - Maria Spies
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (M.H.)
| |
Collapse
|
15
|
Weissensteiner MH, Cremona MA, Guiblet WM, Stoler N, Harris RS, Cechova M, Eckert KA, Chiaromonte F, Huang YF, Makova KD. Accurate sequencing of DNA motifs able to form alternative (non-B) structures. Genome Res 2023; 33:907-922. [PMID: 37433640 PMCID: PMC10519405 DOI: 10.1101/gr.277490.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/04/2023] [Indexed: 07/13/2023]
Abstract
Approximately 13% of the human genome at certain motifs have the potential to form noncanonical (non-B) DNA structures (e.g., G-quadruplexes, cruciforms, and Z-DNA), which regulate many cellular processes but also affect the activity of polymerases and helicases. Because sequencing technologies use these enzymes, they might possess increased errors at non-B structures. To evaluate this, we analyzed error rates, read depth, and base quality of Illumina, Pacific Biosciences (PacBio) HiFi, and Oxford Nanopore Technologies (ONT) sequencing at non-B motifs. All technologies showed altered sequencing success for most non-B motif types, although this could be owing to several factors, including structure formation, biased GC content, and the presence of homopolymers. Single-nucleotide mismatch errors had low biases in HiFi and ONT for all non-B motif types but were increased for G-quadruplexes and Z-DNA in all three technologies. Deletion errors were increased for all non-B types but Z-DNA in Illumina and HiFi, as well as only for G-quadruplexes in ONT. Insertion errors for non-B motifs were highly, moderately, and slightly elevated in Illumina, HiFi, and ONT, respectively. Additionally, we developed a probabilistic approach to determine the number of false positives at non-B motifs depending on sample size and variant frequency, and applied it to publicly available data sets (1000 Genomes, Simons Genome Diversity Project, and gnomAD). We conclude that elevated sequencing errors at non-B DNA motifs should be considered in low-read-depth studies (single-cell, ancient DNA, and pooled-sample population sequencing) and in scoring rare variants. Combining technologies should maximize sequencing accuracy in future studies of non-B DNA.
Collapse
Affiliation(s)
| | - Marzia A Cremona
- Department of Operations and Decision Systems, Université Laval, Quebec, Quebec G1V0A6, Canada
- Population Health and Optimal Health Practices, CHU de Québec-Université Laval Research Center, Québec, Quebec G1V4G2, Canada
- Center for Medical Genomics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Wilfried M Guiblet
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Laboratory of Cell Biology, NCI-CCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas Stoler
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Robert S Harris
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Monika Cechova
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
| | - Kristin A Eckert
- Center for Medical Genomics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Pathology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Francesca Chiaromonte
- Center for Medical Genomics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Institute of Economics and L'EMbeDS, Sant'Anna School of Advanced Studies, Pisa 56127, Italy
| | - Yi-Fei Huang
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Medical Genomics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kateryna D Makova
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Center for Medical Genomics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
16
|
Gaur P, Bain FE, Honda M, Granger SL, Spies M. Single-molecule analysis of the improved variants of the G-quadruplex recognition protein G4P. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539902. [PMID: 37214990 PMCID: PMC10197523 DOI: 10.1101/2023.05.08.539902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al . synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro , and to display better selectivity towards G4s than the previously published BG4 antibody. To get insight into the G4P-G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein's affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.
Collapse
|
17
|
Wang G, Vasquez KM. Dynamic alternative DNA structures in biology and disease. Nat Rev Genet 2023; 24:211-234. [PMID: 36316397 DOI: 10.1038/s41576-022-00539-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
18
|
Burden F, Ellis PI, Farré M. A shared 'vulnerability code' underpins varying sources of DNA damage throughout paternal germline transmission in mouse. Nucleic Acids Res 2023; 51:2319-2332. [PMID: 36806949 PMCID: PMC10018361 DOI: 10.1093/nar/gkad089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
During mammalian spermatogenesis, the paternal genome is extensively remodelled via replacement of histones with protamines forming the highly compact mature sperm nucleus. Compaction occurs in post-meiotic spermatids and is accompanied by extensive double strand break (DSB) formation. We investigate the epigenomic and genomic context of mouse spermatid DSBs, identifying primary sequence motifs, secondary DNA structures and chromatin contexts associated with this damage. Consistent with previously published results we find spermatid DSBs positively associated with short tandem repeats and LINE elements. We further show spermatid DSBs preferentially occur in association with (CA)n, (NA)n and (RY)n repeats, in predicted Z-DNA, are not associated with G-quadruplexes, are preferentially found in regions of low histone mark coverage and engage the remodelling/NHEJ factor BRD4. Locations incurring DSBs in spermatids also show distinct epigenetic profiles throughout later developmental stages: regions retaining histones in mature sperm, regions susceptible to oxidative damage in mature sperm, and fragile two-cell like embryonic stem cell regions bound by ZSCAN4 all co-localise with spermatid DSBs and with each other. Our results point to a common 'vulnerability code' unifying several types of DNA damage occurring on the paternal genome during reproduction, potentially underpinned by torsional changes during sperm chromatin remodelling.
