1
|
Mishra S, Krawic C, Luczak MW, Zhitkovich A. Monoubiquitinated H2B, a Main Chromatin Target of Formaldehyde, Is Important for S-Phase Checkpoint Signaling and Genome Stability. Mol Carcinog 2024; 63:2414-2424. [PMID: 39254477 PMCID: PMC11567799 DOI: 10.1002/mc.23819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Formaldehyde (FA) is a human carcinogen with ubiquitous environmental exposures and significant endogenous formation. Genotoxic activity of FA stems from its reactivity with DNA-NH2 groups. Histone lysines are another source of aldehyde-reactive amino groups in chromatin, however, chromatin/histone damage responses to FA and their biological significance are poorly understood. We examined histone posttranslational modifications in FA-treated human lung cells and found that the majority of the most prominent small lysine modifications associated with active or inactive chromatin were unchanged. FA moderately decreased H3K9 and H3K27 acetylation and H2A-K119 monoubiquitination but caused surprisingly severe losses of H2B-K120 monoubiquitination, especially in primary and stem-like cells. H2Aub1 decreases reflected its slower ubiquitination linked to a lower ubiquitin availability due to K48-polyubiquitination of FA-damaged proteins. Depletion of H2Bub1 resulted from its rapid deubiquitination in part by ATXN7L3-associated deubiquitinases and was independent on DNA damage signaling, indicating a direct chromatin damage response. Manipulations of H2Bub1 abundance showed that it was important for robust ATM and ATR signaling, efficient S-phase checkpoint, and suppression of mitotic transmission of unreplicated DNA and formation of micronuclei. Our findings identified H2B deubiquitination as a major FA-induced chromatin damage response that regulates S-phase checkpoint signaling and genome stability.
Collapse
Affiliation(s)
- Sasmita Mishra
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| | - Casey Krawic
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| | | | - Anatoly Zhitkovich
- Brown University, Department Pathology and Laboratory Medicine, Providence, RI, 02903, USA
| |
Collapse
|
2
|
Bi F, Gao C, Guo H. Epigenetic regulation of cardiovascular diseases induced by behavioral and environmental risk factors: Mechanistic, diagnostic, and therapeutic insights. FASEB Bioadv 2024; 6:477-502. [PMID: 39512842 PMCID: PMC11539034 DOI: 10.1096/fba.2024-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Behavioral and environmental risk factors are critical in the development and progression of cardiovascular disease (CVD). Understanding the molecular mechanisms underlying these risk factors will offer valuable insights for targeted preventive and therapeutic strategies. Epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNA (ncRNA) expression, and epitranscriptomic modifications, have emerged as key mediators connecting behavioral and environmental risk factors to CVD risk and progression. These epigenetic alterations can profoundly impact on cardiovascular health and susceptibility to CVD by influencing cellular processes, development, and disease risk over an individual's lifetime and potentially across generations. This review examines how behavioral and environmental risk factors affect CVD risk and health outcomes through epigenetic regulation. We review the epigenetic effects of major behavioral risk factors (such as smoking, alcohol consumption, physical inactivity, unhealthy diet, and obesity) and environmental risk factors (including air and noise pollution) in the context of CVD pathogenesis. Additionally, we explore epigenetic biomarkers, considering their role as causal or surrogate indicators, and discuss epigenetic therapeutics targeting the mechanisms through which these risk factors contribute to CVD. We also address future research directions and challenges in leveraging epigenetic insights to reduce the burden of CVD related to behavioral and environmental factors and improve public health outcomes. This review aims to provide a comprehensive understanding of behavioral and environmental epigenetics in CVD and offer valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Feifei Bi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| | - Chen Gao
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Hongchao Guo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
3
|
Hicks C, Rahman S, Gloor S, Fields J, Husby N, Vaidya A, Maier K, Morgan M, Keogh MC, Wolberger C. Ubiquitinated histone H2B as gatekeeper of the nucleosome acidic patch. Nucleic Acids Res 2024; 52:9978-9995. [PMID: 39149911 PMCID: PMC11381367 DOI: 10.1093/nar/gkae698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Monoubiquitination of histones H2B-K120 (H2BK120ub) and H2A-K119 (H2AK119ub) play opposing roles in regulating transcription and chromatin compaction. H2BK120ub is a hallmark of actively transcribed euchromatin, while H2AK119ub is highly enriched in transcriptionally repressed heterochromatin. Whereas H2BK120ub is known to stimulate the binding or activity of various chromatin-modifying enzymes, this post-translational modification (PTM) also interferes with the binding of several proteins to the nucleosome H2A/H2B acidic patch via an unknown mechanism. Here, we report cryoEM structures of an H2BK120ub nucleosome showing that ubiquitin adopts discrete positions that occlude the acidic patch. Molecular dynamics simulations show that ubiquitin remains stably positioned over this nucleosome region. By contrast, our cryoEM structures of H2AK119ub nucleosomes show ubiquitin adopting discrete positions that minimally occlude the acidic patch. Consistent with these observations, H2BK120ub, but not H2AK119ub, abrogates nucleosome interactions with acidic patch-binding proteins RCC1 and LANA, and single-domain antibodies specific to this region. Our results suggest a mechanism by which H2BK120ub serves as a gatekeeper to the acidic patch and point to distinct roles for histone H2AK119 and H2BK120 ubiquitination in regulating protein binding to nucleosomes.
