1
|
Tse YWE, Yun HY, Wyatt HDM. Annealing and purification of fluorescently labeled DNA substrates for in vitro assays. STAR Protoc 2023; 4:102128. [PMID: 36853679 PMCID: PMC9958487 DOI: 10.1016/j.xpro.2023.102128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
We present a protocol to generate high-quality fluorescently labeled DNA substrates that can be used for biochemical assays, including DNA-binding and nuclease activity assays. We describe polyacrylamide-gel-electrophoresis-based purification of DNA oligonucleotides, followed by annealing the oligonucleotides and purifying the annealed substrates using anion-exchange chromatography. This protocol circumvents the use of radioisotopes, which require training and dedicated equipment for safe handling and necessitate specialized waste disposal. This protocol is amenable to varying lengths of oligonucleotides and DNA substrates. For complete details on the use and execution of this protocol, please refer to Payliss and Tse et al. (2022).1.
Collapse
Affiliation(s)
| | - Hwa Young Yun
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Haley Doris Myskiw Wyatt
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Canada Research Chairs Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Payliss BJ, Tse YWE, Reichheld SE, Lemak A, Yun HY, Houliston S, Patel A, Arrowsmith CH, Sharpe S, Wyatt HD. Phosphorylation of the DNA repair scaffold SLX4 drives folding of the SAP domain and activation of the MUS81-EME1 endonuclease. Cell Rep 2022; 41:111537. [DOI: 10.1016/j.celrep.2022.111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/03/2022] Open
|
3
|
Payliss BJ, Patel A, Sheppard AC, Wyatt HDM. Exploring the Structures and Functions of Macromolecular SLX4-Nuclease Complexes in Genome Stability. Front Genet 2021; 12:784167. [PMID: 34804132 PMCID: PMC8599992 DOI: 10.3389/fgene.2021.784167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
All organisms depend on the ability of cells to accurately duplicate and segregate DNA into progeny. However, DNA is frequently damaged by factors in the environment and from within cells. One of the most dangerous lesions is a DNA double-strand break. Unrepaired breaks are a major driving force for genome instability. Cells contain sophisticated DNA repair networks to counteract the harmful effects of genotoxic agents, thus safeguarding genome integrity. Homologous recombination is a high-fidelity, template-dependent DNA repair pathway essential for the accurate repair of DNA nicks, gaps and double-strand breaks. Accurate homologous recombination depends on the ability of cells to remove branched DNA structures that form during repair, which is achieved through the opposing actions of helicases and structure-selective endonucleases. This review focuses on a structure-selective endonuclease called SLX1-SLX4 and the macromolecular endonuclease complexes that assemble on the SLX4 scaffold. First, we discuss recent developments that illuminate the structure and biochemical properties of this somewhat atypical structure-selective endonuclease. We then summarize the multifaceted roles that are fulfilled by human SLX1-SLX4 and its associated endonucleases in homologous recombination and genome stability. Finally, we discuss recent work on SLX4-binding proteins that may represent integral components of these macromolecular nuclease complexes, emphasizing the structure and function of a protein called SLX4IP.
Collapse
Affiliation(s)
- Brandon J Payliss
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ayushi Patel
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anneka C Sheppard
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haley D M Wyatt
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Canada Research Chairs Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Palma A, Pugliese GM, Murfuni I, Marabitti V, Malacaria E, Rinalducci S, Minoprio A, Sanchez M, Mazzei F, Zolla L, Franchitto A, Pichierri P. Phosphorylation by CK2 regulates MUS81/EME1 in mitosis and after replication stress. Nucleic Acids Res 2019; 46:5109-5124. [PMID: 29850896 PMCID: PMC6007509 DOI: 10.1093/nar/gky280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
The MUS81 complex is crucial for preserving genome stability through the resolution of branched DNA intermediates in mitosis. However, untimely activation of the MUS81 complex in S-phase is dangerous. Little is known about the regulation of the human MUS81 complex and how deregulated activation affects chromosome integrity. Here, we show that the CK2 kinase phosphorylates MUS81 at Serine 87 in late-G2/mitosis, and upon mild replication stress. Phosphorylated MUS81 interacts with SLX4, and this association promotes the function of the MUS81 complex. In line with a role in mitosis, phosphorylation at Serine 87 is suppressed in S-phase and is mainly detected in the MUS81 molecules associated with EME1. Loss of CK2-dependent MUS81 phosphorylation contributes modestly to chromosome integrity, however, expression of the phosphomimic form induces DSBs accumulation in S-phase, because of unscheduled targeting of HJ-like DNA intermediates, and generates a wide chromosome instability phenotype. Collectively, our findings describe a novel regulatory mechanism controlling the MUS81 complex function in human cells. Furthermore, they indicate that, genome stability depends mainly on the ability of cells to counteract targeting of branched intermediates by the MUS81/EME1 complex in S-phase, rather than on a correct MUS81 function in mitosis.