Collapse
Affiliation(s)
| | - Peter J I Ellis
- To whom correspondence should be addressed. Tel: +44 1227 823526;
| | - Marta Farré
- Correspondence may also be addressed to Marta Farré. Tel: +44 1227 823697;
| |
Collapse
|
19
|
Xu P, Yuan L, Wang K, Pan B, Ye Y, Lu K. Interaction of bifunctional peptide-carbazole complexes with DNA and antimicrobial activity. Int J Biol Macromol 2023; 237:124070. [PMID: 36940762 DOI: 10.1016/j.ijbiomac.2023.124070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/24/2023] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Two peptide-carbazole conjugates, CTAT and CNLS, were designed and synthesized using carbazole Schiff base to modify the cell membrane penetrating peptide TAT (47-57) and the nuclear localization peptide NLS at the N terminus. The interaction with ctDNA was investigated by multispectral and agarose gel electrophoresis. And the effects of CNLS and CTAT on the G-quadruplex structure were explored by circular dichroism titration experiments. The results show that both CTAT and CNLS interact with ctDNA in a minor groove binding manner. Both conjugates bind more tightly to DNA than the individual substances CIBA, TAT and NLS. In addition, CTAT and CNLS are capable of unfolding parallel G-quadruplex structures and are potential G-quadruplex unfolding agents. Finally, broth microdilution was performed to test the antimicrobial activity of the peptides. The results showed that CTAT and CNLS had a 4-fold increase in antimicrobial activity compared with the parent peptides TAT and NLS. They could exert antimicrobial activity by disrupting the integrity of cell membrane bilayer and binding to DNA, and could be used as novel antimicrobial peptides for the development of novel antimicrobial antibiotics.
Collapse
Affiliation(s)
- Ping Xu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Libo Yuan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ke Wang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Boyuan Pan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yong Ye
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kui Lu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China.
| |
Collapse
|
20
|
Rider SD, Damewood FJ, Gadgil RY, Hitch DC, Alhawach V, Shrestha R, Shanahan M, Zavada N, Leffak M. Suppressors of Break-Induced Replication in Human Cells. Genes (Basel) 2023; 14:genes14020398. [PMID: 36833325 PMCID: PMC9956954 DOI: 10.3390/genes14020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Short tandem DNA repeats are drivers of genome instability. To identify suppressors of break-induced mutagenesis human cells, unbiased genetic screens were conducted using a lentiviral shRNA library. The recipient cells possessed fragile non-B DNA that could induce DNA double-strand breaks (DSBs), integrated at an ectopic chromosomal site adjacent to a thymidine kinase marker gene. Mutagenesis of the thymidine kinase gene rendered cells resistant to the nucleoside analog ganciclovir (GCV). The screen identified genes that have established roles in DNA replication and repair, chromatin modification, responses to ionizing radiation, and genes encoding proteins enriched at replication forks. Novel loci implicated in BIR included olfactory receptors, the G0S2 oncogene/tumor suppressor axis, the EIF3H-METTL3 translational regulator, and the SUDS3 subunit of the Sin3A corepressor. Consistent with a role in suppressing BIR, siRNA knockdown of selected candidates increased the frequency of the GCVr phenotype and increased DNA rearrangements near the ectopic non-B DNA. Inverse PCR and DNA sequence analyses showed that hits identified in the screen increased genome instability. Further analysis quantitated repeat-induced hypermutagenesis at the ectopic site and showed that knockdown of a primary hit, COPS2, induced mutagenic hotspots, remodeled the replication fork, and increased nonallelic chromosome template switches.
Collapse
|
21
|
Makova KD, Weissensteiner MH. Noncanonical DNA structures are drivers of genome evolution. Trends Genet 2023; 39:109-124. [PMID: 36604282 PMCID: PMC9877202 DOI: 10.1016/j.tig.2022.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023]
Abstract
In addition to the canonical right-handed double helix, other DNA structures, termed 'non-B DNA', can form in the genomes across the tree of life. Non-B DNA regulates multiple cellular processes, including replication and transcription, yet its presence is associated with elevated mutagenicity and genome instability. These discordant cellular roles fuel the enormous potential of non-B DNA to drive genomic and phenotypic evolution. Here we discuss recent studies establishing non-B DNA structures as novel functional elements subject to natural selection, affecting evolution of transposable elements (TEs), and specifying centromeres. By highlighting the contributions of non-B DNA to repeated evolution and adaptation to changing environments, we conclude that evolutionary analyses should include a perspective of not only DNA sequence, but also its structure.
Collapse
Affiliation(s)
- Kateryna D Makova
- Department of Biology, Penn State University, 310 Wartik Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|
22
|
DNA Base Excision Repair Intermediates Influence Duplex-Quadruplex Equilibrium. Molecules 2023; 28:molecules28030970. [PMID: 36770637 PMCID: PMC9920732 DOI: 10.3390/molecules28030970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium.
Collapse
|
23
|
The remodeling of Z-DNA in the mammalian germ line. Biochem Soc Trans 2022; 50:1875-1884. [PMID: 36454621 PMCID: PMC9788570 DOI: 10.1042/bst20221015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
We recently discovered a novel biological process, the scheduled remodeling of Z-DNA structures in the developing fetal mouse male germ cells [Nat. Cell Biol. 24, 1141-1153]. This process affects purine/pyrimidine dinucleotide repeat (PPR) rich sequences, which can form stable left-handed Z-DNA structures. The protein that carries out this function is identified as ZBTB43, member of a large family of ZBTB proteins. Z-DNA remodeling by ZBTB43 not only coincides with global remodeling of DNA methylation and chromatin events in the male germ line, but it also is a prerequisite for de novo DNA methylation. When ZBTB43 changes DNA structure from the left-handed zigzag shaped Z-DNA to the regular smooth right-handed B-DNA, it also generates a suitable substrate for the de novo DNA methyltransferase, DNMT3A. By instructing de novo DNA methylation at PPRs in prospermatogonia, ZBTB43 safeguards epigenomic integrity of the male gamete. PPRs are fragile sequences, sites of large deletions and rearrangements in mammalian cells, and this fragility is thought to be due to Z-DNA structure formation rather than the sequence itself. This idea is now supported by the in vivo finding that DNA double strand breaks accumulate in mutant prospermatogonia which lack ZBTB43-dependent Z-DNA remodeling. If unrepaired, double stranded DNA breaks can lead to germ line mutations. Therefore, by preventing such breaks ZBTB43 is critical for guarding genome stability between generations. Here, we discuss the significance and implications of these findings in more detail.
