1
|
Pennisi G, Bruzzaniti P, Burattini B, Piaser Guerrato G, Della Pepa GM, Sturiale CL, Lapolla P, Familiari P, La Pira B, D’Andrea G, Olivi A, D’Alessandris QG, Montano N. Advancements in Telomerase-Targeted Therapies for Glioblastoma: A Systematic Review. Int J Mol Sci 2024; 25:8700. [PMID: 39201386 PMCID: PMC11354571 DOI: 10.3390/ijms25168700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Glioblastoma (GBM) is a primary CNS tumor that is highly lethal in adults and has limited treatment options. Despite advancements in understanding the GBM biology, the standard treatment for GBM has remained unchanged for more than a decade. Only 6.8% of patients survive beyond five years. Telomerase, particularly the hTERT promoter mutations present in up to 80% of GBM cases, represents a promising therapeutic target due to its role in sustaining telomere length and cancer cell proliferation. This review examines the biology of telomerase in GBM and explores potential telomerase-targeted therapies. We conducted a systematic review following the PRISMA-P guidelines in the MEDLINE/PubMed and Scopus databases, from January 1995 to April 2024. We searched for suitable articles by utilizing the terms "GBM", "high-grade gliomas", "hTERT" and "telomerase". We incorporated studies addressing telomerase-targeted therapies into GBM studies, excluding non-English articles, reviews, and meta-analyses. We evaluated a total of 777 records and 46 full texts, including 36 studies in the final review. Several compounds aimed at inhibiting hTERT transcription demonstrated promising preclinical outcomes; however, they were unsuccessful in clinical trials owing to intricate regulatory pathways and inadequate pharmacokinetics. Direct hTERT inhibitors encountered numerous obstacles, including a prolonged latency for telomere shortening and the activation of the alternative lengthening of telomeres (ALT). The G-quadruplex DNA stabilizers appeared to be potential indirect inhibitors, but further clinical studies are required. Imetelstat, the only telomerase inhibitor that has undergone clinical trials, has demonstrated efficacy in various cancers, but its efficacy in GBM has been limited. Telomerase-targeted therapies in GBM is challenging due to complex hTERT regulation and inadequate inhibitor pharmacokinetics. Our study demonstrates that, despite promising preclinical results, no Telomerase inhibitors have been approved for GBM, and clinical trials have been largely unsuccessful. Future strategies may include Telomerase-based vaccines and multi-target inhibitors, which may provide more effective treatments when combined with a better understanding of telomere dynamics and tumor biology. These treatments have the potential to be integrated with existing ones and to improve the outcomes for patients with GBM.
Collapse
Affiliation(s)
- Giovanni Pennisi
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
| | - Placido Bruzzaniti
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza, University of Rome, 00157 Rome, Italy;
| | - Benedetta Burattini
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Giacomo Piaser Guerrato
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Carmelo Lucio Sturiale
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | | | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza, University of Rome, 00157 Rome, Italy;
| | - Biagia La Pira
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
| | - Giancarlo D’Andrea
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
| | - Alessandro Olivi
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Quintino Giorgio D’Alessandris
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Nicola Montano
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| |
Collapse
|
2
|
Siteni S, Barron S, Luitel K, Shay JW. Radioprotective effect of the anti-diabetic drug metformin. PLoS One 2024; 19:e0307598. [PMID: 39042641 PMCID: PMC11265658 DOI: 10.1371/journal.pone.0307598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
Metformin is a biguanide currently used in the treatment of diabetes mellitus type 2. Besides its anti-glycemic effects, metformin has been reported to induce different cellular pleiotropic effects, depending on concentration and time of treatment. Here we report one administration of metformin (0.5 mM) has radioprotective effects in vitro on BJ human fibroblasts, increasing DNA damage repair and increasing SOD1 expression in the nucleus. Importantly, metformin (200 mg/kg) pre-administration for only 3 days in wild type 129/sv mice, decreases the formation of micronuclei in bone marrow cells and DNA damage in colon and lung tissues compared to control irradiated mice at sub-lethal and lethal doses, increasing the overall survival fraction by 37% after 10Gy total body irradiation. We next pre-treated with metformin and then exposed 129/sv mice, to a galactic cosmic rays simulation (GCRsim), at the NASA Space Radiation Laboratory (NSRL). We found metformin pre-treatment decreases the presence of bone marrow micronuclei and DNA damage in colon and lung tissues and an increase of 8-oxoguanine DNA glycosylase-1 (OGG1) expression. Our data highlight a radioprotective effect of metformin through an indirect modulation of the gene expression involved in the cellular detoxification rather than its effects on mitochondria.
Collapse
Affiliation(s)
- Silvia Siteni
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Summer Barron
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Krishna Luitel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jerry W. Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
3
|
Ng YB, Akincilar SC. Shaping DNA damage responses: Therapeutic potential of targeting telomeric proteins and DNA repair factors in cancer. Curr Opin Pharmacol 2024; 76:102460. [PMID: 38776747 DOI: 10.1016/j.coph.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 05/25/2024]
Abstract
Shelterin proteins regulate genomic stability by preventing inappropriate DNA damage responses (DDRs) at telomeres. Unprotected telomeres lead to persistent DDR causing cell cycle inhibition, growth arrest, and apoptosis. Cancer cells rely on DDR to protect themselves from DNA lesions and exogenous DNA-damaging agents such as chemotherapy and radiotherapy. Therefore, targeting DDR machinery is a promising strategy to increase the sensitivity of cancer cells to existing cancer therapies. However, the success of these DDR inhibitors depends on other mutations, and over time, patients develop resistance to these therapies. This suggests the need for alternative approaches. One promising strategy is co-inhibiting shelterin proteins with DDR molecules, which would offset cellular fitness in DNA repair in a mutation-independent manner. This review highlights the associations and dependencies of the shelterin complex with the DDR proteins and discusses potential co-inhibition strategies that might improve the therapeutic potential of current inhibitors.
Collapse
Affiliation(s)
- Yu Bin Ng
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Semih Can Akincilar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore.
| |
Collapse
|
4
|
Chojak R, Fares J, Petrosyan E, Lesniak MS. Cellular senescence in glioma. J Neurooncol 2023; 164:11-29. [PMID: 37458855 DOI: 10.1007/s11060-023-04387-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/01/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor and is often associated with treatment resistance and poor prognosis. Standard treatment typically involves radiotherapy and temozolomide-based chemotherapy, both of which induce cellular senescence-a tumor suppression mechanism. DISCUSSION Gliomas employ various mechanisms to bypass or escape senescence and remain in a proliferative state. Importantly, senescent cells remain viable and secrete a large number of factors collectively known as the senescence-associated secretory phenotype (SASP) that, paradoxically, also have pro-tumorigenic effects. Furthermore, senescent cells may represent one form of tumor dormancy and play a role in glioma recurrence and progression. CONCLUSION In this article, we delineate an overview of senescence in the context of gliomas, including the mechanisms that lead to senescence induction, bypass, and escape. Furthermore, we examine the role of senescent cells in the tumor microenvironment and their role in tumor progression and recurrence. Additionally, we highlight potential therapeutic opportunities for targeting senescence in glioma.
Collapse
Affiliation(s)
- Rafał Chojak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA.