Collapse
Affiliation(s)
- Chad W Hicks
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Sanim Rahman
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Susan L Gloor
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - James K Fields
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | - Anup Vaidya
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - Keith E Maier
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - Michael Morgan
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | - Cynthia Wolberger
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Fetian T, Grover A, Arndt KM. Histone H2B ubiquitylation: Connections to transcription and effects on chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195018. [PMID: 38331024 PMCID: PMC11098702 DOI: 10.1016/j.bbagrm.2024.195018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes are major determinants of eukaryotic genome organization and regulation. Many studies, incorporating a diversity of experimental approaches, have been focused on identifying and discerning the contributions of histone post-translational modifications to DNA-centered processes. Among these, monoubiquitylation of H2B (H2Bub) on K120 in humans or K123 in budding yeast is a critical histone modification that has been implicated in a wide array of DNA transactions. H2B is co-transcriptionally ubiquitylated and deubiquitylated via the concerted action of an extensive network of proteins. In addition to altering the chemical and physical properties of the nucleosome, H2Bub is important for the proper control of gene expression and for the deposition of other histone modifications. In this review, we discuss the molecular mechanisms underlying the ubiquitylation cycle of H2B and how it connects to the regulation of transcription and chromatin structure.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
5
|
Perales SG, Rajasingh S, Zhou Z, Rajasingh J. Therapy of infectious diseases using epigenetic approaches. EPIGENETICS IN HUMAN DISEASE 2024:853-882. [DOI: 10.1016/b978-0-443-21863-7.00007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Adiga D, Eswaran S, Sriharikrishnaa S, Khan NG, Prasada Kabekkodu S, Kumar D. Epigenetics of Alzheimer’s Disease: Past, Present and Future. ENZYMATIC TARGETS FOR DRUG DISCOVERY AGAINST ALZHEIMER'S DISEASE 2023:27-72. [DOI: 10.2174/9789815136142123010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Alzheimer’s disease (AD) exemplifies a looming epidemic lacking effective
treatment and manifests with the accumulation of neurofibrillary tangles, amyloid-β
plaques, neuroinflammation, behavioral changes, and acute cognitive impairments. It is
a complex, multifactorial disorder that arises from the intricate interaction between
environment and genetic factors, restrained via epigenetic machinery. Though the
research progress has improved the understanding of clinical manifestations and
disease advancement, the causal mechanism of detrimental consequences remains
undefined. Despite the substantial improvement in recent diagnostic modalities, it is
challenging to distinguish AD from other forms of dementia. Accurate diagnosis is a
major glitch in AD as it banks on the symptoms and clinical criteria. Several studies are
underway in exploring novel and reliable biomarkers for AD. In this direction,
epigenetic alterations have transpired as key modulators in AD pathogenesis with the
impeding inferences for the management of this neurological disorder. The present
chapter aims to discuss the significance of epigenetic modifications reported in the
pathophysiology of AD such as DNA methylation, hydroxy-methylation, methylation
of mtDNA, histone modifications, and noncoding RNAs. Additionally, the chapter also
describes the possible therapeutic avenues that target epigenetic modifications in AD.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - S. Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Nadeem G. Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth
(Deemed to be University), Erandwane, Pune – 411038, Maharashtra, India
| |
Collapse
|
7
|
Dion C, Laberthonnière C, Magdinier F. [Epigenetics, principles and examples of applications]. Rev Med Interne 2023; 44:594-601. [PMID: 37438189 DOI: 10.1016/j.revmed.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Since the discovery of DNA as the support of genetic information, the challenge for generations of life scientists was to understand the mechanisms underlying the process that translate the sequence of a gene to a phenotype. In the 1950s, the concept of epigenetics was defined by the British biologist Conrad H. Waddington as the study of "epigenesis" that governs the biological processes involved in the development of any organism. The term epigenetics, now best defined as "above the DNA sequence" reflects the gene-environment interactions by which genes determine traits. Since, its first description, studies underlying the mechanisms involved in these processes has led to an increasing understanding of the regulation all genome transactions such as transcription, replication, repair and the biological pathways coordinated by these mechanisms. We will discuss here the main principles regulating epigenetic processes, their roles in physiology, their evolution over the life time and their implications in medicine.
Collapse
Affiliation(s)
- C Dion
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France; MRC London Institute of Medical Sciences (LMS), London, United Kingdom; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - C Laberthonnière
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France; Molecular Developmental Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - F Magdinier
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France.
| |
Collapse
|
8
|
Thomas JF, Valencia-Sánchez MI, Tamburri S, Gloor SL, Rustichelli S, Godínez-López V, De Ioannes P, Lee R, Abini-Agbomson S, Gretarsson K, Burg JM, Hickman AR, Sun L, Gopinath S, Taylor HF, Sun ZW, Ezell RJ, Vaidya A, Meiners MJ, Cheek MA, Rice WJ, Svetlov V, Nudler E, Lu C, Keogh MC, Pasini D, Armache KJ. Structural basis of histone H2A lysine 119 deubiquitination by Polycomb repressive deubiquitinase BAP1/ASXL1. SCIENCE ADVANCES 2023; 9:eadg9832. [PMID: 37556531 PMCID: PMC10411902 DOI: 10.1126/sciadv.adg9832] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
Histone H2A lysine 119 (H2AK119Ub) is monoubiquitinated by Polycomb repressive complex 1 and deubiquitinated by Polycomb repressive deubiquitinase complex (PR-DUB). PR-DUB cleaves H2AK119Ub to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. The PR-DUB subunits (BAP1 and ASXL1) are among the most frequently mutated epigenetic factors in human cancers. How PR-DUB establishes specificity for H2AK119Ub over other nucleosomal ubiquitination sites and how disease-associated mutations of the enzyme affect activity are unclear. Here, we determine a cryo-EM structure of human BAP1 and the ASXL1 DEUBAD in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for restructuring the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing insight into understanding cancer etiology.
Collapse
Affiliation(s)
- Jonathan F. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marco Igor Valencia-Sánchez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Simone Tamburri
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | | | - Samantha Rustichelli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Victoria Godínez-López
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kristjan Gretarsson
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | | | | | | | | | | | | | | | - William J. Rice
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Diego Pasini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
9
|
Abdelaziz N, Therachiyil L, Sadida HQ, Ali AM, Khan OS, Singh M, Khan AQ, Akil ASAS, Bhat AA, Uddin S. Epigenetic inhibitors and their role in cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:211-251. [PMID: 37657859 DOI: 10.1016/bs.ircmb.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epigenetic modifications to DNA are crucial for normal cellular and biological functioning. DNA methylation, histone modifications, and chromatin remodeling are the most common epigenetic mechanisms. These changes are heritable but still reversible. The aberrant epigenetic alterations, such as DNA methylation, histone modification, and non-coding RNA (ncRNA)-mediated gene regulation, play an essential role in developing various human diseases, including cancer. Recent studies show that synthetic and dietary epigenetic inhibitors attenuate the abnormal epigenetic modifications in cancer cells and therefore have strong potential for cancer treatment. In this chapter, we have highlighted various types of epigenetic modifications, their mechanism, and as drug targets for epigenetic therapy.