Collapse
|
24
|
Satange R, Rode AB, Hou MH. Revisiting recent unusual drug-DNA complex structures: Implications for cancer and neurological disease diagnostics and therapeutics. Bioorg Med Chem 2022; 76:117094. [PMID: 36410206 DOI: 10.1016/j.bmc.2022.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
DNA plays a crucial role in various biological processes such as protein production, replication, recombination etc. by adopting different conformations. Targeting these conformations by small molecules is not only important for disease therapy, but also improves our understanding of the mechanisms of disease development. In this review, we provide an overview of some of the most recent ligand-DNA complexes that have diagnostic and therapeutic applications in neurological diseases caused by abnormal repeat expansions and in cancer associated with mismatches. In addition, we have discussed important implications of ligands targeting higher-order structures, such as four-way junctions, G-quadruplexes and triplexes for drug discovery and DNA nanotechnology. We provide an overview of the results and perspectives of such structural studies on ligand-DNA interactions.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Ambadas B Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
25
|
McQuaid K, Pipier A, Cardin C, Monchaud D. Interactions of small molecules with DNA junctions. Nucleic Acids Res 2022; 50:12636-12656. [PMID: 36382400 PMCID: PMC9825177 DOI: 10.1093/nar/gkac1043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
The four natural DNA bases (A, T, G and C) associate in base pairs (A=T and G≡C), allowing the attached DNA strands to assemble into the canonical double helix of DNA (or duplex-DNA, also known as B-DNA). The intrinsic supramolecular properties of nucleobases make other associations possible (such as base triplets or quartets), which thus translates into a diversity of DNA structures beyond B-DNA. To date, the alphabet of DNA structures is ripe with approximately 20 letters (from A- to Z-DNA); however, only a few of them are being considered as key players in cell biology and, by extension, valuable targets for chemical biology intervention. In the present review, we summarise what is known about alternative DNA structures (what are they? When, where and how do they fold?) and proceed to discuss further about those considered nowadays as valuable therapeutic targets. We discuss in more detail the molecular tools (ligands) that have been recently developed to target these structures, particularly the three- and four-way DNA junctions, in order to intervene in the biological processes where they are involved. This new and stimulating chemical biology playground allows for devising innovative strategies to fight against genetic diseases.
Collapse
Affiliation(s)
- Kane T McQuaid
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Angélique Pipier
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - David Monchaud
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| |
Collapse
|
26
|
Herbert A. Nucleosomes and flipons exchange energy to alter chromatin conformation, the readout of genomic information, and cell fate. Bioessays 2022; 44:e2200166. [DOI: 10.1002/bies.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
|
27
|
Non-B DNA conformations analysis through molecular dynamics simulations. Biochim Biophys Acta Gen Subj 2022; 1866:130252. [DOI: 10.1016/j.bbagen.2022.130252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 03/13/2023]
|
28
|
Santiago JC, Adams SV, Towlerton A, Okuku F, Phipps W, Mullins JI. Genomic changes in Kaposi Sarcoma-associated Herpesvirus and their clinical correlates. PLoS Pathog 2022; 18:e1010524. [PMID: 36441790 PMCID: PMC9731496 DOI: 10.1371/journal.ppat.1010524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/08/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Kaposi sarcoma (KS), a common HIV-associated malignancy, presents a range of clinicopathological features. Kaposi sarcoma-associated herpesvirus (KSHV) is its etiologic agent, but the contribution of viral genomic variation to KS development is poorly understood. To identify potentially influential viral polymorphisms, we characterized KSHV genetic variation in 67 tumors from 1-4 distinct sites from 29 adults with advanced KS in Kampala, Uganda. Whole KSHV genomes were sequenced from 20 tumors with the highest viral load, whereas only polymorphic genes were screened by PCR and sequenced from 47 other tumors. Nine individuals harbored ≥1 tumors with a median 6-fold over-coverage of a region centering on K5 and K6 genes. K8.1 gene was inactivated in 8 individuals, while 5 had mutations in the miR-K10 microRNA coding sequence. Recurring inter-host polymorphisms were detected in K4.2 and K11.2. The K5-K6 region rearrangement breakpoints and K8.1 mutations were all unique, indicating that they arise frequently de novo. Rearrangement breakpoints were associated with potential G-quadruplex and Z-DNA forming sequences. Exploratory evaluations of viral mutations with clinical and tumor traits were conducted by logistic regression without multiple test corrections. K5-K6 over-coverage and K8.1 inactivation were tentatively correlated (p<0.001 and p = 0.005, respectively) with nodular rather than macular tumors, and with individuals that had lesions in ≤4 anatomic areas (both p≤0.01). Additionally, a trend was noted for miR-K10 point mutations and lower survival rates (HR = 4.11, p = 0.053). Two instances were found of distinct tumors within an individual sharing the same viral mutation, suggesting metastases or transmission of the aberrant viruses within the host. To summarize, KSHV genomes in tumors frequently have over-representation of the K5-K6 region, as well as K8.1 and miR-K10 mutations, and each might be associated with clinical phenotypes. Studying their possible effects may be useful for understanding KS tumorigenesis and disease progression.
