1
|
Balint E, Unk I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Int J Mol Sci 2023; 25:363. [PMID: 38203535 PMCID: PMC10779026 DOI: 10.3390/ijms25010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
DNA polymerases constitute a versatile group of enzymes that not only perform the essential task of genome duplication but also participate in various genome maintenance pathways, such as base and nucleotide excision repair, non-homologous end-joining, homologous recombination, and translesion synthesis. Polymerases catalyze DNA synthesis via the stepwise addition of deoxynucleoside monophosphates to the 3' primer end in a partially double-stranded DNA. They require divalent metal cations coordinated by active site residues of the polymerase. Mg2+ is considered the likely physiological activator because of its high cellular concentration and ability to activate DNA polymerases universally. Mn2+ can also activate the known DNA polymerases, but in most cases, it causes a significant decrease in fidelity and/or processivity. Hence, Mn2+ has been considered mutagenic and irrelevant during normal cellular function. Intriguingly, a growing body of evidence indicates that Mn2+ can positively influence some DNA polymerases by conferring translesion synthesis activity or altering the substrate specificity. Here, we review the relevant literature focusing on the impact of Mn2+ on the biochemical activity of a selected set of polymerases, namely, Polβ, Polλ, and Polµ, of the X family, as well as Polι and Polη of the Y family of polymerases, where congruous data implicate the physiological relevance of Mn2+ in the cellular function of these enzymes.
Collapse
Affiliation(s)
| | - Ildiko Unk
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
2
|
Maltseva EA, Rechkunova NI, Lavrik OI. Non-Catalytic Domains of DNA Polymerase λ: Influence on Enzyme Activity and Its Regulation. DOKL BIOCHEM BIOPHYS 2023; 512:245-250. [PMID: 38093124 PMCID: PMC10719123 DOI: 10.1134/s1607672923700382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 12/17/2023]
Abstract
DNA polymerase λ (Polλ) belongs to the same structural X-family as DNA polymerase β, the main polymerase of base excision repair. The role of Polλ in this process remains not fully understood. A significant difference between the two DNA polymerases is the presence of an extended non-catalytic N-terminal region in the Polλ structure. The influence of this region on the interaction of Polλ with DNA and multifunctional proteins, poly(ADP-ribose)polymerase 1 (PARP1) and replication protein A (RPA), was studied in detail for the first time. The data obtained suggest that non-catalytic Polλ domains play a suppressor role both in relation to the polymerase activity of the enzyme and in interaction with DNA and PARP1.
Collapse
Affiliation(s)
- E A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
3
|
Endutkin AV, Yudkina AV, Zharkov TD, Kim DV, Zharkov DO. Recognition of a Clickable Abasic Site Analog by DNA Polymerases and DNA Repair Enzymes. Int J Mol Sci 2022; 23:ijms232113353. [PMID: 36362137 PMCID: PMC9655677 DOI: 10.3390/ijms232113353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Azide–alkyne cycloaddition (“click chemistry”) has found wide use in the analysis of molecular interactions in living cells. 5-ethynyl-2-(hydroxymethyl)tetrahydrofuran-3-ol (EAP) is a recently developed apurinic/apyrimidinic (AP) site analog functionalized with an ethynyl moiety, which can be introduced into cells in DNA constructs to perform labeling or cross-linking in situ. However, as a non-natural nucleoside, EAP could be subject to removal by DNA repair and misreading by DNA polymerases. Here, we investigate the interaction of this clickable AP site analog with DNA polymerases and base excision repair enzymes. Similarly to the natural AP site, EAP was non-instructive and followed the “A-rule”, directing residual but easily detectable incorporation of dAMP by E. coli DNA polymerase I Klenow fragment, bacteriophage RB69 DNA polymerase and human DNA polymerase β. On the contrary, EAP was blocking for DNA polymerases κ and λ. EAP was an excellent substrate for the major human AP endonuclease APEX1 and E. coli AP exonucleases Xth and Nfo but was resistant to the AP lyase activity of DNA glycosylases. Overall, our data indicate that EAP, once within a cell, would represent a replication block and would be removed through an AP endonuclease-initiated long-patch base excision repair pathway.