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Jia T, Diane O, Ghosh D, Skander M, Fontaine G, Retailleau P, Poupon J, Bignon J, Moulai Siasia YM, Servajean V, Hue N, Betzer JF, Marinetti A, Bombard S. Anti-Cancer and Radio-Sensitizing Properties of New Bimetallic ( N-Heterocyclic Carbene)-Amine-Pt(II) Complexes. J Med Chem 2023; 66:6836-6848. [PMID: 37191470 DOI: 10.1021/acs.jmedchem.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bioactive NHC-transition metal complexes have shown promise as anti-cancer agents, but their potential use as radiosensitizers has been neglected so far. We disclose here a new series of bimetallic platinum(II) complexes displaying NHC-type bridging ligands, (bis-NHC)[trans-Pt(RNH2)I2]2, that have been synthesized via a simple, two-step procedure. They display cytotoxicity in the micromolar range on cancerous cell lines, accumulate in cells, and bind to genomic DNA, by inducing DNA damages. Notably, these bimetallic complexes demonstrate significant radiosensitizing effects on both ovarian cells A2780 and nonsmall lung carcinoma cells H1299. Further investigations revealed that bimetallic species make irradiation-induced DNA damages more persistent by inhibiting repair mechanisms. Indeed, a higher and persistent accumulation of both γ-H2AX and 53BP1 foci post-irradiation was detected, in the presence of the NHC-Pt complexes. Overall, we provide the first in vitro evidence for the radiosensitizing properties of NHC-platinum complexes, which suggests their potential use in combined chemo-radio therapy protocols.
Collapse
Affiliation(s)
- Tao Jia
- CNRS-UMR9187, INSERM U1196, PSL-Research University, Orsay 91405, France
- CNRS-UMR9187, INSERM U1196, Université Paris Saclay, Orsay 91405, France
| | - Oumar Diane
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Deepanjan Ghosh
- CNRS-UMR9187, INSERM U1196, PSL-Research University, Orsay 91405, France
- CNRS-UMR9187, INSERM U1196, Université Paris Saclay, Orsay 91405, France
| | - Myriem Skander
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Gaelle Fontaine
- CNRS-UMR9187, INSERM U1196, PSL-Research University, Orsay 91405, France
- CNRS-UMR9187, INSERM U1196, Université Paris Saclay, Orsay 91405, France
| | - Pascal Retailleau
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Joël Poupon
- Hôpital Lariboisière, Laboratoire de Toxicologie Biologique, 2 rue Ambroise Paré, Paris 75475, France
| | - Jérôme Bignon
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Ytabelle Maga Moulai Siasia
- CNRS-UMR9187, INSERM U1196, PSL-Research University, Orsay 91405, France
- CNRS-UMR9187, INSERM U1196, Université Paris Saclay, Orsay 91405, France
| | - Vincent Servajean
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Nathalie Hue
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Jean-François Betzer
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Angela Marinetti
- CNRS-UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Sophie Bombard
- CNRS-UMR9187, INSERM U1196, PSL-Research University, Orsay 91405, France
- CNRS-UMR9187, INSERM U1196, Université Paris Saclay, Orsay 91405, France
| |
Collapse
|
6
|
Vertecchi E, Rizzo A, Salvati E. Telomere Targeting Approaches in Cancer: Beyond Length Maintenance. Int J Mol Sci 2022; 23:ijms23073784. [PMID: 35409143 PMCID: PMC8998427 DOI: 10.3390/ijms23073784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/19/2022] Open
Abstract
Telomeres are crucial structures that preserve genome stability. Their progressive erosion over numerous DNA duplications determines the senescence of cells and organisms. As telomere length homeostasis is critical for cancer development, nowadays, telomere maintenance mechanisms are established targets in cancer treatment. Besides telomere elongation, telomere dysfunction impinges on intracellular signaling pathways, in particular DNA damage signaling and repair, affecting cancer cell survival and proliferation. This review summarizes and discusses recent findings in anticancer drug development targeting different “telosome” components.
Collapse
Affiliation(s)
- Eleonora Vertecchi
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy;
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy;
| | - Erica Salvati
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy;
- Correspondence:
| |
Collapse
|
7
|
CX-5461 induces radiosensitization through modification of the DNA damage response and not inhibition of RNA polymerase I. Sci Rep 2022; 12:4059. [PMID: 35260696 PMCID: PMC8904802 DOI: 10.1038/s41598-022-07928-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
Increased ribosome biogenesis is a distinguishing feature of cancer cells, and small molecule inhibitors of ribosome biogenesis are currently in clinical trials as single agent therapy. It has been previously shown that inhibiting ribosome biogenesis through the inhibition of nuclear export of ribosomal subunits sensitizes tumor cells to radiotherapy. In this study, the radiosensitizing potential of CX-5461, a small molecule inhibitor of RNA polymerase I, was tested. Radiosensitization was measured by clonogenic survival assay in a panel of four tumor cell lines derived from three different tumor types commonly treated with radiation. 50 nM CX-5461 radiosensitized PANC-1, U251, HeLa, and PSN1 cells with dose enhancement factors in the range of 1.2–1.3. However, 50 nM CX-5461 was not sufficient to inhibit 45S transcription alone or in combination with radiation. The mechanism of cell death with the combination of CX-5461 and radiation occurred through mitotic catastrophe and not apoptosis. CX-5461 inhibited the repair and/or enhanced the initial levels of radiation-induced DNA double strand breaks. Understanding the mechanism of CX-5461-induced radiosensitization should be of value in the potential application of the CX-5461/radiotherapy combination in cancer treatment.
Collapse
|
8
|
Lu R, Pickett HA. Telomeric replication stress: the beginning and the end for alternative lengthening of telomeres cancers. Open Biol 2022; 12:220011. [PMID: 35259951 PMCID: PMC8905155 DOI: 10.1098/rsob.220011] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomeric DNA comprises terminal tracts of G-rich tandem repeats, which are inherently difficult for the replication machinery to navigate. Structural aberrations that promote activation of the alternative lengthening of telomeres (ALT) pathway of telomere maintenance exacerbate replication stress at ALT telomeres, driving fork stalling and fork collapse. This form of telomeric DNA damage perpetuates recombination-mediated repair pathways and break-induced telomere synthesis. The relationship between replication stress and DNA repair is tightly coordinated for the purpose of regulating telomere length in ALT cells, but has been shown to be experimentally manipulatable. This raises the intriguing possibility that induction of replication stress can be used as a means to cause toxic levels of DNA damage at ALT telomeres, thereby selectively disrupting the viability of ALT cancers.
Collapse
Affiliation(s)
- Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Hilda A. Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
9
|
Effects of the Combined Treatment with a G-Quadruplex-Stabilizing Ligand and Photon Beams on Glioblastoma Stem-like Cells: A Magnetic Resonance Study. Int J Mol Sci 2021; 22:ijms222312709. [PMID: 34884511 PMCID: PMC8657890 DOI: 10.3390/ijms222312709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme is a malignant primary brain tumor with a poor prognosis and high rates of chemo-radiotherapy failure, mainly due to a small cell fraction with stem-like properties (GSCs). The mechanisms underlying GSC response to radiation need to be elucidated to enhance sensitivity to treatments and to develop new therapeutic strategies. In a previous study, two GSC lines, named line #1 and line #83, responded differently to carbon ions and photon beams, with the differences likely attributable to their own different metabolic fingerprint rather than to radiation type. Data from the literature showed the capability of RHPS4, a G-quadruplex stabilizing ligand, to sensitize the glioblastoma radioresistant U251MG cells to X-rays. The combined metabolic effect of ligand #190, a new RHPS4-derivative showing reduced cardiotoxicity, and a photon beam has been monitored by magnetic resonance (MR) spectroscopy for the two GSC lines, #1 and #83, to reveal whether a synergistic response occurs. MR spectra from both lines were affected by single and combined treatments, but the variations of the analysed metabolites were statistically significant mainly in line #1, without synergistic effects due to combination. The multivariate analysis of ten metabolites shows a separation between control and treated samples in line #1 regardless of treatment type, while separation was not detected in line #83.