Collapse
Affiliation(s)
- Jan Clement Santiago
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Scott V. Adams
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrea Towlerton
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Fred Okuku
- Uganda Cancer Institute, Kampala, Uganda
| | - Warren Phipps
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
29
|
Shi X, Teng H, Sun Z. An updated overview of experimental and computational approaches to identify non-canonical DNA/RNA structures with emphasis on G-quadruplexes and R-loops. Brief Bioinform 2022; 23:bbac441. [PMID: 36208174 PMCID: PMC9677470 DOI: 10.1093/bib/bbac441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple types of non-canonical nucleic acid structures play essential roles in DNA recombination and replication, transcription, and genomic instability and have been associated with several human diseases. Thus, an increasing number of experimental and bioinformatics methods have been developed to identify these structures. To date, most reviews have focused on the features of non-canonical DNA/RNA structure formation, experimental approaches to mapping these structures, and the association of these structures with diseases. In addition, two reviews of computational algorithms for the prediction of non-canonical nucleic acid structures have been published. One of these reviews focused only on computational approaches for G4 detection until 2020. The other mainly summarized the computational tools for predicting cruciform, H-DNA and Z-DNA, in which the algorithms discussed were published before 2012. Since then, several experimental and computational methods have been developed. However, a systematic review including the conformation, sequencing mapping methods and computational prediction strategies for these structures has not yet been published. The purpose of this review is to provide an updated overview of conformation, current sequencing technologies and computational identification methods for non-canonical nucleic acid structures, as well as their strengths and weaknesses. We expect that this review will aid in understanding how these structures are characterised and how they contribute to related biological processes and diseases.
Collapse
Affiliation(s)
- Xiaohui Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Ouhai District, Wenzhou 325000, China
| | - Zhongsheng Sun
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; CAS Center for Excellence in Biotic Interactions and State Key Laboratory of Integrated Management of Pest Insects and Rodents, University of Chinese Academy of Sciences; Institute of Genomic Medicine, Wenzhou Medical University; IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
30
|
Matos-Rodrigues G, van Wietmarschen N, Wu W, Tripathi V, Koussa NC, Pavani R, Nathan WJ, Callen E, Belinky F, Mohammed A, Napierala M, Usdin K, Ansari AZ, Mirkin SM, Nussenzweig A. S1-END-seq reveals DNA secondary structures in human cells. Mol Cell 2022; 82:3538-3552.e5. [PMID: 36075220 PMCID: PMC9547894 DOI: 10.1016/j.molcel.2022.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/25/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022]
Abstract
DNA becomes single stranded (ssDNA) during replication, transcription, and repair. Transiently formed ssDNA segments can adopt alternative conformations, including cruciforms, triplexes, and quadruplexes. To determine whether there are stable regions of ssDNA in the human genome, we utilized S1-END-seq to convert ssDNA regions to DNA double-strand breaks, which were then processed for high-throughput sequencing. This approach revealed two predominant non-B DNA structures: cruciform DNA formed by expanded (TA)n repeats that accumulate in microsatellite unstable human cancer cell lines and DNA triplexes (H-DNA) formed by homopurine/homopyrimidine mirror repeats common across a variety of cell lines. We show that H-DNA is enriched during replication, that its genomic location is highly conserved, and that H-DNA formed by (GAA)n repeats can be disrupted by treatment with a (GAA)n-binding polyamide. Finally, we show that triplex-forming repeats are hotspots for mutagenesis. Our results identify dynamic DNA secondary structures in vivo that contribute to elevated genome instability.
Collapse
Affiliation(s)
| | | | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Veenu Tripathi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Natasha C Koussa
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - William J Nathan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Frida Belinky
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ashraf Mohammed
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marek Napierala
- Department of Neurology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aseem Z Ansari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
31
|
Jourdy Y, Chatron N, Fretigny M, Dericquebourg A, Sanlaville D, Vinciguerra C. Comprehensive analysis of F8 large deletions: Characterization of full breakpoint junctions and description of a possible DNA breakage hotspot in intron 6. J Thromb Haemost 2022; 20:2293-2305. [PMID: 35894111 DOI: 10.1111/jth.15835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Large F8 deletions represent 3-5% of the variations found in severe hemophilia A patients, but only a few deletion breakpoints have been characterized precisely. OBJECTIVES Resolving at the nucleotide level 24 F8 large deletions to provide new data on the mechanisms involved in these rearrangements. METHODS Breakpoint junctions of 24 F8 large deletions were characterized using a combination of long-range polymerase chain reaction, whole F8 NGS sequencing, and Sanger sequencing. Repeat elements, non-B DNA, and secondary structures were analyzed around the breakpoints. RESULTS Deletions ranged from 1.667 kb to 0.5 Mb in size. Nine involved F8 neighboring genes. Simple blunt ends and 2-4 bp microhomologies were identified at the breakpoint junctions of 10 (42%) and 8 (33%) deletions, respectively. Five (21%) deletions resulted from homeologous recombination between two Alu elements. The remaining case corresponded to a more complex rearrangement with an insertion of a 19 bp-inverted sequence at the junction. Four different breakpoints were located in a 562-bp region in F8 intron 6. This finding suggested that this region, composed of two Alu elements, is a DNA breakage hotspot. Non-B DNA and secondary structures were identified in the junction regions and may contribute to DNA breakage. CONCLUSION Molecular characterization of deletion breakpoints revealed that non-homologous non-replicative DNA repair mechanisms and replication-based mechanisms seemed to be the main causative mechanisms of F8 large deletions. Moreover, we identified a possible F8 DNA breakage hotspot involved in non-recurrent rearrangements.