Collapse
Affiliation(s)
- Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Correspondence: (A.V.E.); (D.O.Z.)
| | - Anna V. Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Timofey D. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Daria V. Kim
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
- Correspondence: (A.V.E.); (D.O.Z.)
| |
Collapse
|
4
|
Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:852002. [PMID: 35846567 PMCID: PMC9279898 DOI: 10.3389/fncel.2022.852002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Most of the neurodegenerative diseases and aging are associated with reactive oxygen species (ROS) or other intracellular damaging agents that challenge the genome integrity of the neurons. As most of the mature neurons stay in G0/G1 phase, replication-uncoupled DNA repair pathways including BER, NER, SSBR, and NHEJ, are pivotal, efficient, and economic mechanisms to maintain genomic stability without reactivating cell cycle. In these progresses, polymerases are prominent, not only because they are responsible for both sensing and repairing damages, but also for their more diversified roles depending on the cell cycle phase and damage types. In this review, we summarized recent knowledge on the structural and biochemical properties of distinct polymerases, including DNA and RNA polymerases, which are known to be expressed and active in nervous system; the biological relevance of these polymerases and their interactors with neuronal degeneration would be most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair; furthermore, the vicious cycle of the trinucleotide repeat (TNR) and impaired DNA repair pathway is also discussed. Unraveling the mechanisms and contextual basis of the role of the polymerases in DNA damage response and repair will promote our understanding about how long-lived postmitotic cells cope with DNA lesions, and why disrupted DNA repair contributes to disease origin, despite the diversity of mutations in genes. This knowledge may lead to new insight into the development of targeted intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Xiaoling Li
| | - Guanghui Cao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaokang Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Caixia Guo
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- *Correspondence: Caixia Guo
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Hongmei Liu
| |
Collapse
|
5
|
Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Int J Mol Sci 2022; 23:ijms23126373. [PMID: 35742812 PMCID: PMC9224347 DOI: 10.3390/ijms23126373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
DNA polymerases catalyze DNA synthesis during the replication, repair, and recombination of DNA. Based on phylogenetic analysis and primary protein sequences, DNA polymerases have been categorized into seven families: A, B, C, D, X, Y, and RT. This review presents generalized data on the catalytic mechanism of action of DNA polymerases. The structural features of different DNA polymerase families are described in detail. The discussion highlights the kinetics and conformational dynamics of DNA polymerases from all known polymerase families during DNA synthesis.
Collapse
|
6
|
Fugger K, Hewitt G, West SC, Boulton SJ. Tackling PARP inhibitor resistance. Trends Cancer 2021; 7:1102-1118. [PMID: 34563478 DOI: 10.1016/j.trecan.2021.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Homologous recombination-deficient (HRD) tumours, including those harbouring mutations in the BRCA genes, are hypersensitive to treatment with inhibitors of poly(ADP-ribose) polymerase (PARPis). Despite high response rates, most HRD cancers ultimately develop resistance to PARPi treatment through reversion mutations or genetic/epigenetic alterations to DNA repair pathways. Counteracting these resistance pathways, thereby increasing the potency of PARPi therapy, represents a potential strategy to improve the treatment of HRD cancers. In this review, we discuss recent insights derived from genetic screens that have identified a number of novel genes that can be targeted to improve PARPi treatment of HRD cancers and may provide a means to overcome PARPi resistance.