Collapse
Affiliation(s)
- Nouha Abdelaziz
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | | | - Omar S Khan
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Mayank Singh
- Department of Medical Oncology (Lab), BRAIRCH All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
10
|
Fetian T, McShane BM, Horan NL, Shodja DN, True JD, Mosley AL, Arndt KM. Paf1 complex subunit Rtf1 stimulates H2B ubiquitylation by interacting with the highly conserved N-terminal helix of Rad6. Proc Natl Acad Sci U S A 2023; 120:e2220041120. [PMID: 37216505 PMCID: PMC10235976 DOI: 10.1073/pnas.2220041120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Histone modifications coupled to transcription elongation play important roles in regulating the accuracy and efficiency of gene expression. The monoubiquitylation of a conserved lysine in H2B (K123 in Saccharomyces cerevisiae; K120 in humans) occurs cotranscriptionally and is required for initiating a histone modification cascade on active genes. H2BK123 ubiquitylation (H2BK123ub) requires the RNA polymerase II (RNAPII)-associated Paf1 transcription elongation complex (Paf1C). Through its histone modification domain (HMD), the Rtf1 subunit of Paf1C directly interacts with the ubiquitin conjugase Rad6, leading to the stimulation of H2BK123ub in vivo and in vitro. To understand the molecular mechanisms that target Rad6 to its histone substrate, we identified the site of interaction for the HMD on Rad6. Using in vitro cross-linking followed by mass spectrometry, we localized the primary contact surface for the HMD to the highly conserved N-terminal helix of Rad6. Using a combination of genetic, biochemical, and in vivo protein cross-linking experiments, we characterized separation-of-function mutations in S. cerevisiae RAD6 that greatly impair the Rad6-HMD interaction and H2BK123 ubiquitylation but not other Rad6 functions. By employing RNA-sequencing as a sensitive approach for comparing mutant phenotypes, we show that mutating either side of the proposed Rad6-HMD interface yields strikingly similar transcriptome profiles that extensively overlap with those of a mutant that lacks the site of ubiquitylation in H2B. Our results fit a model in which a specific interface between a transcription elongation factor and a ubiquitin conjugase guides substrate selection toward a highly conserved chromatin target during active gene expression.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Brendan M. McShane
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Nicole L. Horan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Donya N. Shodja
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Jason D. True
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN46202
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN46202
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| |
Collapse
|
11
|
Shi D, Huang Y, Bai C. Studies of the Mechanism of Nucleosome Dynamics: A Review on Multifactorial Regulation from Computational and Experimental Cases. Polymers (Basel) 2023; 15:polym15071763. [PMID: 37050377 PMCID: PMC10096840 DOI: 10.3390/polym15071763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The nucleosome, which organizes the long coil of genomic DNA in a highly condensed, polymeric way, is thought to be the basic unit of chromosomal structure. As the most important protein–DNA complex, its structural and dynamic features have been successively revealed in recent years. However, its regulatory mechanism, which is modulated by multiple factors, still requires systemic discussion. This study summarizes the regulatory factors of the nucleosome’s dynamic features from the perspective of histone modification, DNA methylation, and the nucleosome-interacting factors (transcription factors and nucleosome-remodeling proteins and cations) and focuses on the research exploring the molecular mechanism through both computational and experimental approaches. The regulatory factors that affect the dynamic features of nucleosomes are also discussed in detail, such as unwrapping, wrapping, sliding, and stacking. Due to the complexity of the high-order topological structures of nucleosomes and the comprehensive effects of regulatory factors, the research on the functional modulation mechanism of nucleosomes has encountered great challenges. The integration of computational and experimental approaches, the construction of physical modes for nucleosomes, and the application of deep learning techniques will provide promising opportunities for further exploration.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yuxin Huang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
12
|
Thomas JF, Valencia-Sánchez MI, Tamburri S, Gloor SL, Rustichelli S, Godínez-López V, De Ioannes P, Lee R, Abini-Agbomson S, Gretarsson K, Burg JM, Hickman AR, Sun L, Gopinath S, Taylor H, Meiners MJ, Cheek MA, Rice W, Nudler E, Lu C, Keogh MC, Pasini D, Armache KJ. Structural basis of histone H2A lysine 119 deubiquitination by Polycomb Repressive Deubiquitinase BAP1/ASXL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529554. [PMID: 36865140 PMCID: PMC9980132 DOI: 10.1101/2023.02.23.529554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The maintenance of gene expression patterns during metazoan development is achieved by the actions of Polycomb group (PcG) complexes. An essential modification marking silenced genes is monoubiquitination of histone H2A lysine 119 (H2AK119Ub) deposited by the E3 ubiquitin ligase activity of the non-canonical Polycomb Repressive Complex 1. The Polycomb Repressive Deubiquitinase (PR-DUB) complex cleaves monoubiquitin from histone H2A lysine 119 (H2AK119Ub) to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. BAP1 and ASXL1, subunits that form active PR-DUB, are among the most frequently mutated epigenetic factors in human cancers, underscoring their biological importance. How PR-DUB achieves specificity for H2AK119Ub to regulate Polycomb silencing is unknown, and the mechanisms of most of the mutations in BAP1 and ASXL1 found in cancer have not been established. Here we determine a cryo-EM structure of human BAP1 bound to the ASXL1 DEUBAD domain in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for remodeling the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing new insight into understanding cancer etiology. One Sentence Summary We reveal the molecular mechanism of nucleosomal H2AK119Ub deubiquitination by human BAP1/ASXL1.
Collapse
Affiliation(s)
- Jonathan F. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- These authors contributed equally
| | - Marco Igor Valencia-Sánchez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- These authors contributed equally
| | - Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
- University of Milan, Via A. di Rudini 8, Department of Health Sciences, 20142 Milan, Italy
| | | | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Victoria Godínez-López
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kristjan Gretarsson
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Lu Sun
- EpiCypher Inc., Durham, North Carolina, USA
| | | | | | | | | | - William Rice
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
- University of Milan, Via A. di Rudini 8, Department of Health Sciences, 20142 Milan, Italy
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Lead contact
| |
Collapse
|
13
|
Ranathunga DTS, Torabifard H. Histone tail electrostatics modulate E2-E3 enzyme dynamics: a gateway to regulate ubiquitination machinery. Phys Chem Chem Phys 2023; 25:3361-3374. [PMID: 36633205 DOI: 10.1039/d2cp04059j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BRCA1 (Breast Cancer-Associated Protein 1) is a human tumor suppressor that functions as an ubiquitin (Ub) ligase enzyme (E3) and plays a key role in genomic stability and DNA repair. Heterodimerization of BRCA1 with BARD1 (BRCA1-associated RING domain protein 1) is known to increase its Ub ligase activity and is important for its stability, and cooperative activation of UbcH5c (Ub conjugating enzyme (E2)). Recent studies demonstrate the importance of ubiquitination of the nucleosomal H2A C-terminal tail by BRCA1/BARD1-UbcH5c in which its mutations inhibit ubiquitination, predispose cells to chromosomal instability and greatly increase the likelihood of breast and ovarian cancer development. Due to the lack of molecular-level insight on the flexible and dis-ordered H2A C-tail, its ubiquitination mechanism by BRCA1/BARD1-UbcH5c and its function and relationship to cancer susceptibility remain elusive. Here, we use molecular dynamics simulations to provide molecular-level insights into the dynamics of the less-studied H2A C-tail and BRCA1/BARD1-UbcH5c on the nucleosome surface and their effect on ubiquitination. Our results precisely identify the key interactions and residues that trigger conformational transitions of BRCA1/BARD1-UbcH5c, and characterize the important role of histone electrostatics in their dynamics. We provide a mechanistic basis for the H2A C-tail lysine approach to UbcH5c and show the role of H2A C-tail and UbcH5c dynamics in lysine ubiquitination. Furthermore, our data demonstrate the potential for ubiquitination based on the lysine position of the C-tail. Altogether, the findings of this study provide unrevealed insights into the mechanism of H2A C-tail ubiquitination and help us understand the communication between Ub ligase/Ub conjugating enzymes (E3/E2) and nucleosome to regulate ubiquitination machinery, paving the way for the development of effective treatments for cancer and chronic pain.
Collapse
Affiliation(s)
- Dineli T S Ranathunga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA.