Collapse
Affiliation(s)
- Yohann Jourdy
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
- Université Claude Bernard Lyon 1, UR 4609, Hémostase et thrombose, Lyon, France
| | - Nicolas Chatron
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Mathilde Fretigny
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
| | - Amy Dericquebourg
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
- Université Claude Bernard Lyon 1, UR 4609, Hémostase et thrombose, Lyon, France
| | - Damien Sanlaville
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Christine Vinciguerra
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
- Université Claude Bernard Lyon 1, UR 4609, Hémostase et thrombose, Lyon, France
| |
Collapse
|
32
|
Xi S, Wang L, Cheng M, Hu M, Liu R, Dong Y. Developing a DNA logic gate nanosensing platform for the detection of acetamiprid. RSC Adv 2022; 12:27421-27430. [PMID: 36276016 PMCID: PMC9513691 DOI: 10.1039/d2ra04794b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
This paper reports a novel fluorescence and colorimetric dual-signal-output DNA aptamer based sensor for the detection of acetamiprid residue. Acetamiprid is a new systemic broad-spectrum insecticide with high insecticidal efficiency that is widely used worldwide, but there is a risk of adverse neurological reactions in humans and animals. The dual-mode output principle designed in this paper, consisting of a fluorescence signal and colorimetric signal, is based on the relevant reaction of the special domain of a G-quadruplex, bidding farewell to a classical single-signal output, with a target-recognition cycle used to complete signal amplification through a hybridization chain reaction. Upgraded detection sensitivity and the qualitative and semi-quantitative detection of acetamiprid are achieved based on the fluorescence signal output and visual discrimination observations during colorimetric experiments. This model was applied to the determination of acetamiprid residue in fruits and vegetables. The dual-detection platform further reduced systematic error, with a detection limit of 27.7 pM. When applied in a comparative detection study using three different pesticides, the system shows excellent discrimination specificity and it performs well in actual sample detection and has a fast response time. Designing DNA logic gates that operate in the presence of targets and molecular-switch-based detection platforms also involves the intersection of biology and computational modeling, providing new ideas for biological platforms.
Collapse
Affiliation(s)
- Sunfan Xi
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Luhui Wang
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Meng Cheng
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Mengyang Hu
- Department of Computer Science, Shaanxi Normal University Xi'an 710119 China
| | - Rong Liu
- Department of Computer Science, Shaanxi Normal University Xi'an 710119 China
| | - Yafei Dong
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
33
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|
34
|
Ivens E, Cominetti MM, Searcey M. Junctions in DNA: underexplored targets for therapeutic intervention. Bioorg Med Chem 2022; 69:116897. [DOI: 10.1016/j.bmc.2022.116897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
|
35
|
Chen J, Hickey BL, Gao Z, Raz AAP, Hooley RJ, Zhong W. Sensing Base Modifications in Non-Canonically Folded DNA with an Optimized Host:Guest Sensing Array. ACS Sens 2022; 7:2164-2169. [PMID: 35917160 DOI: 10.1021/acssensors.2c00839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An arrayed host:guest fluorescence sensor system can discriminate DNA G-quadruplex structures that differ only in the presence of single oxidation or methylation modification in the guanine base. These small modifications make subtle changes to G4 folding that are often not detectable by CD but induce differential fluorescence responses in the array. The sensing is functional in diluted serum and is capable of distinguishing individual modifications in DNA mixtures, providing a powerful method of detecting folding changes caused by DNA damage.
Collapse
|
36
|
Economos NG, Thapar U, Balasubramanian N, Karras GI, Glazer PM. An ELISA-based platform for rapid identification of structure-dependent nucleic acid-protein interactions detects novel DNA triplex interactors. J Biol Chem 2022; 298:102398. [PMID: 35988651 PMCID: PMC9493393 DOI: 10.1016/j.jbc.2022.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022] Open
Abstract
Unusual nucleic acid structures play vital roles as intermediates in many cellular processes and, in the case of peptide nucleic acid (PNA)–mediated triplexes, are leveraged as tools for therapeutic gene editing. However, due to their transient nature, an understanding of the factors that interact with and process dynamic nucleic acid structures remains limited. Here, we developed snapELISA (structure-specific nucleic acid-binding protein ELISA), a rapid high-throughput platform to interrogate and compare up to 2688 parallel nucleic acid structure–protein interactions in vitro. We applied this system to both triplex-forming oligonucleotide–induced DNA triplexes and DNA-bound PNA heterotriplexes to describe the identification of previously known and novel interactors for both structures. For PNA heterotriplex recognition analyses, snapELISA identified factors implicated in nucleotide excision repair (XPA, XPC), single-strand annealing repair (RAD52), and recombination intermediate structure binding (TOP3A, BLM, MUS81). We went on to validate selected factor localization to genome-targeted PNA structures within clinically relevant loci in human cells. Surprisingly, these results demonstrated XRCC5 localization to PNA triplex-forming sites in the genome, suggesting the presence of a double-strand break intermediate. These results describe a powerful comparative approach for identifying structure-specific nucleic acid interactions and expand our understanding of the mechanisms of triplex structure recognition and repair.
Collapse
Affiliation(s)
- Nicholas G Economos
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT; Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Upasna Thapar
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nanda Balasubramanian
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT
| | - Georgios I Karras
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX; Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX.
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT; Department of Genetics, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
37
|
Yi J, Yeou S, Lee NK. DNA Bending Force Facilitates Z-DNA Formation under Physiological Salt Conditions. J Am Chem Soc 2022; 144:13137-13145. [PMID: 35839423 PMCID: PMC9335521 DOI: 10.1021/jacs.2c02466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Z-DNA, a noncanonical helical structure of double-stranded DNA (dsDNA), plays pivotal roles in various biological processes, including transcription regulation. Mechanical stresses on dsDNA, such as twisting and stretching, help to form Z-DNA. However, the effect of DNA bending, one of the most common dsDNA deformations, on Z-DNA formation is utterly unknown. Here, we show that DNA bending induces the formation of Z-DNA, that is, more Z-DNA is formed as the bending force becomes stronger. We regulated the bending force on dsDNA by using D-shaped DNA nanostructures. The B-Z transition was observed by single-molecule fluorescence resonance energy transfer. We found that as the bending force became stronger, Z-DNA was formed at lower Mg2+ concentrations. When dsDNA contained cytosine methylations, the B-Z transition occurred at 78 mM Mg2+ (midpoint) in the absence of the bending force. However, the B-Z transition occurred at a 28-fold lower Mg2+ concentration (2.8 mM) in the presence of the bending force. Monte Carlo simulation suggested that the B-Z transition stabilizes the bent form via the formation of the B-Z junction with base extrusion, which effectively releases the bending stress on DNA. Our results clearly show that the bending force facilitates the B-Z transition under physiological salt conditions.