Collapse
Affiliation(s)
- Anita Palma
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Giusj Monia Pugliese
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Ivana Murfuni
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Veronica Marabitti
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Eva Malacaria
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Sara Rinalducci
- Proteomics, Metabolomics and Interactomics Lab, Department of Ecology and Biology, Università della Tuscia, Viale dell'Università snc, 01100 Viterbo, Italy
| | - Anna Minoprio
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Sanchez
- Core Facilities Center - Section of Cytometry, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Filomena Mazzei
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Lello Zolla
- Proteomics, Metabolomics and Interactomics Lab, Department of Ecology and Biology, Università della Tuscia, Viale dell'Università snc, 01100 Viterbo, Italy
| | - Annapaola Franchitto
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| | - Pietro Pichierri
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
5
|
Abstract
The SLX4/FANCP tumor suppressor has emerged as a key player in the maintenance of genome stability, making pivotal contributions to the repair of interstrand cross-links, homologous recombination, and in response to replication stress genome-wide as well as at specific loci such as common fragile sites and telomeres. SLX4 does so in part by acting as a scaffold that controls and coordinates the XPF-ERCC1, MUS81-EME1, and SLX1 structure-specific endonucleases in different DNA repair and recombination mechanisms. It also interacts with other important DNA repair and cell cycle control factors including MSH2, PLK1, TRF2, and TOPBP1 as well as with ubiquitin and SUMO. This review aims at providing an up-to-date and comprehensive view on the key functions that SLX4 fulfills to maintain genome stability as well as to highlight and discuss areas of uncertainty and emerging concepts.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| | - Pierre Henri Gaillard
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| |
Collapse
|
6
|
Chan YW, Fugger K, West SC. Unresolved recombination intermediates lead to ultra-fine anaphase bridges, chromosome breaks and aberrations. Nat Cell Biol 2018; 20:92-103. [PMID: 29255170 PMCID: PMC5742284 DOI: 10.1038/s41556-017-0011-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/16/2017] [Indexed: 01/21/2023]
Abstract
The resolution of joint molecules that link recombining sister chromatids is essential for chromosome segregation. Here, we determine the fate of unresolved recombination intermediates arising in cells lacking two nucleases required for resolution (GEN1 -/- knockout cells depleted of MUS81). We find that intermediates persist until mitosis and form a distinct class of anaphase bridges, which we term homologous recombination ultra-fine bridges (HR-UFBs). HR-UFBs are distinct from replication stress-associated UFBs, which arise at common fragile sites, and from centromeric UFBs. HR-UFBs are processed by BLM helicase to generate single-stranded RPA-coated bridges that are broken during mitosis. In the next cell cycle, DNA breaks activate the DNA damage checkpoint response, and chromosome fusions arise by non-homologous end joining. Consequently, the cells undergo cell cycle delay and massive cell death. These results lead us to present a model detailing how unresolved recombination intermediates can promote DNA damage and chromosomal instability.