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA.
| |
Collapse
|
14
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Tathe P, Chowdary KVSR, Murmu KC, Prasad P, Maddika S. SHP-1 dephosphorylates histone H2B to facilitate its ubiquitination during transcription. EMBO J 2022; 41:e109720. [PMID: 35938192 PMCID: PMC9531295 DOI: 10.15252/embj.2021109720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic regulation of phosphorylation and dephosphorylation of histones is essential for eukaryotic transcription, but the enzymes engaged in histone dephosphorylation are not fully explored. Here, we show that the tyrosine phosphatase SHP-1 dephosphorylates histone H2B and plays a critical role during transition from the initiation to the elongation stage of transcription. Nuclear-localized SHP-1 is associated with the Paf1 complex at chromatin and dephosphorylates H2B at tyrosine 121. Moreover, knockout of SHP-1, or expression of a mutant mimicking constitutive phosphorylation of H2B Y121, leads to a reduction in genome-wide H2B ubiquitination, which subsequently causes defects in RNA polymerase II-dependent transcription. Mechanistically, we demonstrate that Y121 phosphorylation precludes H2B's interaction with the E2 enzyme, indicating that SHP-1-mediated dephosphorylation of this residue may be a prerequisite for efficient H2B ubiquitination. Functionally, we find that SHP-1-mediated H2B dephosphorylation contributes to maintaining basal autophagic flux in cells through the efficient transcription of autophagy and lysosomal genes. Collectively, our study reveals an important modification of histone H2B regulated by SHP-1 that has a role during eukaryotic transcription.
Collapse
Affiliation(s)
- Prajakta Tathe
- Laboratory of Cell Death and Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)HyderabadIndia
- Graduate StudiesManipal Academy of Higher EducationManipalIndia
| | - K V S Rammohan Chowdary
- Laboratory of Cell Death and Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)HyderabadIndia
| | | | - Punit Prasad
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Subbareddy Maddika
- Laboratory of Cell Death and Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)HyderabadIndia
| |
Collapse
|
16
|
Quantitative Assessment of Histone H2B Monoubiquitination in Yeast Using Immunoblotting. Methods Protoc 2022; 5:mps5050074. [PMID: 36287046 PMCID: PMC9609377 DOI: 10.3390/mps5050074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023] Open
Abstract
Studies in Saccharomyces cerevisiae and Schizosaccharomyces pombe have enhanced our understanding of the regulation and functions of histone H2B monoubiquitination (H2Bub1), a key epigenetic marker with important roles in transcription and other processes. The detection of H2Bub1 in yeasts using immunoblotting has been greatly facilitated by the commercial availability of antibodies against yeast histone H2B and the cross-reactivity of an antibody raised against monoubiquitinated human H2BK120. These antibodies have obviated the need to express epitope-tagged histone H2B to detect H2Bub1 in yeasts. Here, we provide a step-by-step protocol and best practices for the quantification of H2Bub1 in yeast systems, from cell extract preparation to immunoblotting using the commercially available antibodies. We demonstrate that the commercial antibodies can effectively and accurately detect H2Bub1 in S. cerevisiae and S. pombe. Further, we show that the C-terminal epitope-tagging of histone H2B alters the steady-state levels of H2Bub1 in yeast systems. We report a sectioned blot probing approach combined with the serial dilution of protein lysates and the use of reversibly stained proteins as loading controls that together provide a cost-effective and sensitive method for the quantitative evaluation of H2Bub1 in yeast.
Collapse
|
17
|
Barban do Patrocinio A. Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The parasite blood flukes belonging to the genus Schistosoma cause schistosomiasis. Among the Schistosoma species that infect humans, three stand out: Schistosoma japonicum (S. japonicum), which occurs in Asia, mainly in China and the Philippines; Schistosoma haematobium (S. haematobium), which occurs in Africa; and Schistosoma mansoni (S. mansoni), which occurs in Africa and South America and the center of Venezuela (Brazil). Research has shown that these species comprise strains that are resistant to Praziquantel (PZQ), the only drug of choice to fight the disease. Moreover, patients can be reinfected even after being treated with PZQ , and this drug does not act against young forms of the parasite. Therefore, several research groups have focused their studies on new molecules for disease treatment and vaccine development. This chapter will focus on (i) parasite resistance to PZQ , (ii) molecules that are currently being developed and tested as possible drugs against schistosomiasis, and (iii) candidates for vaccine development with a primary focus on clinical trials.
Collapse
|
18
|
Krajewski WA. Histone Modifications, Internucleosome Dynamics, and DNA Stresses: How They Cooperate to “Functionalize” Nucleosomes. Front Genet 2022; 13:873398. [PMID: 35571051 PMCID: PMC9096104 DOI: 10.3389/fgene.2022.873398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tight packaging of DNA in chromatin severely constrains DNA accessibility and dynamics. In contrast, nucleosomes in active chromatin state are highly flexible, can exchange their histones, and are virtually “transparent” to RNA polymerases, which transcribe through gene bodies at rates comparable to that of naked DNA. Defining mechanisms that revert nucleosome repression, in addition to their value for basic science, is of key importance for the diagnosis and treatment of genetic diseases. Chromatin activity is largely regulated by histone posttranslational modifications, ranging from small chemical groups up to the yet understudied “bulky” ubiquitylation and sumoylation. However, it is to be revealed how histone marks are “translated” to permissive or repressive changes in nucleosomes: it is a general opinion that histone modifications act primarily as “signals” for recruiting the regulatory proteins or as a “neutralizer” of electrostatic shielding of histone tails. Here, we would like to discuss recent evidence suggesting that histone ubiquitylation, in a DNA stress–dependent manner, can directly regulate the dynamics of the nucleosome and their primary structure and can promote nucleosome decomposition to hexasome particles or additionally stabilize nucleosomes against unwrapping. In addition, nucleosome repression/ derepression studies are usually performed with single mononucleosomes as a model. We would like to review and discuss recent findings showing that internucleosomal interactions could strongly modulate the dynamics and rearrangements of nucleosomes. Our hypothesis is that bulky histone modifications, nucleosome inherent dynamics, internucleosome interactions, and DNA torsions could act in cooperation to orchestrate the formation of different dynamic states of arrayed nucleosomes and thus promote chromatin functionality and diversify epigenetic programming methods.
Collapse
|
19
|
Li W, Jones K, Burke TJ, Hossain MA, Lariscy L. Epigenetic Regulation of Nucleotide Excision Repair. Front Cell Dev Biol 2022; 10:847051. [PMID: 35465333 PMCID: PMC9023881 DOI: 10.3389/fcell.2022.847051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022] Open
Abstract
Genomic DNA is constantly attacked by a plethora of DNA damaging agents both from endogenous and exogenous sources. Nucleotide excision repair (NER) is the most versatile repair pathway that recognizes and removes a wide range of bulky and/or helix-distorting DNA lesions. Even though the molecular mechanism of NER is well studied through in vitro system, the NER process inside the cell is more complicated because the genomic DNA in eukaryotes is tightly packaged into chromosomes and compacted into a nucleus. Epigenetic modifications regulate gene activity and expression without changing the DNA sequence. The dynamics of epigenetic regulation play a crucial role during the in vivo NER process. In this review, we summarize recent advances in our understanding of the epigenetic regulation of NER.