Collapse
Affiliation(s)
- Jaehun Yi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghun Yeou
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Chromosome organization affects genome evolution in Sulfolobus archaea. Nat Microbiol 2022; 7:820-830. [PMID: 35618771 DOI: 10.1038/s41564-022-01127-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
In all organisms, the DNA sequence and the structural organization of chromosomes affect gene expression. The extremely thermophilic crenarchaeon Sulfolobus has one circular chromosome with three origins of replication. We previously revealed that this chromosome has defined A and B compartments that have high and low gene expression, respectively. As well as higher levels of gene expression, the A compartment contains the origins of replication. To evaluate the impact of three-dimensional organization on genome evolution, we characterized the effect of replication origins and compartmentalization on primary sequence evolution in eleven Sulfolobus species. Using single-nucleotide polymorphism analyses, we found that distance from an origin of replication was associated with increased mutation rates in the B but not in the A compartment. The enhanced polymorphisms distal to replication origins suggest that replication termination may have a causal role in their generation. Further mutational analyses revealed that the sequences in the A compartment are less likely to be mutated, and that there is stronger purifying selection than in the B compartment. Finally, we applied the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) to show that the B compartment is less accessible than the A compartment. Taken together, our data suggest that compartmentalization of chromosomal DNA can influence chromosome evolution in Sulfolobus. We propose that the A compartment serves as a haven for stable maintenance of gene sequences, while sequences in the B compartment can be diversified.
Collapse
|
39
|
Thienoguanosine, a unique non-perturbing reporter for investigating rotational dynamics of DNA duplexes and their complexes with proteins. Int J Biol Macromol 2022; 213:210-225. [DOI: 10.1016/j.ijbiomac.2022.05.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
|
40
|
Medium levels of transcription and replication related chromosomal instability are associated with poor clinical outcome. Sci Rep 2021; 11:23429. [PMID: 34873180 PMCID: PMC8648741 DOI: 10.1038/s41598-021-02787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Genomic instability (GI) influences treatment efficacy and resistance, and an accurate measure of it is lacking. Current measures of GI are based on counts of specific structural variation (SV) and mutational signatures. Here, we present a holistic approach to measuring GI based on the quantification of the steady-state equilibrium between DNA damage and repair as assessed by the residual breakpoints (BP) remaining after repair, irrespective of SV type. We use the notion of Hscore, a BP "hotspotness" magnitude scale, to measure the propensity of genomic structural or functional DNA elements to break more than expected by chance. We then derived new measures of transcription- and replication-associated GI that we call iTRAC (transcription-associated chromosomal instability index) and iRACIN (replication-associated chromosomal instability index). We show that iTRAC and iRACIN are predictive of metastatic relapse in Leiomyosarcoma (LMS) and that they may be combined to form a new classifier called MAGIC (mixed transcription- and replication-associated genomic instability classifier). MAGIC outperforms the gold standards FNCLCC and CINSARC in stratifying metastatic risk in LMS. Furthermore, iTRAC stratifies chemotherapeutic response in LMS. We finally show that this approach is applicable to other cancers.
Collapse
|
41
|
Bandyopadhyay D, Mishra PP. Decoding the Structural Dynamics and Conformational Alternations of DNA Secondary Structures by Single-Molecule FRET Microspectroscopy. Front Mol Biosci 2021; 8:725541. [PMID: 34540899 PMCID: PMC8446445 DOI: 10.3389/fmolb.2021.725541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
In addition to the canonical double helix form, DNA is known to be extrapolated into several other secondary structural patterns involving themselves in inter- and intramolecular type hydrogen bonding. The secondary structures of nucleic acids go through several stages of multiple, complex, and interconvertible heterogeneous conformations. The journey of DNA through these conformers has significant importance and has been monitored thoroughly to establish qualitative and quantitative information about the transition between the unfolded, folded, misfolded, and partially folded states. During this structural interconversion, there always exist specific populations of intermediates, which are short-lived or sometimes even do not accumulate within a heterogeneous population and are challenging to characterize using conventional ensemble techniques. The single-molecule FRET(sm-FRET) microspectroscopic method has the advantages to overcome these limitations and monitors biological phenomena transpiring at a measurable high rate and balanced stochastically over time. Thus, tracing the time trajectory of a particular molecule enables direct measurement of the rate constant of each transition step, including the intermediates that are hidden in the ensemble level due to their low concentrations. This review is focused on the advantages of the employment of single-molecule Forster's resonance energy transfer (sm-FRET), which is worthwhile to access the dynamic architecture and structural transition of various secondary structures that DNA adopts, without letting the donor of one molecule to cross-talk with the acceptor of any other. We have emphasized the studies performed to explore the states of folding and unfolding of several nucleic acid secondary structures, for example, the DNA hairpin, Holliday junction, G-quadruplex, and i-motif.