Collapse
|
10
|
Bolzán AD. Mutagen-induced telomere instability in human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503387. [PMID: 34454696 DOI: 10.1016/j.mrgentox.2021.503387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/27/2022]
Abstract
Telomere instability is one of the main sources of genome instability and may result from chromosome end loss (due to chromosome breakage at one or both ends) or, more frequently, telomere dysfunction. Dysfunctional telomeres arise when they lose their end-capping function or become critically short, which causes chromosomal termini to behave like a DNA double-strand break. Telomere instability may occur at the chromosomal or at the molecular level, giving rise, respectively, to telomere-related chromosomal aberrations or the loss or modification of any of the components of the telomere (telomere DNA, telomere-associated proteins, or telomere RNA). Since telomeres play a fundamental role in maintaining genome stability, the study of telomere instability in cells exposed to mutagens is of great importance to understand the telomere-driven genomic instability present in those cells. In the present review, we will focus on the current knowledge about telomere instability induced by physical, chemical, and biological mutagens in human cells.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CONICET-CICPBA-UNLP), calle 526 y Camino General Belgrano, B1906APO La Plata, Buenos Aires, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, calle 60 y 122, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Xu J, Jiang R, He H, Ma C, Tang Z. Recent advances on G-quadruplex for biosensing, bioimaging and cancer therapy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Alessandrini I, Recagni M, Zaffaroni N, Folini M. On the Road to Fight Cancer: The Potential of G-quadruplex Ligands as Novel Therapeutic Agents. Int J Mol Sci 2021; 22:5947. [PMID: 34073075 PMCID: PMC8198608 DOI: 10.3390/ijms22115947] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Nucleic acid sequences able to adopt a G-quadruplex conformation are overrepresented within the human genome. This evidence strongly suggests that these genomic regions have been evolutionary selected to play a pivotal role in several aspects of cell biology. In the present review article, we provide an overview on the biological impact of targeting G-quadruplexes in cancer. A variety of small molecules showing good G-quadruplex stabilizing properties has been reported to exert an antitumor activity in several preclinical models of human cancers. Moreover, promiscuous binders and multiple targeting G-quadruplex ligands, cancer cell defense responses and synthetic lethal interactions of G-quadruplex targeting have been also highlighted. Overall, evidence gathered thus far indicates that targeting G-quadruplex may represent an innovative and fascinating therapeutic approach for cancer. The continued methodological improvements, the development of specific tools and a careful consideration of the experimental settings in living systems will be useful to deepen our knowledge of G-quadruplex biology in cancer, to better define their role as therapeutic targets and to help design and develop novel and reliable G-quadruplex-based anticancer strategies.
Collapse
Affiliation(s)
| | | | | | - Marco Folini
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (M.R.); (N.Z.)
| |
Collapse
|
13
|
Zell J, Rota Sperti F, Britton S, Monchaud D. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem Biol 2021; 2:47-76. [PMID: 35340894 PMCID: PMC8885165 DOI: 10.1039/d0cb00151a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022] Open
Abstract
Damaging DNA is a current and efficient strategy to fight against cancer cell proliferation. Numerous mechanisms exist to counteract DNA damage, collectively referred to as the DNA damage response (DDR) and which are commonly dysregulated in cancer cells. Precise knowledge of these mechanisms is necessary to optimise chemotherapeutic DNA targeting. New research on DDR has uncovered a series of promising therapeutic targets, proteins and nucleic acids, with application notably via an approach referred to as combination therapy or combinatorial synthetic lethality. In this review, we summarise the cornerstone discoveries which gave way to the DNA being considered as an anticancer target, and the manipulation of DDR pathways as a valuable anticancer strategy. We describe in detail the DDR signalling and repair pathways activated in response to DNA damage. We then summarise the current understanding of non-B DNA folds, such as G-quadruplexes and DNA junctions, when they are formed and why they can offer a more specific therapeutic target compared to that of canonical B-DNA. Finally, we merge these subjects to depict the new and highly promising chemotherapeutic strategy which combines enhanced-specificity DNA damaging and DDR targeting agents. This review thus highlights how chemical biology has given rise to significant scientific advances thanks to resolutely multidisciplinary research efforts combining molecular and cell biology, chemistry and biophysics. We aim to provide the non-specialist reader a gateway into this exciting field and the specialist reader with a new perspective on the latest results achieved and strategies devised.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS Toulouse France
- Équipe Labellisée la Ligue Contre le Cancer 2018 Toulouse France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| |
Collapse
|
14
|
Bajaj S, Kumar MS, Peters GJ, Mayur YC. Targeting telomerase for its advent in cancer therapeutics. Med Res Rev 2020; 40:1871-1919. [PMID: 32391613 DOI: 10.1002/med.21674] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Telomerase has emerged as an important primary target in anticancer therapy. It is a distinctive reverse transcriptase enzyme, which extends the length of telomere at the 3' chromosomal end, and uses telomerase reverse transcriptase (TERT) and telomerase RNA template-containing domains. Telomerase has a vital role and is a contributing factor in human health, mainly affecting cell aging and cell proliferation. Due to its unique feature, it ensures unrestricted cell proliferation in malignancy and plays a major role in cancer disease. The development of telomerase inhibitors with increased specificity and better pharmacokinetics is being considered to design and develop newer potent anticancer agents. Use of natural and synthetic compounds for the inhibition of telomerase activity can lead to an opening of new vistas in cancer treatment. This review details about the telomerase biochemistry, use of natural and synthetic compounds; vaccines and oncolytic virus in therapy that suppress the telomerase activity. We have discussed structure-activity relationships of various natural and synthetic telomerase inhibitors to help medicinal chemists and chemical biology researchers with a ready reference and updated status of their clinical trials. Suppression of human TERT (hTERT) activity through inhibition of hTERT promoter is an important approach for telomerase inhibition.