Collapse
|
20
|
Yadav P, Subbarayalu P, Medina D, Nirzhor S, Timilsina S, Rajamanickam S, Eedunuri VK, Gupta Y, Zheng S, Abdelfattah N, Huang Y, Vadlamudi R, Hromas R, Meltzer P, Houghton P, Chen Y, Rao MK. M6A RNA Methylation Regulates Histone Ubiquitination to Support Cancer Growth and Progression. Cancer Res 2022; 82:1872-1889. [PMID: 35303054 DOI: 10.1158/0008-5472.can-21-2106] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is the most common malignancy of the bone, yet the survival for osteosarcoma patients is virtually unchanged over the past 30 years. This is principally because development of new therapies is hampered by a lack of recurrent mutations that can be targeted in osteosarcoma. Here, we report that epigenetic changes via mRNA methylation holds great promise to better understand the mechanisms of osteosarcoma growth and to develop targeted therapeutics. In osteosarcoma patients, the RNA demethylase ALKBH5 was amplified and higher expression correlated with copy number changes. ALKBH5 was critical for promoting osteosarcoma growth and metastasis, yet it was dispensable for normal cell survival. Me-RIP-seq analysis and functional studies showed that ALKBH5 mediates its pro-tumorigenic function by regulating m6A levels of histone deubiquitinase USP22 and the ubiquitin ligase RNF40. ALKBH5-mediated m6A deficiency in osteosarcoma led to increased expression of USP22 and RNF40 that resulted in inhibition of histone H2A monoubiquitination and induction of key pro-tumorigenic genes, consequently driving unchecked cell cycle progression, incessant replication and DNA repair. RNF40, which is historically known to ubiquitinate H2B, inhibited H2A ubiquitination in cancer by interacting with and affecting the stability of DDB1-CUL4-based ubiquitin E3 ligase complex. Taken together, this study directly links increased activity of ALKBH5 with dysregulation of USP22/RNF40 and histone ubiquitination in cancers. More broadly, these results suggest that m6A RNA methylation works in concert with other epigenetic mechanisms to control cancer growth.
Collapse
Affiliation(s)
- Pooja Yadav
- Greehey Children's Cancer Research Institute, United States
| | | | - Daisy Medina
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Saif Nirzhor
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Santosh Timilsina
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Subapriya Rajamanickam
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | | | - Yogesh Gupta
- UT Health Science Center at San Antonio, San Antonio, TX, United States
| | - Siyuan Zheng
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | | | - Yufei Huang
- The University of Texas at San Antonio, San Antonio, Texas, United States
| | - Ratna Vadlamudi
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Robert Hromas
- The University of Texas Health Science Center at San Antonio, United States
| | - Paul Meltzer
- National Cancer Institute, Bethesda, MD, United States
| | - Peter Houghton
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yidong Chen
- The University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Manjeet K Rao
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
21
|
Gandhirajan A, Roychowdhury S, Vachharajani V. Sirtuins and Sepsis: Cross Talk between Redox and Epigenetic Pathways. Antioxidants (Basel) 2021; 11:antiox11010003. [PMID: 35052507 PMCID: PMC8772830 DOI: 10.3390/antiox11010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis and septic shock are the leading causes of death among hospitalized patients in the US. The immune response in sepsis transitions from a pro-inflammatory and pro-oxidant hyper-inflammation to an anti-inflammatory and cytoprotective hypo-inflammatory phase. While 1/3rd sepsis-related deaths occur during hyper-, a vast majority of sepsis-mortality occurs during the hypo-inflammation. Hyper-inflammation is cytotoxic for the immune cells and cannot be sustained. As a compensatory mechanism, the immune cells transition from cytotoxic hyper-inflammation to a cytoprotective hypo-inflammation with anti-inflammatory/immunosuppressive phase. However, the hypo-inflammation is associated with an inability to clear invading pathogens, leaving the host susceptible to secondary infections. Thus, the maladaptive immune response leads to a marked departure from homeostasis during sepsis-phases. The transition from hyper- to hypo-inflammation occurs via epigenetic programming. Sirtuins, a highly conserved family of histone deacetylators and guardians of homeostasis, are integral to the epigenetic programming in sepsis. Through their anti-inflammatory and anti-oxidant properties, the sirtuins modulate the immune response in sepsis. We review the role of sirtuins in orchestrating the interplay between the oxidative stress and epigenetic programming during sepsis.
Collapse
Affiliation(s)
- Anugraha Gandhirajan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
22
|
Siklos M, Kubicek S. Therapeutic targeting of chromatin: status and opportunities. FEBS J 2021; 289:1276-1301. [PMID: 33982887 DOI: 10.1111/febs.15966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
The molecular characterization of mechanisms underlying transcriptional control and epigenetic inheritance since the 1990s has paved the way for the development of targeted therapies that modulate these pathways. In the past two decades, cancer genome sequencing approaches have uncovered a plethora of mutations in chromatin modifying enzymes across tumor types, and systematic genetic screens have identified many of these proteins as specific vulnerabilities in certain cancers. Now is the time when many of these basic and translational efforts start to bear fruit and more and more chromatin-targeting drugs are entering the clinic. At the same time, novel pharmacological approaches harbor the potential to modulate chromatin in unprecedented fashion, thus generating entirely novel opportunities. Here, we review the current status of chromatin targets in oncology and describe a vision for the epigenome-modulating drugs of the future.
Collapse
Affiliation(s)
- Marton Siklos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
23
|
Abstract
Life emerges from complicated and sophisticated chemical networks comprising numerous biomolecules (e.g., nucleic acids, proteins, sugars, and lipids) and chemical reactions catalyzed by enzymes. Dysregulation of these chemical networks is linked to the emergence of diseases. Our research goal is to develop abiotic chemical catalysts that can intervene into life's chemical networks by complementing, surrogating, or exceeding enzymes in living cells or multicellular organisms such as animals or plants. Mending dysregulated networks in pathological states by the chemical catalysts will lead to a new medicinal strategy, catalysis medicine. This research direction will also advance catalysis science, because highly active and selective chemical catalysts must be developed to promote the intended reactions in a complex mixture of life in aqueous solution at body temperature.Epigenetics exists at the crossroads of chemistry, biology, and medicine and is a suitable field to pursue this idea. Post-translational modifications (PTMs) of histones epigenetically regulate chromatin functions and gene transcription and are intimately related to various diseases. Investigating the functions and cross-talk of histone PTMs is crucial for mechanistic elucidation of diseases and their treatments. We launched a program to develop chemical catalysts enabling endogenous histone modifications in living cells without relying on enzymes. We reported two types of chemical catalyst systems so far for synthetic histone acylation. The first system comprised a DNA-binding oligo-4-dimethylaminopyridine (DMAP) catalyst and a phenyl ester acyl donor, PAc-gly. This system promoted histone hyperacetylation in Xenopus laevis sperm chromatin. Using the thus-synthesized hyperacetylated sperm chromatin, we found a novel relationship between histone acetylation and DNA replication. The second system involved a histone-binding catalyst, LANA-DSH, composed of a catalytic motif (DSH) and a histone-binding peptide ligand (LANA), and thioester acyl donors, including endogenous acyl-CoA. This system regioselectively (i.e., selectively to a lysine residue at a specific position) acylated lysine 120 of histone H2B (H2BK120), a lysine residue proximal to the DSH motif defined by binding of the LANA ligand to a nucleosome substrate. This catalyst system was optimized to achieve H2BK120-selective acetylation in living cells without genetic manipulation. The synthetically introduced H2BK120Ac inhibited enzyme-catalyzed ubiquitination at the same lysine residue, acting as a protecting group. H2BK120Ub is a mark recognized by methyltransferase that plays an essential role in mixed-lineage leukemia (MLL)-rearranged leukemia, suggesting the potential of the catalyst system as an epigenetic tool and a cancer therapy. We also discuss the prospects of chemical catalyst-promoted synthetic epigenetics for future PTM studies and therapeutic uses.