Collapse
Affiliation(s)
- Kasper Fugger
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Graeme Hewitt
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Artios Pharma Ltd. B940, Babraham Research Campus, Cambridge, CB22 3FH, UK.
| |
Collapse
|
7
|
Yuhas SC, Majumdar A, Greenberg MM. Protein Domain Specific Covalent Inhibition of Human DNA Polymerase β. Chembiochem 2021; 22:2619-2623. [PMID: 34213836 PMCID: PMC8373715 DOI: 10.1002/cbic.202100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/01/2021] [Indexed: 11/10/2022]
Abstract
DNA polymerase β (Pol β) is a frequently overexpressed and/or mutated bifunctional repair enzyme. Pol β possesses polymerase and lyase active sites, that are employed in two steps of base excision repair. Pol β is an attractive therapeutic target for which there is a need for inhibitors. Two mechanistically inspired covalent inhibitors (1, IC50 =21.0 μM; 9, IC50 =18.7 μM) that modify lysine residues in different Pol β active sites are characterized. Despite modifying lysine residues in different active sites, 1 and 9 inactivate the polymerase and lyase activities of Pol β. Fluorescence anisotropy experiments indicate that they do so by preventing DNA binding. Inhibitors 1 and 9 provide the basis for a general approach to preparing domain selective inhibitors of bifunctional polymerases. Such molecules could prove to be useful tools for studying the role of wild type and mutant forms of Pol β and other polymerases in DNA repair.
Collapse
Affiliation(s)
- Shelby C. Yuhas
- Department of ChemistryJohns Hopkins University3400N. Charles St.BaltimoreMD 21218USA
| | - Ananya Majumdar
- Biomolecular NMR CenterJohns Hopkins UniversityBaltimoreMD 21218USA
| | - Marc M. Greenberg
- Department of ChemistryJohns Hopkins University3400N. Charles St.BaltimoreMD 21218USA
| |
Collapse
|
8
|
He Z, Xian H, Tang M, Chen Y, Lian Z, Fang D, Peng X, Hu D. DNA polymerase β may be involved in protecting human bronchial epithelial cells from the toxic effects induced by methyl tert-butyl ether exposure. Hum Exp Toxicol 2021; 40:2135-2144. [PMID: 34121485 DOI: 10.1177/09603271211022788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methyl tert-butyl ether (MTBE), a widely used gasoline additive and a ubiquitous environmental pollutant in many countries and regions, can cause various kinds of toxic effects on human health. However, the molecular mechanism underlying its toxic effects remains elusive. The present study aimed to explore the cytotoxicity, DNA damage and oxidative damage effects of MTBE on human bronchial epithelial cells (16HBE) and the possible role of DNA polymerase β (pol-β) in this process. RNA interference (RNAi) was used to obtain pol-β gene knocked-down cells (pol-β-). CCK-8 assay was adopted to analyze the cell viability. Alkaline single-cell gel electrophoresis (SCGE) was performed to detect the DNA damage effects of MTBE. The enzyme activity of GSH-Px, SOD, CAT and the level of MDA were assessed. The data indicated that when treated with MTBE at the concentration exceeding 50 μmol/L and for the time exceeding 24 h, the pol-β- exhibited significantly decreased cell viability and increased DNA damage effects, as compared to the control (P < 0.05). Furthermore, there was significant difference in the levels of GSH-pX, SOD, CAT and MDA between the pol-β- and the control (P < 0.05). Our investigation suggests that MTBE can cause obvious cytotoxicity, DNA damage and oxidative damage effects on 16HBE cells. DNA polymerase β may be involved in protecting 16HBE cells from the toxic effects induced by MTBE exposure. These findings provide a novel insight into the molecular mechanism underlying the toxic effects of MTBE on human cells.