Collapse
|
7
|
Wyatt HDM, West SC. SMX makes the cut in genome stability. Oncotarget 2017; 8:102765-102766. [PMID: 29262521 PMCID: PMC5732687 DOI: 10.18632/oncotarget.22420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Haley D M Wyatt
- Haley D.M. Wyatt: Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C West
- Haley D.M. Wyatt: Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
9
|
Malacaria E, Franchitto A, Pichierri P. SLX4 Prevents GEN1-Dependent DSBs During DNA Replication Arrest Under Pathological Conditions in Human Cells. Sci Rep 2017; 7:44464. [PMID: 28290553 PMCID: PMC5349550 DOI: 10.1038/srep44464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/08/2017] [Indexed: 01/06/2023] Open
Abstract
SLX4 is a versatile protein serving as docking for multiple structure-specific endonucleases during DNA repair, however, little is known about its function at demised replication forks. Using RNAi or FA-P cells complemented with SLX4 mutants that abrogate interaction with MUS81 or SLX1, we show that SLX4 cooperates with MUS81 to introduce DSBs after replication stress but also counteracts pathological targeting of demised forks by GEN1. Such unexpected function of SLX4 is unrelated to interaction with endonucleases, but concerns the physical presence of the protein. Strikingly, ectopic expression of the Holliday junction-binding protein RuvA inhibits DSBs in SLX4-deficient cells by preventing GEN1 chromatin-association, and rescues proliferation and genome integrity upon replication stress. Altogether, our results indicate that SLX4 is crucial to prevent accidental processing of Holliday junction-like intermediates at demised forks also suggesting that spontaneous genome instability in FA-P cells may derive, at least partially, from unscheduled action of GEN1 in S-phase.
Collapse
Affiliation(s)
- Eva Malacaria
- Section of Experimental and Computational Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome Italy
| | - Annapaola Franchitto
- Section of Molecular Epidemiology, Department of Environment and Primary Prevention, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome Italy
| | - Pietro Pichierri
- Section of Experimental and Computational Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome Italy
| |
Collapse
|
10
|
Wyatt HDM, Laister RC, Martin SR, Arrowsmith CH, West SC. The SMX DNA Repair Tri-nuclease. Mol Cell 2017; 65:848-860.e11. [PMID: 28257701 PMCID: PMC5344696 DOI: 10.1016/j.molcel.2017.01.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 01/13/2023]
Abstract
The efficient removal of replication and recombination intermediates is essential for the maintenance of genome stability. Resolution of these potentially toxic structures requires the MUS81-EME1 endonuclease, which is activated at prometaphase by formation of the SMX tri-nuclease containing three DNA repair structure-selective endonucleases: SLX1-SLX4, MUS81-EME1, and XPF-ERCC1. Here we show that SMX tri-nuclease is more active than the three individual nucleases, efficiently cleaving replication forks and recombination intermediates. Within SMX, SLX4 co-ordinates the SLX1 and MUS81-EME1 nucleases for Holliday junction resolution, in a reaction stimulated by XPF-ERCC1. SMX formation activates MUS81-EME1 for replication fork and flap structure cleavage by relaxing substrate specificity. Activation involves MUS81's conserved N-terminal HhH domain, which mediates incision site selection and SLX4 binding. Cell cycle-dependent formation and activation of this tri-nuclease complex provides a unique mechanism by which cells ensure chromosome segregation and preserve genome integrity.
Collapse
Affiliation(s)
- Haley D M Wyatt
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rob C Laister
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stephen C West
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
11
|
Xing M, Wang X, Palmai-Pallag T, Shen H, Helleday T, Hickson ID, Ying S. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response. Oncotarget 2016; 6:37638-46. [PMID: 26415217 PMCID: PMC4741954 DOI: 10.18632/oncotarget.5497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022] Open
Abstract
The MUS81 protein belongs to a conserved family of DNA structure-specific nucleases that play important roles in DNA replication and repair. Inactivation of the Mus81 gene in mice has no major deleterious consequences for embryonic development, although cancer susceptibility has been reported. We have investigated the role of MUS81 in human cells by acutely depleting the protein using shRNAs. We found that MUS81 depletion from human fibroblasts leads to accumulation of ssDNA and a constitutive DNA damage response that ultimately activates cellular senescence. Moreover, we show that MUS81 is required for efficient replication fork progression during an unperturbed S-phase, and for recovery of productive replication following replication stalling. These results demonstrate essential roles for the MUS81 nuclease in maintenance of replication fork integrity.