Collapse
Affiliation(s)
- Debolina Bandyopadhyay
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
- HBNI, Mumbai, India
| | - Padmaja P. Mishra
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
- HBNI, Mumbai, India
| |
Collapse
|
42
|
Chen J, Gill AD, Hickey BL, Gao Z, Cui X, Hooley RJ, Zhong W. Machine Learning Aids Classification and Discrimination of Noncanonical DNA Folding Motifs by an Arrayed Host:Guest Sensing System. J Am Chem Soc 2021; 143:12791-12799. [PMID: 34346209 DOI: 10.1021/jacs.1c06031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An arrayed host:guest fluorescence sensor system can discriminate among and classify multiple different noncanonical DNA structures by exploiting selective molecular recognition. The sensor is highly selective and can discriminate between folds as similar as native G-quadruplexes and those with bulges or vacancies. The host and guest can form heteroternary complexes with DNA strands, with the host acting as mediator between the DNA and dye, modulating the emission. By applying machine learning algorithms to the sensing data, prediction of the folding state of unknown DNA strands is possible with high fidelity.
Collapse
|
43
|
Herbert A. The Simple Biology of Flipons and Condensates Enhances the Evolution of Complexity. Molecules 2021; 26:molecules26164881. [PMID: 34443469 PMCID: PMC8400190 DOI: 10.3390/molecules26164881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
The classical genetic code maps nucleotide triplets to amino acids. The associated sequence composition is complex, representing many elaborations during evolution of form and function. Other genomic elements code for the expression and processing of RNA transcripts. However, over 50% of the human genome consists of widely dispersed repetitive sequences. Among these are simple sequence repeats (SSRs), representing a class of flipons, that under physiological conditions, form alternative nucleic acid conformations such as Z-DNA, G4 quartets, I-motifs, and triplexes. Proteins that bind in a structure-specific manner enable the seeding of condensates with the potential to regulate a wide range of biological processes. SSRs also encode the low complexity peptide repeats to patch condensates together, increasing the number of combinations possible. In situations where SSRs are transcribed, SSR-specific, single-stranded binding proteins may further impact condensate formation. Jointly, flipons and patches speed evolution by enhancing the functionality of condensates. Here, the focus is on the selection of SSR flipons and peptide patches that solve for survival under a wide range of environmental contexts, generating complexity with simple parts.
Collapse
Affiliation(s)
- Alan Herbert
- Unit 3412, Discovery, InsideOutBio 42 8th Street, Charlestown, MA 02129, USA
| |
Collapse
|
44
|
Mitteaux J, Lejault P, Wojciechowski F, Joubert A, Boudon J, Desbois N, Gros CP, Hudson RHE, Boulé JB, Granzhan A, Monchaud D. Identifying G-Quadruplex-DNA-Disrupting Small Molecules. J Am Chem Soc 2021; 143:12567-12577. [PMID: 34346684 DOI: 10.1021/jacs.1c04426] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The quest for small molecules that strongly bind to G-quadruplex-DNA (G4), so-called G4 ligands, has invigorated the G4 research field from its very inception. Massive efforts have been invested to discover or rationally design G4 ligands, evaluate their G4-interacting properties in vitro through a series of now widely accepted and routinely implemented assays, and use them as innovative chemical biology tools to interrogate cellular networks that might involve G4s. In sharp contrast, only uncoordinated efforts aimed at developing small molecules that destabilize G4s have been invested to date, even though it is now recognized that such molecular tools would have tremendous application in neurobiology as many genetic and age-related diseases are caused by an overrepresentation of G4s. Herein, we report on our efforts to develop in vitro assays to reliably identify molecules able to destabilize G4s. This workflow comprises the newly designed G4-unfold assay, adapted from the G4-helicase assay implemented with Pif1, as well as a series of biophysical and biochemical techniques classically used to study G4/ligand interactions (CD, UV-vis, PAGE, and FRET-melting), and a qPCR stop assay, adapted from a Taq-based protocol recently used to identify G4s in the genomic DNA of Schizosaccharomyces pombe. This unique, multipronged approach leads to the characterization of a phenylpyrrolocytosine (PhpC)-based G-clamp analog as a prototype of G4-disrupting small molecule whose properties are validated through many different and complementary in vitro evaluations.
Collapse
Affiliation(s)
- Jérémie Mitteaux
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Pauline Lejault
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Filip Wojciechowski
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Alexandra Joubert
- Genome Structure and Instability Laboratory, CNRS UMR 7196, INSERM U1154, National Museum of Natural History, Alliance Sorbonne Université, 75005 Paris, France
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, ICB CNRS UMR 6303, UBFC, 21078 Dijon, France
| | - Nicolas Desbois
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Claude P Gros
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Jean-Baptiste Boulé
- Genome Structure and Instability Laboratory, CNRS UMR 7196, INSERM U1154, National Museum of Natural History, Alliance Sorbonne Université, 75005 Paris, France
| | - Anton Granzhan
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France.,Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| |
Collapse
|
45
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
46
|
Iaccarino N, Cheng M, Qiu D, Pagano B, Amato J, Di Porzio A, Zhou J, Randazzo A, Mergny J. Effects of Sequence and Base Composition on the CD and TDS Profiles of i‐DNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nunzia Iaccarino
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux Inserm U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Bruno Pagano
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Jussara Amato
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Anna Di Porzio
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Antonio Randazzo
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux Inserm U 1212, CNRS UMR5320 IECB 33607 Pessac France
- Laboratoire d'Optique et Biosciences Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris 91128 Palaiseau France
| |
Collapse
|
47
|
Iaccarino N, Cheng M, Qiu D, Pagano B, Amato J, Di Porzio A, Zhou J, Randazzo A, Mergny J. Effects of Sequence and Base Composition on the CD and TDS Profiles of i-DNA. Angew Chem Int Ed Engl 2021; 60:10295-10303. [PMID: 33617090 PMCID: PMC8251954 DOI: 10.1002/anie.202016822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/19/2022]
Abstract
The i-motif DNA, also known as i-DNA, is a non-canonical DNA secondary structure formed by cytosine-rich sequences, consisting of two intercalated parallel-stranded duplexes held together by hemi-protonated cytosine-cytosine+ (C:C+ ) base pairs. The growing interest in the i-DNA structure as a target in anticancer therapy increases the need for tools for a rapid and meaningful interpretation of the spectroscopic data of i-DNA samples. Herein, we analyzed the circular dichroism (CD) and thermal difference UV-absorbance spectra (TDS) of 255 DNA sequences by means of multivariate data analysis, aiming at unveiling peculiar spectral regions that could be used as diagnostic features during the analysis of i-DNA-forming sequences.