Collapse
Affiliation(s)
- Z He
- Shiyan Institute of Preventive Medicine and Health Care, Baoan District, Shenzhen City, People's Republic of China.,Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - H Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - M Tang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Y Chen
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Z Lian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - D Fang
- Department of Environmental Health, Center for Disease Control and Prevention of Shenzhen City, Shenzhen, People's Republic of China
| | - X Peng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, People's Republic of China
| | - D Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
A Multifunctional Protein PolDIP2 in DNA Translesion Synthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:35-45. [PMID: 32383114 DOI: 10.1007/978-3-030-41283-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Polymerase δ-interacting protein 2 (PolDIP2) is involved in the multiple protein-protein interactions and plays roles in many cellular processes including regulation of the nuclear redox environment, organization of the mitotic spindle and chromosome segregation, pre-mRNA processing, mitochondrial morphology and functions, cell migration and cellular adhesion. PolDIP2 is also a binding partner of high-fidelity DNA polymerase delta, PCNA and a number of translesion and repair DNA polymerases. The growing evidence suggests that PolDIP2 is a general regulatory protein in DNA damage response. However PolDIP2 functions in DNA translesion synthesis and repair are not fully understood. In this review, we address the functional interaction of PolDIP2 with human DNA polymerases and discuss the possible functions in DNA damage response.
Collapse
|
10
|
Wu Q, Tian W, Yu H, Huang C, Jiao P, Ma C, Wang Y, Huang W, Sun Y, Ai B, Tong H. [Genetic Mutation Screening of DNA Polymerase in Human Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:427-432. [PMID: 31315781 PMCID: PMC6712269 DOI: 10.3779/j.issn.1009-3419.2019.07.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND DNA polymerase β is one of the key enzymes for DNA repair and it was reported that about 30 percent of different types of cancers carried mutations in its coding gene Polb. However, it is still controversial whether it is true or false because of the small sample size in these studies. In current study, we performed genetic screening of promoter and coding regions of Polb gene in 69 Chinese lung cancer patients using Sanger sequencing method, so as to elucidate real mutation frequency of Polb mutations in Chinese Han population. METHODS Salting out extraction method was used to get the genome DNAs from tumor and normal matched tissues of 69 lung cancer patients. The promoter and 14 coding regions of Polb gene were then amplified using these DNAs as the template. After purification, amplicons were sequenced and aligned to the wild type Polb gene in NCBI database, in order to find out the mutated sites of Polb gene in Chinese lung cancer patients. RESULTS In this study, we totally found only 5 mutated sites in Polb gene. In detail, 3 mutations (-196G>T, -188_-187insCGCCC, -168C>A) were located in the promoter region; 2 mutations (587C>G, 612A>T) were found in coding regions. Specially, mutations of -188_-187insCGCCC and 587C>G (resulting to the amino acid substitution of Thr to Ser at position 196) had never been reported by other groups before. However, all these 5 mutated sites could be detected in both tumor and matched normal tissues, which inferred that they are not lung tumor specific mutations. CONCLUSIONS No lung tumor specific mutations of Polb gene could be found in Chinese lung cancer patients and Polb gene mutation might not be a molecular marker for Chinese lung cancer patients.
Collapse
Affiliation(s)
- Qingjun Wu
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology,
Beijing 100730, China
| | - Wenxin Tian
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology,
Beijing 100730, China
| | - Hanbo Yu
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology,
Beijing 100730, China
| | - Chuan Huang
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology,
Beijing 100730, China
| | - Peng Jiao
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology,
Beijing 100730, China
| | - Chao Ma
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology,
Beijing 100730, China
| | - Yongzhong Wang
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology,
Beijing 100730, China
| | - Wen Huang
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology,
Beijing 100730, China
| | - Yaoguang Sun
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology,
Beijing 100730, China
| | - Bin Ai
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology,
Beijing 100730, China
| | - Hongfeng Tong
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology,
Beijing 100730, China
| |
Collapse
|
11
|
The Pol β variant containing exon α is deficient in DNA polymerase but has full dRP lyase activity. Sci Rep 2019; 9:9928. [PMID: 31289286 PMCID: PMC6616571 DOI: 10.1038/s41598-019-45846-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
DNA polymerase (Pol) β is a key enzyme in base excision repair (BER), an important repair system for maintaining genomic integrity. We previously reported the presence of a Pol β transcript containing exon α (105-nucleotide) in normal and colon cancer cell lines. The transcript carried an insertion between exons VI and VII and was predicted to encode a ~42 kDa variant of the wild-type 39 kDa enzyme. However, little is known about the biochemical properties of the exon α-containing Pol β (exon α Pol β) variant. Here, we first obtained evidence indicating expression of the 42 kDa exon α Pol β variant in mouse embryonic fibroblasts. The exon α Pol β variant was then overexpressed in E. coli, purified, and characterized for its biochemical properties. Kinetic studies of exon α Pol β revealed that it is deficient in DNA binding to gapped DNA, has strongly reduced polymerase activity and higher Km for dNTP during gap-filling. On the other hand, the 5'-dRP lyase activity of the exon α Pol β variant is similar to that of wild-type Pol β. These results indicate the exon α Pol β variant is base excision repair deficient, but does conduct 5'-trimming of a dRP group at the gap margin. Understanding the biological implications of this Pol β variant warrants further investigation.