Collapse
Affiliation(s)
- Tamiko Nozaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
de Polo A, Labbé DP. Diet-Dependent Metabolic Regulation of DNA Double-Strand Break Repair in Cancer: More Choices on the Menu. Cancer Prev Res (Phila) 2021; 14:403-414. [PMID: 33509805 DOI: 10.1158/1940-6207.capr-20-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Despite several epidemiologic and preclinical studies supporting the role of diet in cancer progression, the complexity of the diet-cancer link makes it challenging to deconvolute the underlying mechanisms, which remain scantly elucidated. This review focuses on genomic instability as one of the cancer hallmarks affected by diet-dependent metabolic alterations. We discuss how altered dietary intake of metabolites of the one-carbon metabolism, including methionine, folate, and vitamins B and C, can impact the methylation processes and thereby tumorigenesis. We present the concept that the protumorigenic effect of certain diets, such as the Western diet, is in part due to a diet-induced erosion of the DNA repair capacity caused by altered epigenetic and epitranscriptomic landscapes, while the protective effect of other dietary patterns, such as the Mediterranean diet, can be partly explained by their ability to sustain a proficient DNA repair. In particular, considering that diet-dependent alterations of the one-carbon metabolism can impact the rate of methylation processes, changes in dietary patterns can affect the activity of writers and erasers of histone and RNA methyl marks and consequently impair their role in ensuring a proficient DNA damage repair.
Collapse
Affiliation(s)
- Anna de Polo
- Division of Urology, Department of Surgery, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - David P Labbé
- Division of Urology, Department of Surgery, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
25
|
Fujiwara Y, Yamanashi Y, Fujimura A, Sato Y, Kujirai T, Kurumizaka H, Kimura H, Yamatsugu K, Kawashima SA, Kanai M. Live-cell epigenome manipulation by synthetic histone acetylation catalyst system. Proc Natl Acad Sci U S A 2021; 118:e2019554118. [PMID: 33468653 PMCID: PMC7848698 DOI: 10.1073/pnas.2019554118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemical modifications of histones, such as lysine acetylation and ubiquitination, play pivotal roles in epigenetic regulation of gene expression. Methods to alter the epigenome thus hold promise as tools for elucidating epigenetic mechanisms and as therapeutics. However, an entirely chemical method to introduce histone modifications in living cells without genetic manipulation is unprecedented. Here, we developed a chemical catalyst, PEG-LANA-DSSMe 11, that binds with nucleosome's acidic patch and promotes regioselective, synthetic histone acetylation at H2BK120 in living cells. The size of polyethylene glycol in the catalyst was a critical determinant for its in-cell metabolic stability, binding affinity to histones, and high activity. The synthetic acetylation promoted by 11 without genetic manipulation competed with and suppressed physiological H2B ubiquitination, a mark regulating chromatin functions, such as transcription and DNA damage response. Thus, the chemical catalyst will be a useful tool to manipulate epigenome for unraveling epigenetic mechanisms in living cells.
Collapse
Affiliation(s)
- Yusuke Fujiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Yamanashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akiko Fujimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| |
Collapse
|
26
|
Vaughan RM, Kupai A, Rothbart SB. Chromatin Regulation through Ubiquitin and Ubiquitin-like Histone Modifications. Trends Biochem Sci 2020; 46:258-269. [PMID: 33308996 DOI: 10.1016/j.tibs.2020.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Chromatin functions are influenced by the addition, removal, and recognition of histone post-translational modifications (PTMs). Ubiquitin and ubiquitin-like (UBL) PTMs on histone proteins can function as signaling molecules by mediating protein-protein interactions. Fueled by the identification of novel ubiquitin and UBL sites and the characterization of the writers, erasers, and readers, the breadth of chromatin functions associated with ubiquitin signaling is emerging. Here, we highlight recently appreciated roles for histone ubiquitination in DNA methylation control, PTM crosstalk, nucleosome structure, and phase separation. We also discuss the expanding diversity and functions associated with histone UBL modifications. We conclude with a look toward the future and pose key questions that will drive continued discovery at the interface of epigenetics and ubiquitin signaling.
Collapse
Affiliation(s)
- Robert M Vaughan
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ariana Kupai
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
27
|
Deng ZH, Ai HS, Lu CP, Li JB. The Bre1/Rad6 machinery: writing the central histone ubiquitin mark on H2B and beyond. Chromosome Res 2020; 28:247-258. [PMID: 32895784 DOI: 10.1007/s10577-020-09640-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023]
Abstract
Mono-ubiquitination on H2B (H2Bub1) is an evolutionarily conserved histone post-translational modification implicated in various important physiological processes including DNA replication, transcription activation, and DNA damage repair. The Bre1/Rad6 ubiquitination machinery is currently considered to be the sole writer of H2Bub1, but the mechanistic basis by which it operates is unclear. Recently, the RING-type E3 ligase Bre1 was proposed to associate with the E2 enzyme Rad6 through a novel interaction between Bre1 RBD (Rad6 binding domain) and Rad6; and the RING domain of Bre1 that is responsible for the nucleosomal acidic patch binding also interacts with Rad6 to stimulate its catalytic activity. Recent discoveries have yielded evidence for the phenomenon of liquid-liquid phase separation in the context of H2Bub1, and its regulation by other histone post-translational modifications. This review summarizes current knowledge about Bre1/Rad6-mediated H2B ubiquitination, including the physiological functions and the molecular basis for writing and regulation of this central histone ubiquitin mark. Possible models for the Bre1/Rad6 machinery bound to nucleosomes bearing different modifications in the writing step are also disclosed.