Collapse
Affiliation(s)
- Meichun Xing
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohui Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory For Respiratory Diseases, Guangzhou, China
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ian D Hickson
- Center for Chromosome Stability and Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Songmin Ying
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Zhou X, DeLucia M, Ahn J. SLX4-SLX1 Protein-independent Down-regulation of MUS81-EME1 Protein by HIV-1 Viral Protein R (Vpr). J Biol Chem 2016; 291:16936-16947. [PMID: 27354282 DOI: 10.1074/jbc.m116.721183] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 12/22/2022] Open
Abstract
Evolutionarily conserved structure-selective endonuclease MUS81 forms a complex with EME1 and further associates with another endonuclease SLX4-SLX1 to form a four-subunit complex of MUS81-EME1-SLX4-SLX1, coordinating distinctive biochemical activities of both endonucleases in DNA repair. Viral protein R (Vpr), a highly conserved accessory protein in primate lentiviruses, was previously reported to bind SLX4 to mediate down-regulation of MUS81. However, the detailed mechanism underlying MUS81 down-regulation is unclear. Here, we report that HIV-1 Vpr down-regulates both MUS81 and its cofactor EME1 by hijacking the host CRL4-DCAF1 E3 ubiquitin ligase. Multiple Vpr variants, from HIV-1 and SIV, down-regulate both MUS81 and EME1. Furthermore, a C-terminally truncated Vpr mutant and point mutants R80A and Q65R, all of which lack G2 arrest activity, are able to down-regulate MUS81-EME1, suggesting that Vpr-induced G2 arrest is not correlated with MUS81-EME1 down-regulation. We also show that neither the interaction of MUS81-EME1 with Vpr nor their down-regulation is dependent on SLX4-SLX1. Together, these data provide new insight on a conserved function of Vpr in a host endonuclease down-regulation.
Collapse
Affiliation(s)
- Xiaohong Zhou
- From the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Maria DeLucia
- From the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jinwoo Ahn
- From the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
13
|
Nowotny M, Gaur V. Structure and mechanism of nucleases regulated by SLX4. Curr Opin Struct Biol 2016; 36:97-105. [PMID: 26827285 DOI: 10.1016/j.sbi.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 01/08/2023]
Abstract
SLX4 is a multidomain platform that regulates various proteins that are involved in genome maintenance and stability. Among these proteins are three structure-selective nucleases (SSEs). XPF-ERCC1 and MUS81-EME1 are structurally similar and function as heterodimers of highly similar subunits, in which only one is active. Two independent modules are formed from subunits of the heterodimers - a dimer of nuclease and nuclease-like domains and a dimer of tandem helix-hairpin-helix HhH2 domains. Both modules are responsible for substrate recognition. The third SSE, SLX1, contains GIY-YIG and RING domains and is a promiscuous nuclease. Structural data imply that SLX1 exists in free form as an autoinhibited homodimer. Association with SLX4 platform disrupts the homodimer and activates SLX1. This review discusses the available structural and mechanistic information on SLX4-regulated SSEs.
Collapse
Affiliation(s)
- Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Vineet Gaur
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
14
|
Blanco MG, Matos J. Hold your horSSEs: controlling structure-selective endonucleases MUS81 and Yen1/GEN1. Front Genet 2015; 6:253. [PMID: 26284109 PMCID: PMC4519697 DOI: 10.3389/fgene.2015.00253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Repair of DNA lesions through homologous recombination promotes the establishment of stable chromosomal interactions. Multiple helicases, topoisomerases and structure-selective endonucleases (SSEs) act upon recombining joint molecules (JMs) to disengage chromosomal connections and safeguard chromosome segregation. Recent studies on two conserved SSEs – MUS81 and Yen1/GEN1– uncovered multiple layers of regulation that operate to carefully tailor JM-processing according to specific cellular needs. Temporal restriction of SSE function imposes a hierarchy in pathway usage that ensures efficient JM-processing while minimizing reciprocal exchanges between the recombining DNAs. Whereas a conserved strategy of fine-tuning SSE functions exists in different model systems, the precise molecular mechanisms to implement it appear to be significantly different. Here, we summarize the current knowledge on the cellular switches that are in place to control MUS81 and Yen1/GEN1 functions.