Collapse
|
12
|
Abstract
7,8-Dihydro-8-oxoguanine (oxoG) is the most abundant oxidative DNA lesion with dual coding properties. It forms both Watson–Crick (anti)oxoG:(anti)C and Hoogsteen (syn)oxoG:(anti)A base pairs without a significant distortion of a B-DNA helix. DNA polymerases bypass oxoG but the accuracy of nucleotide incorporation opposite the lesion varies depending on the polymerase-specific interactions with the templating oxoG and incoming nucleotides. High-fidelity replicative DNA polymerases read oxoG as a cognate base for A while treating oxoG:C as a mismatch. The mutagenic effects of oxoG in the cell are alleviated by specific systems for DNA repair and nucleotide pool sanitization, preventing mutagenesis from both direct DNA oxidation and oxodGMP incorporation. DNA translesion synthesis could provide an additional protective mechanism against oxoG mutagenesis in cells. Several human DNA polymerases of the X- and Y-families efficiently and accurately incorporate nucleotides opposite oxoG. In this review, we address the mutagenic potential of oxoG in cells and discuss the structural basis for oxoG bypass by different DNA polymerases and the mechanisms of the recognition of oxoG by DNA glycosylases and dNTP hydrolases.
Collapse
|
13
|
Thapar U, Demple B. Deployment of DNA polymerases beta and lambda in single-nucleotide and multinucleotide pathways of mammalian base excision DNA repair. DNA Repair (Amst) 2019; 76:11-19. [PMID: 30763888 DOI: 10.1016/j.dnarep.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/08/2019] [Accepted: 02/01/2019] [Indexed: 11/17/2022]
Abstract
There exist two major base excision DNA repair (BER) pathways, namely single-nucleotide or "short-patch" (SP-BER), and "long-patch" BER (LP-BER). Both pathways appear to be involved in the repair of small base lesions such as uracil, abasic sites and oxidized bases. In addition to DNA polymerase β (Polβ) as the main BER enzyme for repair synthesis, there is evidence for a minor role for DNA polymerase lambda (Polλ) in BER. In this study we explore the potential contribution of Polλ to both SP- and LP-BER in cell-free extracts. We measured BER activity in extracts of mouse embryonic fibroblasts using substrates with either a single uracil or the chemically stable abasic site analog tetrahydrofuran residue. The addition of purified Polλ complemented the pronounced BER deficiency of POLB-null cell extracts as efficiently as did Polβ itself. We have developed a new approach for determining the relative contributions of SP- and LP-BER pathways, exploiting mass-labeled nucleotides to distinguish single- and multinucleotide repair patches. Using this method, we found that uracil repair in wild-type and in Polβ-deficient cell extracts supplemented with Polλ was ∼80% SP-BER. The results show that recombinant Polλ can contribute to both SP- and LP-BER. However, endogenous Polλ, which is present at a level ˜50% that of Polβ in mouse embryonic fibroblasts, appears to make little contribution to BER in extracts. Thus Polλ in cells appears to be under some constraint, perhaps sequestered in a complex with other proteins, or post-translationally modified in a way that limits its ability to participate effectively in BER.