Collapse
Affiliation(s)
- Zhi-Heng Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua-Song Ai
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Cheng-Piao Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
28
|
Bacova R, Kolackova M, Klejdus B, Adam V, Huska D. Epigenetic mechanisms leading to genetic flexibility during abiotic stress responses in microalgae: A review. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Louie BH, Kurzrock R. BAP1: Not just a BRCA1-associated protein. Cancer Treat Rev 2020; 90:102091. [PMID: 32877777 DOI: 10.1016/j.ctrv.2020.102091] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
BRCA1-Associated Protein 1 (BAP1) is a ubiquitin carboxy-terminal hydrolase that has been established as a tumor suppressor, utilizing its deubiquitinating activity to regulate a number of processes including DNA damage repair, cell cycle control, chromatin modification, programmed cell death, and the immune response. Mutations in the BAP1 gene commonly result in a number of aggressive cancers; predominantly uveal melanoma, malignant mesothelioma, renal cell carcinoma, and cutaneous melanoma. Importantly, germline mutations in the BAP1 gene have been established as a novel tumor predisposition syndrome, conferring an increased risk of hereditary, early-onset cancers. Current treatment options for cancers with BAP1 alterations are limited to standard therapies. However, several therapeutic avenues have been proposed to specifically target BAP1 alterations in cancer. Molecularly targeted approaches include histone deacetylase inhibitors and EZH2 inhibitors to target the role of BAP1 in chromatin modification and transcriptional regulation, respectively. PARP inhibitors and platinum chemotherapy agents have the potential to target BAP1-altered tumors, due to the role of BAP1 in DNA damage repair. Lastly, emerging reports suggest that BAP1 alterations in cancer confer distinct immunogenic phenotypes that may be particularly susceptible to novel cancer immunotherapies. This review aims to present a concise and up to date report on the BAP1 gene in cancer, surveying its functional roles, characteristics and clinical manifestations. Furthermore, we highlight the established and emerging therapeutic options for BAP1-mutated cancers.
Collapse
Affiliation(s)
- Bryan H Louie
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA 92037, USA.
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
García-Guede Á, Vera O, Ibáñez-de-Caceres I. When Oxidative Stress Meets Epigenetics: Implications in Cancer Development. Antioxidants (Basel) 2020; 9:antiox9060468. [PMID: 32492865 PMCID: PMC7346131 DOI: 10.3390/antiox9060468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide and it can affect any part of the organism. It arises as a consequence of the genetic and epigenetic changes that lead to the uncontrolled growth of the cells. The epigenetic machinery can regulate gene expression without altering the DNA sequence, and it comprises methylation of the DNA, histones modifications, and non-coding RNAs. Alterations of these gene-expression regulatory elements can be produced by an imbalance of the intracellular environment, such as the one derived by oxidative stress, to promote cancer development, progression, and resistance to chemotherapeutic treatments. Here we review the current literature on the effect of oxidative stress in the epigenetic machinery, especially over the largely unknown ncRNAs and its consequences toward cancer development and progression.
Collapse
Affiliation(s)
- Álvaro García-Guede
- Epigenetics Laboratory, INGEMM, Hospital La PAZ. 28046 Madrid, Spain; (Á.G.-G.); (I.I.-d.-C.)
- Experimental Therapies and Novel Biomarkers in Cancer, Instituto de Investigación Sanitaria del Hospital La Paz. IdiPAZ, 28046 Madrid, Spain
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence:
| | - Inmaculada Ibáñez-de-Caceres
- Epigenetics Laboratory, INGEMM, Hospital La PAZ. 28046 Madrid, Spain; (Á.G.-G.); (I.I.-d.-C.)
- Experimental Therapies and Novel Biomarkers in Cancer, Instituto de Investigación Sanitaria del Hospital La Paz. IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
31
|
Krajewski WA. "Direct" and "Indirect" Effects of Histone Modifications: Modulation of Sterical Bulk as a Novel Source of Functionality. Bioessays 2019; 42:e1900136. [PMID: 31805213 DOI: 10.1002/bies.201900136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Indexed: 12/26/2022]
Abstract
The chromatin-regulatory principles of histone post-translational modifications (PTMs) are discussed with a focus on the potential alterations in chromatin functional state due to steric and mechanical constraints imposed by bulky histone modifications such as ubiquitin and SUMO. In the classical view, PTMs operate as recruitment platforms for histone "readers," and as determinants of chromatin array compaction. Alterations of histone charges by "small" chemical modifications (e.g., acetylation, phosphorylation) could regulate nucleosome spontaneous dynamics without globally affecting nucleosome structure. These fluctuations in nucleosome wrapping can be exploited by chromatin-processing machinery. In contrast, ubiquitin and SUMO are comparable in size to histones, and it seems logical that these PTMs could conflict with canonical nucleosome organization. An experimentally testable hypothesis that by adding sterical bulk these PTMs can robustly alter nucleosome primary structure is proposed. The model presented here stresses the diversity of mechanisms by which histone PTMs regulate chromatin dynamics, primary structure and, hence, functionality.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N. K. Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| |
Collapse
|
32
|
Samec M, Liskova A, Koklesova L, Mestanova V, Franekova M, Kassayova M, Bojkova B, Uramova S, Zubor P, Janikova K, Danko J, Samuel SM, Büsselberg D, Kubatka P. Fluctuations of Histone Chemical Modifications in Breast, Prostate, and Colorectal Cancer: An Implication of Phytochemicals as Defenders of Chromatin Equilibrium. Biomolecules 2019; 9:E829. [PMID: 31817446 PMCID: PMC6995638 DOI: 10.3390/biom9120829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Natural substances of plant origin exert health beneficiary efficacy due to the content of various phytochemicals. Significant anticancer abilities of natural compounds are mediated via various processes such as regulation of a cell's epigenome. The potential antineoplastic activity of plant natural substances mediated by their action on posttranslational histone modifications (PHMs) is currently a highly evaluated area of cancer research. PHMs play an important role in maintaining chromatin structure and regulating gene expression. Aberrations in PHMs are directly linked to the process of carcinogenesis in cancer such as breast (BC), prostate (PC), and colorectal (CRC) cancer, common malignant diseases in terms of incidence and mortality among both men and women. This review summarizes the effects of plant phytochemicals (isolated or mixtures) on cancer-associated PHMs (mainly modulation of acetylation and methylation) resulting in alterations of chromatin structure that are related to the regulation of transcription activity of specific oncogenes, which are crucial in the development of BC, PC, and CRC. Significant effectiveness of natural compounds in the modulation of aberrant PHMs were confirmed by a number of in vitro or in vivo studies in preclinical cancer research. However, evidence concerning PHMs-modulating abilities of plant-based natural substances in clinical trials is insufficient.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Veronika Mestanova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Maria Franekova
- Department of Medical Biology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Monika Kassayova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, 04001 Kosice, Slovakia; (M.K.); (B.B.)