Collapse
Affiliation(s)
| | | | - G J Peters
- Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Y C Mayur
- SPPSPTM, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
15
|
Amato R, Valenzuela M, Berardinelli F, Salvati E, Maresca C, Leone S, Antoccia A, Sgura A. G-quadruplex Stabilization Fuels the ALT Pathway in ALT-positive Osteosarcoma Cells. Genes (Basel) 2020; 11:genes11030304. [PMID: 32183119 PMCID: PMC7140816 DOI: 10.3390/genes11030304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Most human tumors maintain telomere lengths by telomerase, whereas a portion of them (10–15%) uses a mechanism named alternative lengthening of telomeres (ALT). The telomeric G-quadruplex (G4) ligand RHPS4 is known for its potent antiproliferative effect, as shown in telomerase-positive cancer models. Moreover, RHPS4 is also able to reduce cell proliferation in ALT cells, although the influence of G4 stabilization on the ALT mechanism has so far been poorly investigated. Here we show that sensitivity to RHPS4 is comparable in ALT-positive (U2OS; SAOS-2) and telomerase-positive (HOS) osteosarcoma cell lines, unlinking the telomere maintenance mechanism and RHPS4 responsiveness. To investigate the impact of G4 stabilization on ALT, the cardinal ALT hallmarks were analyzed. A significant induction of telomeric doublets, telomeric clusterized DNA damage, ALT-associated Promyelocytic Leukaemia-bodies (APBs), telomere sister chromatid exchanges (T-SCE) and c-circles was found exclusively in RHPS4-treated ALT cells. We surmise that RHPS4 affects ALT mechanisms through the induction of replicative stress that in turn is converted in DNA damage at telomeres, fueling recombination. In conclusion, our work indicates that RHPS4-induced telomeric DNA damage promotes overactivation of telomeric recombination in ALT cells, opening new questions on the therapeutic employment of G4 ligands in the treatment of ALT positive tumors.
Collapse
Affiliation(s)
- Roberta Amato
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Martina Valenzuela
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Francesco Berardinelli
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
- Correspondence: ; Tel.: +39-0657-33-6330
| | - Erica Salvati
- BPM-CNR Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy;
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Carmen Maresca
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Stefano Leone
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Antonio Antoccia
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Antonella Sgura
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| |
Collapse
|
16
|
Structural Features of Nucleoprotein CST/Shelterin Complex Involved in the Telomere Maintenance and Its Association with Disease Mutations. Cells 2020; 9:cells9020359. [PMID: 32033110 PMCID: PMC7072152 DOI: 10.3390/cells9020359] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
Telomere comprises the ends of eukaryotic linear chromosomes and is composed of G-rich (TTAGGG) tandem repeats which play an important role in maintaining genome stability, premature aging and onsets of many diseases. Majority of the telomere are replicated by conventional DNA replication, and only the last bit of the lagging strand is synthesized by telomerase (a reverse transcriptase). In addition to replication, telomere maintenance is principally carried out by two key complexes known as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, and TPP1) and CST (CDC13/CTC1, STN1, and TEN1). Shelterin protects the telomere from DNA damage response (DDR) and regulates telomere length by telomerase; while, CST govern the extension of telomere by telomerase and C strand fill-in synthesis. We have investigated both structural and biochemical features of shelterin and CST complexes to get a clear understanding of their importance in the telomere maintenance. Further, we have analyzed ~115 clinically important mutations in both of the complexes. Association of such mutations with specific cellular fault unveils the importance of shelterin and CST complexes in the maintenance of genome stability. A possibility of targeting shelterin and CST by small molecule inhibitors is further investigated towards the therapeutic management of associated diseases. Overall, this review provides a possible direction to understand the mechanisms of telomere borne diseases, and their therapeutic intervention.
Collapse
|
17
|
Recagni M, Tassinari M, Doria F, Cimino-Reale G, Zaffaroni N, Freccero M, Folini M, Richter SN. The Oncogenic Signaling Pathways in BRAF-Mutant Melanoma Cells are Modulated by Naphthalene Diimide-Like G-Quadruplex Ligands. Cells 2019; 8:cells8101274. [PMID: 31635389 PMCID: PMC6830342 DOI: 10.3390/cells8101274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer. Despite the advent of targeted therapies directed against specific oncogene mutations, melanoma remains a tumor that is very difficult to treat, and ultimately remains incurable. In the past two decades, stabilization of the non-canonical nucleic acid G-quadruplex structures within oncogene promoters has stood out as a promising approach to interfere with oncogenic signaling pathways in cancer cells, paving the way toward the development of G-quadruplex ligands as antitumor drugs. Here, we present the synthesis and screening of a library of differently functionalized core-extended naphthalene diimides for their activity against the BRAFV600E-mutant melanoma cell line. The most promising compound was able to stabilize G-quadruplexes that formed in the promoter regions of two target genes relevant to melanoma, KIT and BCL-2. This activity led to the suppression of protein expression and thus to interference with oncogenic signaling pathways involved in BRAF-mutant melanoma cell survival, apoptosis, and resistance to drugs. This G-quadruplex ligand thus represents a suitable candidate for the development of melanoma treatment options based on a new mechanism of action and could reveal particular significance in the context of resistance to targeted therapies of BRAF-mutant melanoma cells.
Collapse
Affiliation(s)
- Marta Recagni
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Martina Tassinari
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy.
| | - Filippo Doria
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy.
| | - Graziella Cimino-Reale
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy.
| | - Marco Folini
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy.
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy.
| |
Collapse
|
18
|
Udroiu I, Marinaccio J, Sgura A. Epigallocatechin-3-gallate induces telomere shortening and clastogenic damage in glioblastoma cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:683-692. [PMID: 31026358 DOI: 10.1002/em.22295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/11/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Epigallocatechingallate (EGCG) is the major polyphenol in green tea, to which many anticancer features, such as antioxidative, antigenotoxic, and antiangiogenetic properties, are attributed. Moreover, it is also well known as a telomerase inhibitor. In this work, we have chronically treated U251 glioblastoma cells with low, physiologically realistic concentrations, of EGCG, in order to investigate its effects both on telomeres and on genome integrity. Inhibition of telomerase activity caused telomere shortening, ultimately leading to senescence and telomere dysfunction at 98 days. Remarkably, we have observed DNA damage through an increase of phosphorylation of γ-H2AX histone and micronuclei also with doses and at timepoints when telomere shortening was not present. Therefore, we concluded that this DNA damage was not correlated with telomere shortening and that EGCG treatment induced not only an increase of telomere-shortening-induced senescence but also telomere-independent genotoxicity. This study questions the common knowledge about EGCG properties, but confirms the few works that indicated the clastogenic properties of this molecule, probably due to DNA reductive damage and topoisomerase II poisoning. Environ. Mol. Mutagen., 60:683-692, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ion Udroiu
- Department of Science, University "Roma Tre", Rome, Italy
| | | | | |
Collapse
|
19
|
Berardinelli F, Tanori M, Muoio D, Buccarelli M, di Masi A, Leone S, Ricci-Vitiani L, Pallini R, Mancuso M, Antoccia A. G-quadruplex ligand RHPS4 radiosensitizes glioblastoma xenograft in vivo through a differential targeting of bulky differentiated- and stem-cancer cells. J Exp Clin Cancer Res 2019; 38:311. [PMID: 31311580 PMCID: PMC6636127 DOI: 10.1186/s13046-019-1293-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioblastoma is the most aggressive and most lethal primary brain tumor in the adulthood. Current standard therapies are not curative and novel therapeutic options are urgently required. Present knowledge suggests that the continued glioblastoma growth and recurrence is determined by glioblastoma stem-like cells (GSCs), which display self-renewal, tumorigenic potential, and increased radio- and chemo-resistance. The G-quadruplex ligand RHPS4 displays in vitro radiosensitizing effect in GBM radioresistant cells through the targeting and dysfunctionalization of telomeres but RHPS4 and Ionizing Radiation (IR) combined treatment efficacy in vivo has not been explored so far. METHODS RHPS4 and IR combined effects were tested in vivo in a heterotopic mice xenograft model and in vitro in stem-like cells derived from U251MG and from four GBM patients. Cell growth assays, cytogenetic analysis, immunoblotting, gene expression and cytofluorimetric analysis were performed in order to characterize the response of differentiated and stem-like cells to RHPS4 and IR in single and combined treatments. RESULTS RHPS4 administration and IR exposure is very effective in blocking tumor growth in vivo up to 65 days. The tumor volume reduction and the long-term tumor control suggested the targeting of the stem cell compartment. Interestingly, RHPS4 treatment was able to strongly reduce cell proliferation in GSCs but, unexpectedly, did not synergize with IR. Lack of radiosensitization was supported by the GSCs telomeric-resistance observed as the total absence of telomere-involving chromosomal aberrations. Remarkably, RHPS4 treatment determined a strong reduction of CHK1 and RAD51 proteins and transcript levels suggesting that the inhibition of GSCs growth is determined by the impairment of the replication stress (RS) response and DNA repair. CONCLUSIONS We propose that the potent antiproliferative effect of RHPS4 in GSCs is not determined by telomeric dysfunction but is achieved by the induction of RS and by the concomitant depletion of CHK1 and RAD51, leading to DNA damage and cell death. These data open to novel therapeutic options for the targeting of GSCs, indicating that the combined inhibition of cell-cycle checkpoints and DNA repair proteins provides the most effective means to overcome resistance of GSC to genotoxic insults.