Collapse
Affiliation(s)
- Upasna Thapar
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, United States; Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, 11794, United States
| | - Bruce Demple
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, United States; Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, 11794, United States.
| |
Collapse
|
14
|
Laverty DJ, Mortimer IP, Greenberg MM. Mechanistic Insight through Irreversible Inhibition: DNA Polymerase θ Uses a Common Active Site for Polymerase and Lyase Activities. J Am Chem Soc 2018; 140:9034-9037. [PMID: 29998737 PMCID: PMC6085753 DOI: 10.1021/jacs.8b04158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA polymerase θ (Pol θ) is a multifunctional enzyme. It is nonessential in normal cells, but its upregulation in cancer cells correlates with cellular resistance to oxidative damage and poor prognosis. Pol θ possesses polymerase activity and poorly characterized lyase activity. We examined the Pol θ lyase activity on various abasic sites and determined that the enzyme is inactivated upon attempted removal of the oxidized abasic site commonly associated with C4'-oxidation (pC4-AP). Covalent modification of Pol θ by the DNA lesion enabled determination of the primary nucleophile (Lys2383) responsible for Schiff base formation in the lyase reaction. Unlike some other base excision repair polymerases, Pol θ uses a single active site for polymerase and lyase activity. Mutation of Lys2383 significantly reduces both enzyme activities but not DNA binding. Demonstration that Lys2383 is required for polymerase and lyase activities indicates that this residue is an Achilles heel for Pol θ and suggests a path forward for designing inhibitors of this attractive anticancer target.
Collapse
Affiliation(s)
- Daniel J. Laverty
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218
| | - Ifor P. Mortimer
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218
| |
Collapse
|
15
|
Variable termination sites of DNA polymerases encountering a DNA-protein cross-link. PLoS One 2018; 13:e0198480. [PMID: 29856874 PMCID: PMC5983568 DOI: 10.1371/journal.pone.0198480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 11/19/2022] Open
Abstract
DNA-protein cross-links (DPCs) are important DNA lesions induced by endogenous crosslinking agents such as formaldehyde or acetaldehyde, as well as ionizing radiation, cancer chemotherapeutic drugs, and abortive action of some enzymes. Due to their very bulky nature, they are expected to interfere with DNA and RNA synthesis and DNA repair. DPCs are highly genotoxic and the ability of cells to deal with them is relevant for many chemotherapeutic interventions. However, interactions of DNA polymerases with DPCs have been poorly studied due to the lack of a convenient experimental model. We have used NaBH4-induced trapping of E. coli formamidopyrimidine-DNA glycosylase with DNA to construct model DNA polymerase substrates containing a DPC in single-stranded template, or in the template strand of double-stranded DNA, or in the non-template (displaced) strand of double-stranded DNA. Nine DNA polymerases belonging to families A, B, X, and Y were studied with respect to their behavior upon encountering a DPC: Klenow fragment of E. coli DNA polymerase I, Thermus aquaticus DNA polymerase I, Pyrococcus furiosus DNA polymerase, Sulfolobus solfataricus DNA polymerase IV, human DNA polymerases β, κ and λ, and DNA polymerases from bacteriophages T4 and RB69. Although none were able to fully bypass DPCs in any context, Family B DNA polymerases (T4, RB69) and Family Y DNA polymerase IV were able to elongate the primer up to the site of the cross-link if a DPC was located in single-stranded template or in the displaced strand. In other cases, DNA synthesis stopped 4-5 nucleotides before the site of the cross-link in single-stranded template or in double-stranded DNA if the polymerases could displace the downstream strand. We suggest that termination of DNA polymerases on a DPC is mostly due to the unrelieved conformational strain experienced by the enzyme when pressing against the cross-linked protein molecule.