Collapse
Affiliation(s)
- Nunzia Iaccarino
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
- ARNA LaboratoryUniversité de BordeauxInserm U 1212, CNRS UMR5320IECB33607PessacFrance
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
| | - Bruno Pagano
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Jussara Amato
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Anna Di Porzio
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
| | - Antonio Randazzo
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
- ARNA LaboratoryUniversité de BordeauxInserm U 1212, CNRS UMR5320IECB33607PessacFrance
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMInstitut Polytechnique de Paris91128PalaiseauFrance
| |
Collapse
|
48
|
Willbanks A, Wood S, Cheng JX. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes (Basel) 2021; 12:genes12050627. [PMID: 33922187 PMCID: PMC8145807 DOI: 10.3390/genes12050627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases.
Collapse
|
49
|
Chashchina GV, Shchyolkina AK, Kolosov SV, Beniaminov AD, Kaluzhny DN. Recurrent Potential G-Quadruplex Sequences in Archaeal Genomes. Front Microbiol 2021; 12:647851. [PMID: 33868206 PMCID: PMC8044849 DOI: 10.3389/fmicb.2021.647851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/03/2021] [Indexed: 11/23/2022] Open
Abstract
Evolutionary conservation or over-representation of the potential G-quadruplex sequences (PQS) in genomes are usually considered as a sign of the functional relevance of these sequences. However, uneven base distribution (GC-content) along the genome may along the genome may result in seeming abundance of PQSs over average in the genome. Apart from this, a number of other conserved functional signals that are encoded in the GC-rich genomic regions may inadvertently result in emergence of G-quadruplex compatible sequences. Here, we analyze the genomes of archaea focusing our search to repetitive PQS (rPQS) motifs within each organism. The probability of occurrence of several identical PQSs within a relatively short archaeal genome is low and, thus, the structure and genomic location of such rPQSs may become a direct indication of their functionality. We have found that the majority of the genomes of Methanomicrobiaceae family of archaea contained multiple copies of the interspersed highly similar PQSs. Short oligonucleotides corresponding to the rPQS formed the G-quadruplex (G4) structure in presence of potassium ions as demonstrated by circular dichroism (CD) and enzymatic probing. However, further analysis of the genomic context for the rPQS revealed a 10–12 nt cytosine-rich track adjacent to 3'-end of each rPQS. Synthetic DNA fragments that included the C-rich track tended to fold into alternative structures such as hairpin structure and antiparallel triplex that were in equilibrium with G4 structure depending on the presence of potassium ions in solution. Structural properties of the found repetitive sequences, their location in the genomes of archaea, and possible functions are discussed.
Collapse
Affiliation(s)
- Galina V Chashchina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna K Shchyolkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Simon V Kolosov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Artemy D Beniaminov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
50
|
Guiblet WM, Cremona MA, Harris RS, Chen D, Eckert KA, Chiaromonte F, Huang YF, Makova KD. Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Res 2021; 49:1497-1516. [PMID: 33450015 PMCID: PMC7897504 DOI: 10.1093/nar/gkaa1269] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Approximately 13% of the human genome can fold into non-canonical (non-B) DNA structures (e.g. G-quadruplexes, Z-DNA, etc.), which have been implicated in vital cellular processes. Non-B DNA also hinders replication, increasing errors and facilitating mutagenesis, yet its contribution to genome-wide variation in mutation rates remains unexplored. Here, we conducted a comprehensive analysis of nucleotide substitution frequencies at non-B DNA loci within noncoding, non-repetitive genome regions, their ±2 kb flanking regions, and 1-Megabase windows, using human-orangutan divergence and human single-nucleotide polymorphisms. Functional data analysis at single-base resolution demonstrated that substitution frequencies are usually elevated at non-B DNA, with patterns specific to each non-B DNA type. Mirror, direct and inverted repeats have higher substitution frequencies in spacers than in repeat arms, whereas G-quadruplexes, particularly stable ones, have higher substitution frequencies in loops than in stems. Several non-B DNA types also affect substitution frequencies in their flanking regions. Finally, non-B DNA explains more variation than any other predictor in multiple regression models for diversity or divergence at 1-Megabase scale. Thus, non-B DNA substantially contributes to variation in substitution frequencies at small and large scales. Our results highlight the role of non-B DNA in germline mutagenesis with implications to evolution and genetic diseases.
Collapse
Affiliation(s)
- Wilfried M Guiblet
- Bioinformatics and Genomics Graduate Program, Penn State University, UniversityPark, PA 16802, USA
| | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Operations and Decision Systems, Université Laval, Canada
- CHU de Québec – Université Laval Research Center, Canada
| | - Robert S Harris
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Di Chen
- Intercollege Graduate Degree Program in Genetics, Huck Institutes of the Life Sciences, Penn State University, UniversityPark, PA 16802, USA
| | - Kristin A Eckert
- Department of Pathology, Penn State University, College of Medicine, Hershey, PA 17033, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
- EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Yi-Fei Huang
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| |
Collapse
|