Collapse
Affiliation(s)
| | - M. Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - D. Muoio
- Department of Science, University Roma Tre, Rome, Italy
| | - M. Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - A. di Masi
- Department of Science, University Roma Tre, Rome, Italy
| | - S. Leone
- Department of Science, University Roma Tre, Rome, Italy
| | - L. Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - R. Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - M. Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A. Antoccia
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
20
|
Combined treatment with emodin and a telomerase inhibitor induces significant telomere damage/dysfunction and cell death. Cell Death Dis 2019; 10:527. [PMID: 31296842 PMCID: PMC6624283 DOI: 10.1038/s41419-019-1768-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 01/06/2023]
Abstract
G-quadruplex telomeric secondary structures represent natural replication fork barriers and must be resolved to permit efficient replication. Stabilization of telomeric G4 leads to telomere dysfunctions demonstrated by telomere shortening or damage, resulting in genome instability and apoptosis. Chemical compounds targeting G4 structures have been reported to induce telomere disturbance and tumor suppression. Here, virtual screening was performed in a natural compound library using PyRx to identify novel G4 ligands. Emodin was identified as one of the best candidates, showing a great G4-binding potential. Subsequently, we confirmed that emodin could stabilize G4 structures in vitro and trigger telomere dysfunctions including fragile telomeres, telomere loss, and telomeric DNA damage. However, this telomere disturbance could be rescued by subsequent elevation of telomerase activity; in contrast, when we treated the cells with the telomerase inhibitor BIBR1532 upon emodin treatment, permanent telomere disturbance and obvious growth inhibition of 4T1-cell xenograft tumors were observed in mice. Taken together, our results show for the first time that emodin-induced telomeric DNA damage can upregulate telomerase activity, which may weaken its anticancer effect. The combined use of emodin and the telomerase inhibitor synergistically induced telomere dysfunction and inhibited tumor generation.
Collapse
|
21
|
G-quadruplex dynamics contribute to regulation of mitochondrial gene expression. Sci Rep 2019; 9:5605. [PMID: 30944353 PMCID: PMC6447596 DOI: 10.1038/s41598-019-41464-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells.
Collapse
|
22
|
Naphthalene Diimides as Multimodal G-Quadruplex-Selective Ligands. Molecules 2019; 24:molecules24030426. [PMID: 30682828 PMCID: PMC6384834 DOI: 10.3390/molecules24030426] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 02/03/2023] Open
Abstract
G-quadruplexes are four-stranded nucleic acids structures that can form in guanine-rich sequences. Following the observation that G-quadruplexes are particularly abundant in genomic regions related to cancer, such as telomeres and oncogenes promoters, several G-quadruplex-binding molecules have been developed for therapeutic purposes. Among them, naphthalene diimide derivatives have reported versatility, consistent selectivity and high affinity toward the G-quadruplex structures. In this review, we present the chemical features, synthesis and peculiar optoelectronic properties (absorption, emission, redox) that make naphtalene diimides so versatile for biomedical applications. We present the latest developments on naphthalene diimides as G-quadruplex ligands, focusing on their ability to bind G-quadruplexes at telomeres and oncogene promoters with consequent anticancer activity. Their different binding modes (reversible versus irreversible/covalent) towards G-quadruplexes and their additional use as antimicrobial agents are also presented and discussed.
Collapse
|
23
|
Assani G, Xiong Y, Zhou F, Zhou Y. Effect of therapies-mediated modulation of telomere and/or telomerase on cancer cells radiosensitivity. Oncotarget 2018; 9:35008-35025. [PMID: 30405890 PMCID: PMC6201854 DOI: 10.18632/oncotarget.26150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the leading causes of death in the world. Many strategies of cancer treatment such as radiotherapy which plays a key role in cancer treatment are developed and used nowadays. However, the side effects post-cancer radiotherapy and cancer radioresistance are two major causes of the limitation of cancer radiotherapy effectiveness in the cancer patients. Moreover, reduction of the limitation of cancer radiotherapy effectiveness by reducing the side effects post-cancer radiotherapy and cancer radioresistance is the aim of several radiotherapy-oncologic teams. Otherwise, Telomere and telomerase are two cells components which play an important role in cancer initiation, cancer progression and cancer therapy resistance such as radiotherapy resistance. For resolving the problems of the limitation of cancer radiotherapy effectiveness especially the cancer radio-resistance problems, the radio-gene-therapy strategy which is the use of gene-therapy via modulation of gene expression combined with radiotherapy was developed and used as a new strategy to treat the patients with cancer. In this review, we summarized the information concerning the implication of telomere and telomerase modulation in cancer radiosensitivity.