Collapse
|
16
|
Polyzos AA, McMurray CT. Close encounters: Moving along bumps, breaks, and bubbles on expanded trinucleotide tracts. DNA Repair (Amst) 2017; 56:144-155. [PMID: 28690053 PMCID: PMC5558859 DOI: 10.1016/j.dnarep.2017.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expansion of simple triplet repeats (TNR) underlies more than 30 severe degenerative diseases. There is a good understanding of the major pathways generating an expansion, and the associated polymerases that operate during gap filling synthesis at these "difficult to copy" sequences. However, the mechanism by which a TNR is repaired depends on the type of lesion, the structural features imposed by the lesion, the assembled replication/repair complex, and the polymerase that encounters it. The relationships among these parameters are exceptionally complex and how they direct pathway choice is poorly understood. In this review, we consider the properties of polymerases, and how encounters with GC-rich or abnormal structures might influence polymerase choice and the success of replication and repair. Insights over the last three years have highlighted new mechanisms that provide interesting choices to consider in protecting genome stability.
Collapse
Affiliation(s)
- Aris A Polyzos
- MBIB Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, United States
| | - Cynthia T McMurray
- MBIB Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, United States.
| |
Collapse
|
17
|
Boldinova EO, Wanrooij PH, Shilkin ES, Wanrooij S, Makarova AV. DNA Damage Tolerance by Eukaryotic DNA Polymerase and Primase PrimPol. Int J Mol Sci 2017; 18:E1584. [PMID: 28754021 PMCID: PMC5536071 DOI: 10.3390/ijms18071584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 12/31/2022] Open
Abstract
PrimPol is a human deoxyribonucleic acid (DNA) polymerase that also possesses primase activity and is involved in DNA damage tolerance, the prevention of genome instability and mitochondrial DNA maintenance. In this review, we focus on recent advances in biochemical and crystallographic studies of PrimPol, as well as in identification of new protein-protein interaction partners. Furthermore, we discuss the possible functions of PrimPol in both the nucleus and the mitochondria.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Paulina H Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden.
| | - Evgeniy S Shilkin
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden.
| | - Alena V Makarova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| |
Collapse
|
18
|
Rudra A, Hou D, Zhang Y, Coulter J, Zhou H, DeWeese TL, Greenberg MM. Bromopyridone Nucleotide Analogues, Anoxic Selective Radiosensitizing Agents That Are Incorporated in DNA by Polymerases. J Org Chem 2015; 80:10675-85. [PMID: 26509218 DOI: 10.1021/acs.joc.5b01833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ionizing radiation is frequently used to kill tumor cells. However, hypoxic solid tumor cells are more resistant to this treatment, providing the impetus to develop molecules that sensitize cells to ionizing radiation. 5-Bromo-2'-deoxyuridine (BrdU) has been investigated as a radiosensitizing agent in the lab and clinic for almost 5 decades. Recent reports that BrdU yields DNA interstrand cross-links (ICLs) in non-base-paired regions motivated us to develop radiosensitizing agents that generate cross-links in duplex DNA selectively under anoxic conditions. 4-Bromo- and 5-bromopyridone analogues of BrdU were synthesized and incorporated into oligonucleotides via solid-phase synthesis. Upon irradiation, these molecules yield DNA interstrand cross-links under anaerobic conditions. The respective nucleotide triphosphates are substrates for some DNA polymerases. ICLs are produced upon irradiation under anoxic conditions when the 4-bromopyridone is present in a PCR product. Because the nucleoside analogue is a poor phosphorylation substrate for human deoxycytidine kinase, a pro-nucleotide form of the 4-bromopyridone was used to incorporate this analogue into cellular DNA. Despite these efforts, the 4-bromopyridone nucleotide was not detected in cellular DNA. Although these molecules are improvements over previously reported nucleotide analogues designed to be hypoxic radiosensitizing agents, additional advances are needed to create molecules that function in cells.
Collapse
Affiliation(s)
- Arnab Rudra
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Dianjie Hou
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Yonggang Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, Maryland 21231, United States
| | - Jonathan Coulter
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States
| | - Haoming Zhou
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, Maryland 21231, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|