Collapse
Affiliation(s)
- Miguel G Blanco
- Department of Biochemistry and Molecular Biology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela , Santiago de Compostela, Spain
| | - Joao Matos
- Institute of Biochemistry, Swiss Federal Institute of Technology in Zürich , Zürich, Switzerland
| |
Collapse
|
15
|
Pizzolato J, Mukherjee S, Schärer OD, Jiricny J. FANCD2-associated nuclease 1, but not exonuclease 1 or flap endonuclease 1, is able to unhook DNA interstrand cross-links in vitro. J Biol Chem 2015. [PMID: 26221031 DOI: 10.1074/jbc.m115.663666] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cisplatin and its derivatives, nitrogen mustards and mitomycin C, are used widely in cancer chemotherapy. Their efficacy is linked primarily to their ability to generate DNA interstrand cross-links (ICLs), which effectively block the progression of transcription and replication machineries. Release of this block, referred to as unhooking, has been postulated to require endonucleases that incise one strand of the duplex on either side of the ICL. Here we investigated how the 5' flap nucleases FANCD2-associated nuclease 1 (FAN1), exonuclease 1 (EXO1), and flap endonuclease 1 (FEN1) process a substrate reminiscent of a replication fork arrested at an ICL. We now show that EXO1 and FEN1 cleaved the substrate at the boundary between the single-stranded 5' flap and the duplex, whereas FAN1 incised it three to four nucleotides in the double-stranded region. This affected the outcome of processing of a substrate containing a nitrogen mustard-like ICL two nucleotides in the duplex region because FAN1, unlike EXO1 and FEN1, incised the substrate predominantly beyond the ICL and, therefore, failed to release the 5' flap. We also show that FAN1 was able to degrade a linear ICL substrate. This ability of FAN1 to traverse ICLs in DNA could help to elucidate its biological function, which is currently unknown.
Collapse
Affiliation(s)
- Julia Pizzolato
- From the Institute of Molecular Cancer Research, University of Zurich and
| | | | - Orlando D Schärer
- the Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-3400
| | - Josef Jiricny
- From the Institute of Molecular Cancer Research, University of Zurich and the Department of Biology, Swiss Institute of Technology (ETH) Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland, and
| |
Collapse
|
16
|
Thu HPT, Nguyen TA, Munashingha PR, Kwon B, Dao Van Q, Seo YS. A physiological significance of the functional interaction between Mus81 and Rad27 in homologous recombination repair. Nucleic Acids Res 2015; 43:1684-99. [PMID: 25628354 PMCID: PMC4330386 DOI: 10.1093/nar/gkv025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fen1 and Mus81-Mms4 are endonucleases involved in the processing of various DNA structural intermediates, and they were shown to have genetic and functional interactions with each other. Here, we show the in vivo significance of the interactions between Mus81 and Rad27 (yeast Fen1). The N-terminal 120 amino-acid (aa) region of Mus81, although entirely dispensable for its catalytic activity, was essential for the abilities of Mus81 to bind to and be stimulated by Rad27. In the absence of SGS1, the mus81Δ120N mutation lacking the N-terminal 120 aa region exhibited synthetic lethality, and the lethality was rescued by deletion of RAD52, a key homologous recombination mediator. These findings, together with the fact that Sgs1 constitutes a redundant pathway with Mus81-Mms4, indicate that the N-terminus-mediated interaction of Mus81 with Rad27 is physiologically important in resolving toxic recombination intermediates. Mutagenic analyses of the N-terminal region identified two distinct motifs, named N21-26 (aa from 21-26) and N108-114 (aa from 108-114) important for the in vitro and in vivo functions of Mus81. Our findings indicate that the N-terminal region of Mus81 acts as a landing pad to interact with Rad27 and that Mus81 and Rad27 work conjointly for efficient removal of various aberrant DNA structures.
Collapse
Affiliation(s)
- Huong Phung Thi Thu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Tuan Anh Nguyen
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Palinda Ruvan Munashingha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Buki Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Quy Dao Van
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| |
Collapse
|