Collapse
Affiliation(s)
- Ganiou Assani
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yudi Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Muoio D, Berardinelli F, Leone S, Coluzzi E, di Masi A, Doria F, Freccero M, Sgura A, Folini M, Antoccia A. Naphthalene diimide-derivatives G-quadruplex ligands induce cell proliferation inhibition, mild telomeric dysfunction and cell cycle perturbation in U251MG glioma cells. FEBS J 2018; 285:3769-3785. [PMID: 30095224 DOI: 10.1111/febs.14628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/30/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
In the present paper, the biological effects of three different naphthalene diimides (NDIs) G-quadruplex (G4) ligands (H-NDI-Tyr, H-NDI-NMe2, and tetra-NDI-NMe2) were comparatively evaluated to those exerted by RHPS4, a well-characterized telomeric G4-ligand, in an in vitro model of glioblastoma. Data indicated that NDIs were very effective in blocking cell proliferation at nanomolar concentrations, although displaying a lower specificity for telomere targeting compared to RHPS4. In addition, differently from RHPS4, NDIs failed to enhance the effect of ionizing radiation, thus suggesting that additional targets other than telomeres could be involved in the strong NDI-mediated anti-proliferative effects. In order to test telomeric off-target action of NDIs, a panel of genes involved in tumor progression, DNA repair, telomere maintenance, and cell-cycle regulation were evaluated at transcriptional and translational level. Specifically, the compounds were able to cause a marked reduction of TERT and BCL2 amounts as well as to favor the accumulation of proteins involved in cell cycle control. A detailed cytofluorimetric analysis of cell cycle progression by means of bromodeoxyuridine (BrdU) incorporation and staining of phospho-histone H3 indicated that NDIs greatly reduce the progression through S-phase and lead to G1 accumulation of BrdU-positive cells. Taken together, these data indicated that, besides effects on telomeres and oncogenes such as Tert and Bcl2, nanomolar concentrations of NDIs determined a sustained block of cell proliferation by slowing down cell cycle progression during S-phase. In conclusion, our data indicate that NDIs G4-ligands are powerful antiproliferative agents, which act through mechanisms that ultimately lead to altered cell-cycle control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marco Folini
- Dipartimento di Ricerca Applicata e Sviluppo Tecnologico, Fondazione IRCCS Istituto Nazionale dei Tumori di MIlano, Milano, Italy
| | | |
Collapse
|
25
|
Piekna-Przybylska D, Maggirwar SB. CD4+ memory T cells infected with latent HIV-1 are susceptible to drugs targeting telomeres. Cell Cycle 2018; 17:2187-2203. [PMID: 30198385 DOI: 10.1080/15384101.2018.1520568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The population of HIV reservoir in infected person is very small, but extremely long-lived and is a major obstacle for an HIV cure. We previously showed that cells with established HIV latency have deficiencies in DNA damage response (DDR). Here, we investigated ability of HIV-1 to interfere with telomere maintenance, and the effects of targeting telomeres on latently infected cells. Our results show that telomeres are elongated in cultured primary memory CD4 + T cells (TCM) after HIV-1 infection and when virus latency is established. Similarly, much longer telomeres were found in several Jurkat-derived latently infected cell lines, indicating that virus stimulates telomere elongation. Exposing primary CD4+ TCM cells to BRACO19, an agent targeting telomeres, resulted in a higher rate of apoptosis for infected cultures at day 3 post-infection, during HIV-1 latency and for PMA-stimulated cultures with low level of HIV-1 reactivation. Importantly, BRACO19 induced apoptosis in infected cells with potency similar to etoposide and camptothecin, whereas uninfected cells were less affected by BRACO19. We also determined that apoptosis induced by BRACO19 is not caused by telomeres shortening, but is related to formation of gamma-H2AX, implicating DNA damage or uncapping of telomeres, which triggers genome instability. In conclusion, our results indicate that HIV-1 stimulates telomere elongation during latency, suggesting that HIV reservoir has greater capacity for clonal expansion and extended lifespan. Higher rates of apoptosis in response to BRACO19 treatment suggest that HIV reservoirs are more susceptible to targeting telomere maintenance and to inhibitors targeting DDR, which is also involved in stabilizing telomeres.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology, School of Medicine and Dentistry , University of Rochester , Rochester , NY , USA
| | - Sanjay B Maggirwar
- a Department of Microbiology and Immunology, School of Medicine and Dentistry , University of Rochester , Rochester , NY , USA
| |
Collapse
|
26
|
Berardinelli F, Sgura A, Facoetti A, Leone S, Vischioni B, Ciocca M, Antoccia A. The G-quadruplex-stabilizing ligand RHPS4 enhances sensitivity of U251MG glioblastoma cells to clinical carbon ion beams. FEBS J 2018; 285:1226-1236. [PMID: 29484821 DOI: 10.1111/febs.14415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/11/2018] [Accepted: 02/19/2018] [Indexed: 11/27/2022]
Abstract
The pentacyclic acridine RHPS4 is a highly potent and specific G-quadruplex (G4) ligand, which binds and stabilizes telomeric G4 leading to the block of the replication forks at telomeres and consequently to telomere dysfunctionalization. In turn, the cell recognizes unprotected telomeres as DNA double-strand breaks with consequent activation of DNA repair response at telomeres, cellular growth impairment, and death. Data from the literature showed the capability of this compound to sensitize U251MG glioblastoma radioresistant cell line to X-rays sparsely ionizing radiations. In the present paper, it was investigated whether RHPS4 is also able to increase the effect of clinical carbon ion beams (cells irradiated in the middle of a spread-out Bragg peak, in the energy range of 246-312 MeV·μm-1 and a dose-averaged linear energy transfer of 46 keV·μm-1 ). Interestingly, also for charged particles whose damage inflicted to DNA is more complex than that of sparsely ionizing radiations and results in higher Relative Biological Effectiveness (RBE), RHPS4 significantly potentiated the radiation effect in terms of cell killing, delayed rejoining of DNA double-strand breaks (γ-H2AX and 53BBP1 immunofluorescence staining), chromosome aberrations (pan-centromeric/telomeric FISH and multicolor FISH), and G2 /M-phase accumulation in GBM cells. Overall, the results provide the first evidence that the combined administration of the G4-ligand RHPS4 with charged particles interfere with cellular processes involved in cell survival leading to radiosensitization of highly radioresistant tumor cells.
Collapse
Affiliation(s)
| | - Antonella Sgura
- Dipartimento Di Scienze, Università Roma Tre, Italy.,INFN Sezione di Roma Tre, Italy
| | | | | | | | | | - Antonio Antoccia
- Dipartimento Di Scienze, Università Roma Tre, Italy.,INFN Sezione di Roma Tre, Italy
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW High-throughput genomic sequencing has identified alterations in the gene encoding human telomerase reverse transcriptase (TERT) as points of interest for elucidating the oncogenic mechanism of multiple different cancer types, including gliomas. In gliomas, the TERT promoter mutation (TPM) and resultant overexpression of TERT are observed mainly in the most aggressive (primary glioblastoma/grade IV astrocytoma) and the least aggressive (grade II oligodendroglioma) cases. This article reviews recent research on (1) the mechanism of TERT activation in glioma, (2) downstream consequences of TERT overexpression on glioma pathogenesis, and (3) targeting TPMs as a therapeutic strategy. RECENT FINDINGS New molecular classifications for gliomas include using TPMs, where the mutant group demonstrates the worst prognosis. Though a canonical function of TERT is established in regard to telomere maintenance, recent studies on non-canonical functions of TERT explore varied roles of telomerase in tumor progression and maintenance. Somatic alterations of the TERT promoter present a promising target for novel therapeutics development in primary glioma treatment.
Collapse
|
28
|
Mulholland K, Siddiquei F, Wu C. Binding modes and pathway of RHPS4 to human telomeric G-quadruplex and duplex DNA probed by all-atom molecular dynamics simulations with explicit solvent. Phys Chem Chem Phys 2018; 19:18685-18694. [PMID: 28696445 DOI: 10.1039/c7cp03313c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RHPS4, a potent binder to human telomeric DNA G-quadruplex, shows high efficacy in tumor cell growth inhibition. However, it's preferential binding to DNA G-quadruplex over DNA duplex (about 10 fold) remains to be improved toward its clinical application. A high resolution structure of the single-stranded telomeric DNA G-quadruplexes, or B-DNA duplex, in complex with RHPS4 is not available yet, and the binding nature of this ligand to these DNA forms remains to be elusive. In this study, we carried out 40 μs molecular dynamics binding simulations with a free ligand to decipher the binding pathway of RHPS4 to a DNA duplex and three G-quadruplex folders (parallel, antiparallel and hybrid) of the human telomeric DNA sequence. The most stable binding mode identified for the duplex, parallel, antiparallel and hybrid G-quadruplexes is an intercalation, bottom stacking, top intercalation and bottom intercalation mode, respectively. The intercalation mode with similar binding strength to both the duplex and the G-quadruplexes, explains the lack of binding selectivity of RHPS4 to the G-quadruplex form. Therefore, a ligand modification that destabilizes the duplex intercalation mode but stabilizes the G-quadruplex intercalation mode will improve the binding selectivity toward G-quadruplex. The intercalation mode of RHPS4 to both the duplex and the antiparallel and the hybrid G-quadruplex follows a base flipping-insertion mechanism rather than an open-insertion mechanism. The groove binding, the side binding and the intercalation with flipping out of base were observed to be intermediate states before the full intercalation state with paired bases.
Collapse
Affiliation(s)
- Kelly Mulholland
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| | | | | |
Collapse
|
29
|
Sim W, Cha J, Choi C, Choi K. Rapid and quantitative measurement of cell adhesion and migration activity by time-series analysis on biomimetic topography. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0625-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Noureini SK, Esmaeili H, Abachi F, Khiali S, Islam B, Kuta M, Saboury AA, Hoffmann M, Sponer J, Parkinson G, Haider S. Selectivity of major isoquinoline alkaloids from Chelidonium majus towards telomeric G-quadruplex: A study using a transition-FRET (t-FRET) assay. Biochim Biophys Acta Gen Subj 2017; 1861:2020-2030. [PMID: 28479277 DOI: 10.1016/j.bbagen.2017.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 04/18/2017] [Accepted: 05/01/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND Natural bioproducts are invaluable resources in drug discovery. Isoquinoline alkaloids of Chelidonium majus constitute a structurally diverse family of natural products that are of great interest, one of them being their selectivity for human telomeric G-quadruplex structure and telomerase inhibition. METHODS The study focuses on the mechanism of telomerase inhibition by stabilization of telomeric G-quadruplex structures by berberine, chelerythrine, chelidonine, sanguinarine and papaverine. Telomerase activity and mRNA levels of hTERT were estimated using quantitative telomere repeat amplification protocol (q-TRAP) and qPCR, in MCF-7 cells treated with different groups of alkaloids. The selectivity of the main isoquinoline alkaloids of Chelidonium majus towards telomeric G-quadruplex forming sequences were explored using a sensitive modified thermal FRET-melting measurement in the presence of the complementary oligonucleotide CT22. We assessed and monitored G-quadruplex topologies using circular dichroism (CD) methods, and compared spectra to previously well-characterized motifs, either alone or in the presence of the alkaloids. Molecular modeling was performed to rationalize ligand binding to the G-quadruplex structure. RESULTS The results highlight strong inhibitory effects of chelerythrine, sanguinarine and berberine on telomerase activity, most likely through substrate sequestration. These isoquinoline alkaloids interacted strongly with telomeric sequence G-quadruplex. In comparison, chelidonine and papaverine had no significant interaction with the telomeric quadruplex, while they strongly inhibited telomerase at transcription level of hTERT. Altogether, all of the studied alkaloids showed various levels and mechanisms of telomerase inhibition. CONCLUSIONS We report on a comparative study of anti-telomerase activity of the isoquinoline alkaloids of Chelidonium majus. Chelerythrine was most effective in inhibiting telomerase activity by substrate sequesteration through G-quadruplex stabilization. GENERAL SIGNIFICANCE Understanding structural and molecular mechanisms of anti-cancer agents can help in developing new and more potent drugs with fewer side effects. Isoquinolines are the most biologically active agents from Chelidonium majus, which have shown to be telomeric G-quadruplex stabilizers and potent telomerase inhibitors.
Collapse
Affiliation(s)
- Sakineh Kazemi Noureini
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, P.O.Box: 397, Sabzevar, Iran.
| | - Hosein Esmaeili
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, P.O.Box: 397, Sabzevar, Iran
| | - Farzane Abachi
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, P.O.Box: 397, Sabzevar, Iran
| | - Soraia Khiali
- UCL School of Pharmacy, Brunswick Square, London, UK
| | - Barira Islam
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | | | - Ali A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Brno, Czech Republic
| | | | - Shozeb Haider
- UCL School of Pharmacy, Brunswick Square, London, UK.
| |
Collapse
|
31
|
Berardinelli F, Coluzzi E, Sgura A, Antoccia A. Targeting telomerase and telomeres to enhance ionizing radiation effects in in vitro and in vivo cancer models. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:204-219. [PMID: 28927529 DOI: 10.1016/j.mrrev.2017.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/05/2023]
Abstract
One of the hallmarks of cancer consists in the ability of tumor cells to divide indefinitely, and to maintain stable telomere lengths throughout the activation of specific telomere maintenance mechanisms (TMM). Therefore in the last fifteen years, researchers proposed to target telomerase or telomeric structure in order to block limitless replicative potential of cancer cells providing a fascinating strategy for a broad-spectrum cancer therapy. In the present review, we report in vitro and in vivo evidence regarding the use of chemical agents targeting both telomerase or telomere structure and showing promising antitumor effects when used in combination with ionizing radiation (IR). RNA interference, antisense oligonucleotides (e.g., GRN163L), non-nucleoside inhibitors (e.g., BIBR1532) and nucleoside analogs (e.g., AZT) represent some of the most potent strategies to inhibit telomerase activity used in combination with IR. Furthermore, radiosensitizing effects were demonstrated also for agents acting directly on the telomeric structure such as G4-ligands (e.g., RHPS4 and Telomestatin) or telomeric-oligos (T-oligos). To date, some of these compounds are under clinical evaluation (e.g., GRN163L and KML001). Advantages of Telomere/Telomerase Targeting Compounds (T/TTCs) coupled with radiotherapy may be relevant in the treatment of radioresistant tumors and in the development of new optimized treatment plans with reduced dose adsorbed by patients and consequent attenuation of short- end long-term side effects. Pros and cons of possible future applications in cancer therapy based on the combination of T/TCCs and radiation treatment are discussed.
Collapse
Affiliation(s)
- F Berardinelli
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy.
| | - E Coluzzi
- Dipartimento di Scienze, Università Roma Tre, Rome Italy
| | - A Sgura
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy
| | - A Antoccia
- Dipartimento di Scienze, Università Roma Tre, Rome Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Roma Tre, Rome, Italy
| |
Collapse
|
32
|
Kiran KG, Thandeeswaran M, Ayub Nawaz KA, Easwaran M, Jayagopi KK, Ebrahimi L, Palaniswamy M, Mahendran R, Angayarkanni J. Quinazoline derivative from indigenous isolate, Nocardiopsis alba inhibits human telomerase enzyme. J Appl Microbiol 2016; 121:1637-1652. [PMID: 27567126 DOI: 10.1111/jam.13281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/06/2016] [Accepted: 08/08/2016] [Indexed: 01/30/2023]
Abstract
AIM Aim of this study was isolation and screening of various secondary metabolites produced by indigenous isolates of soil Actinomycetes for human telomerase inhibitory activity. METHODS AND RESULTS Extracellular extract from culture suspension of various soil Actinomycetes species were tested for telomerase inhibitory activity. The organism which produced telomerase inhibitor was identified by 16S rRNA gene sequencing. The active fraction was purified by HPLC and analysed by GC-MS to identify the compound. In GC-MS analysis, the active principle was identified as 3-[4'-(2″-chlorophenyl)-2'-thiazolyl]-2,4-dioxo-1,2,3,4-tetrahydro quinazoline. The G-quadruplex stabilizing ability of the compound was checked by molecular docking and simulation experiments with G-quadruplex model (PDB ID-1L1H). The selective binding ability of the compound with G-quadruplex over Dickerson-Drew dodecamer DNA structures showed that the compound possess high selectivity towards G-quadruplex. CONCLUSIONS Quinazoline derivative isolated from an indigenous strain of Nocardiopsis alba inhibited telomerase. Molecular docking and simulation studies predicted that this compound is a strong stabilizer of G-quadruplex conformation. It also showed a preferable binding to G-quadruplex DNA over normal DNA duplex. SIGNIFICANCE AND IMPACT OF THE STUDY This particular compound can be suggested as a suitable compound for developing a future anticancer drug. The selectivity towards G-quadruplex over normal DNA duplex gives a clue that it is likely to show lower cytotoxicity in normal cells.
Collapse
Affiliation(s)
- K G Kiran
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - M Thandeeswaran
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - K A Ayub Nawaz
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - M Easwaran
- Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - K K Jayagopi
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - L Ebrahimi
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - M Palaniswamy
- School of Life Science, Karpagam University, Coimbatore, India
| | - R Mahendran
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - J Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
33
|
Xu Y, Goldkorn A. Telomere and Telomerase Therapeutics in Cancer. Genes (Basel) 2016; 7:genes7060022. [PMID: 27240403 PMCID: PMC4929421 DOI: 10.3390/genes7060022] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022] Open
Abstract
Telomerase is a reverse transcriptase capable of utilizing an integrated RNA component as a template to add protective tandem telomeric single strand DNA repeats, TTAGGG, to the ends of chromosomes. Telomere dysfunction and telomerase reactivation are observed in approximately 90% of human cancers; hence, telomerase activation plays a unique role as a nearly universal step on the path to malignancy. In the past two decades, multiple telomerase targeting therapeutic strategies have been pursued, including direct telomerase inhibition, telomerase interference, hTERT or hTERC promoter driven therapy, telomere-based approaches, and telomerase vaccines. Many of these strategies have entered clinical development, and some have now advanced to phase III clinical trials. In the coming years, one or more of these new telomerase-targeting drugs may be expected to enter the pharmacopeia of standard care. Here, we briefly review the molecular functions of telomerase in cancer and provide an update about the preclinical and clinical development of telomerase targeting therapeutics.
Collapse
Affiliation(s)
- Yucheng Xu
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
34
|
Platinum(II) phenanthroimidazole G-quadruplex ligand induces selective telomere shortening in A549 cancer cells. Biochimie 2015; 121:287-97. [PMID: 26724375 DOI: 10.1016/j.biochi.2015.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/23/2015] [Indexed: 11/21/2022]
Abstract
Telomere maintenance, achieved by the binding of protective shelterin capping proteins to telomeres and by either telomerase or a recombination-based alternative lengthening of telomere (ALT) mechanism, is critical for cell proliferation and survival. Extensive telomere shortening or loss of telomere integrity activates DNA damage checkpoints, leading to cell senescence or death. Although telomerase upregulation is an attractive target for anti-cancer therapy, the lag associated with telomere shortening and the potential activation of ALT pose a challenge. An alternative approach is to modify telomere interactions with binding proteins (telomere uncapping). G-quadruplex ligands stabilize structures generated from single-stranded G-rich 3'-telomere end (G-quadruplex) folding, which in principle, cannot be elongated by telomerase, thus leading to telomere shortening. Ligands can also mediate rapid anti-proliferative effects by telomere uncapping. We previously reported that the G-quadruplex ligand, phenylphenanthroimidazole ethylenediamine platinum(II) (PIP), inhibits telomerase activity in vitro[47]. In the current study, a long-term seeding assay showed that PIP significantly inhibited the seeding capacity of A549 lung cancer cells and to a lesser extent primary MRC5 fibroblast cells. Importantly, treatment with PIP caused a significant dose- and time-dependent decrease in average telomere length of A549 but not MRC5 cells. Moreover, cell cycle analysis revealed a significant increase in G1 arrest upon treatment of A549 cells, but not MRC5 cells. Both apoptosis and cellular senescence may contribute to the anti-proliferative effects of PIP. Our studies validate the development of novel and specific therapeutic ligands targeting telomeric G-quadruplex structures in cancer cells.
Collapse
|
35
|
Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound. Sci Rep 2015; 5:16255. [PMID: 26542881 PMCID: PMC4635363 DOI: 10.1038/srep16255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/12/2015] [Indexed: 12/24/2022] Open
Abstract
Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications.
Collapse
|
36
|
Zizza P, Cingolani C, Artuso S, Salvati E, Rizzo A, D'Angelo C, Porru M, Pagano B, Amato J, Randazzo A, Novellino E, Stoppacciaro A, Gilson E, Stassi G, Leonetti C, Biroccio A. Intragenic G-quadruplex structure formed in the human CD133 and its biological and translational relevance. Nucleic Acids Res 2015; 44:1579-90. [PMID: 26511095 PMCID: PMC4770210 DOI: 10.1093/nar/gkv1122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/14/2015] [Indexed: 11/14/2022] Open
Abstract
Cancer stem cells (CSCs) have been identified in several solid malignancies and are now emerging as a plausible target for drug discovery. Beside the questionable existence of CSCs specific markers, the expression of CD133 was reported to be responsible for conferring CSC aggressiveness. Here, we identified two G-rich sequences localized within the introns 3 and 7 of the CD133 gene able to form G-quadruplex (G4) structures, bound and stabilized by small molecules. We further showed that treatment of patient-derived colon CSCs with G4-interacting agents triggers alternative splicing that dramatically impairs the expression of CD133. Interestingly, this is strongly associated with a loss of CSC properties, including self-renewing, motility, tumor initiation and metastases dissemination. Notably, the effects of G4 stabilization on some of these CSC properties are uncoupled from DNA damage response and are fully recapitulated by the selective interference of the CD133 expression.In conclusion, we provided the first proof of the existence of G4 structures within the CD133 gene that can be pharmacologically targeted to impair CSC aggressiveness. This discloses a class of potential antitumoral agents capable of targeting the CSC subpopulation within the tumoral bulk.
Collapse
Affiliation(s)
- Pasquale Zizza
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Chiara Cingolani
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Simona Artuso
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Erica Salvati
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Angela Rizzo
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Carmen D'Angelo
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Manuela Porru
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Antonella Stoppacciaro
- Dipartimento di Medicina Clinica e Molecolare, Università 'La Sapienza', piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Eric Gilson
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, University of Nice, 06107 Nice, France
| | - Giorgio Stassi
- Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, 06202 Nice cedex 3, France
| | - Carlo Leonetti
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Annamaria Biroccio
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| |
Collapse
|