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, 04001 Kosice, Slovakia; (M.K.); (B.B.)
| | - Sona Uramova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Pavol Zubor
- OBGY Health & Care, Ltd., 01026 Zilina, Slovakia;
| | - Katarina Janikova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jan Danko
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (J.D.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
33
|
Saravanan K, Kumar H, Chhotaray S, Preethi AL, Talokar AJ, Natarajan A, Parida S, Bhushan B, Panigrahi M. Drosophila melanogaster: a promising model system for epigenetic research. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1685216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- K.A. Saravanan
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Supriya Chhotaray
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - A. Latha Preethi
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Amol J. Talokar
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - A. Natarajan
- Division of Animal Nutrition, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
34
|
Krajewski WA. Ubiquitylation: How Nucleosomes Use Histones to Evict Histones. Trends Cell Biol 2019; 29:689-694. [DOI: 10.1016/j.tcb.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
|
35
|
Ferioli M, Zauli G, Maiorano P, Milani D, Mirandola P, Neri LM. Role of physical exercise in the regulation of epigenetic mechanisms in inflammation, cancer, neurodegenerative diseases, and aging process. J Cell Physiol 2019; 234:14852-14864. [PMID: 30767204 DOI: 10.1002/jcp.28304] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The genetic heritage for decades has been considered to respond only to gene promoters or suppressors, with specific roles for oncogenes or tumor-suppressor genes. Epigenetics is progressively attracting increasing interest because it has demonstrated the capacity of these regulatory processes to regulate the gene expression without modifying gene sequence. Several factors may influence epigenetics, such as lifestyles including food selection. A role for physical exercise is emerging in the epigenetic regulation of gene expression. In this review, we resume physiological and pathological implications of epigenetic modification induced by the physical activity (PA). Inflammation and cancer mechanisms, immune system, central nervous system, and the aging process receive benefits due to PA through epigenetic mechanisms. Thus, the modulation of epigenetic processes by physical exercise positively influences prevention, development, and the course of inflammatory and cancer diseases, as well as neurodegenerative illnesses. This growing field of studies gives rise to a new role for PA as an option in prevention strategies and to integrate pharmacological therapeutic treatments.
Collapse
Affiliation(s)
- Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Patrizia Maiorano
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
36
|
Krajewski WA, Li J, Dou Y. Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics. Nucleic Acids Res 2019; 46:7631-7642. [PMID: 29931239 PMCID: PMC6125632 DOI: 10.1093/nar/gky526] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
DNA in nucleosomes has restricted nucleosome dynamics and is refractory to DNA-templated processes. Histone post-translational modifications play important roles in regulating DNA accessibility in nucleosomes. Whereas most histone modifications function either by mitigating the electrostatic shielding of histone tails or by recruiting 'reader' proteins, we show that ubiquitylation of H2B K34, which is located in a tight space protected by two coils of DNA superhelix, is able to directly influence the canonical nucleosome conformation via steric hindrances by ubiquitin groups. H2B K34 ubiquitylation significantly enhances nucleosome dynamics and promotes generation of hexasomes both with symmetrically or asymmetrically modified nucleosomes. Our results indicate a direct mechanism by which a histone modification regulates the chromatin structural states.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow, 119334, Russia.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiabin Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Robinson HA, Pozzo-Miller L. The role of MeCP2 in learning and memory. ACTA ACUST UNITED AC 2019; 26:343-350. [PMID: 31416907 PMCID: PMC6699413 DOI: 10.1101/lm.048876.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 01/31/2023]
Abstract
Gene transcription is a crucial step in the sequence of molecular, synaptic, cellular, and systems mechanisms underlying learning and memory. Here, we review the experimental evidence demonstrating that alterations in the levels and functionality of the methylated DNA-binding transcriptional regulator MeCP2 are implicated in the learning and memory deficits present in mouse models of Rett syndrome and MECP2 duplication syndrome. The significant impact that MeCP2 has on gene transcription through a variety of mechanisms, combined with well-defined models of learning and memory, make MeCP2 an excellent candidate to exemplify the role of gene transcription in learning and memory. Together, these studies have strengthened the concept that precise control of activity-dependent gene transcription is a fundamental mechanism that ensures long-term adaptive behaviors necessary for the survival of individuals interacting with their congeners in an ever-changing environment.
Collapse
Affiliation(s)
- Holly A Robinson
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
38
|
Yang L, Ma Z, Wang H, Niu K, Cao Y, Sun L, Geng Y, Yang B, Gao F, Chen Z, Wu Z, Li Q, Shen Y, Zhang X, Jiang H, Chen Y, Liu R, Liu N, Zhang Y. Ubiquitylome study identifies increased histone 2A ubiquitylation as an evolutionarily conserved aging biomarker. Nat Commun 2019; 10:2191. [PMID: 31113955 PMCID: PMC6529468 DOI: 10.1038/s41467-019-10136-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
The long-lived proteome constitutes a pool of exceptionally stable proteins with limited turnover. Previous studies on ubiquitin-mediated protein degradation primarily focused on relatively short-lived proteins; how ubiquitylation modifies the long-lived proteome and its regulatory effect on adult lifespan is unclear. Here we profile the age-dependent dynamics of long-lived proteomes in Drosophila by mass spectrometry using stable isotope switching coupled with antibody-enriched ubiquitylome analysis. Our data describe landscapes of long-lived proteins in somatic and reproductive tissues of Drosophila during adult lifespan, and reveal a preferential ubiquitylation of older long-lived proteins. We identify an age-modulated increase of ubiquitylation on long-lived histone 2A protein in Drosophila, which is evolutionarily conserved in mouse, monkey, and human. A reduction of ubiquitylated histone 2A in mutant flies is associated with longevity and healthy lifespan. Together, our data reveal an evolutionarily conserved biomarker of aging that links epigenetic modulation of the long-lived histone protein to lifespan.
Collapse
Affiliation(s)
- Lu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zaijun Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongyan Niu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
| | - Bo Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Feng Gao
- Neurodegenerative Disorder Research Center, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, China
| | - Zuolong Chen
- Neurodegenerative Disorder Research Center, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qingqing Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yong Shen
- Neurodegenerative Disorder Research Center, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
| | - Rui Liu
- Singlera Genomics, 781 Cailun Road, Rm 1208, Pudong, Shanghai, 201203, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China.
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China.
| |
Collapse
|
39
|
Meas R, Wyrick JJ, Smerdon MJ. Nucleosomes Regulate Base Excision Repair in Chromatin. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 780:29-36. [PMID: 31388331 PMCID: PMC6684245 DOI: 10.1016/j.mrrev.2017.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chromatin is a significant barrier to many DNA damage response (DDR) factors, such as DNA repair enzymes, that process DNA lesions to reduce mutations and prevent cell death; yet, paradoxically, chromatin also has a critical role in many signaling pathways that regulate the DDR. The primary level of DNA packaging in chromatin is the nucleosome core particle (NCP), consisting of DNA wrapped around an octamer of the core histones H2A, H2B, H3 and H4. Here, we review recent studies characterizing how the packaging of DNA into nucleosomes modulates the activity of the base excision repair (BER) pathway and dictates BER subpathway choice. We also review new evidence indicating that the histone amino-terminal tails coordinately regulate multiple DDR pathways during the repair of alkylation damage in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Rithy Meas
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520
| | - Michael J. Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520
| |
Collapse
|
40
|
Marsh DJ, Dickson KA. Writing Histone Monoubiquitination in Human Malignancy-The Role of RING Finger E3 Ubiquitin Ligases. Genes (Basel) 2019; 10:genes10010067. [PMID: 30669413 PMCID: PMC6356280 DOI: 10.3390/genes10010067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/09/2023] Open
Abstract
There is growing evidence highlighting the importance of monoubiquitination as part of the histone code. Monoubiquitination, the covalent attachment of a single ubiquitin molecule at specific lysines of histone tails, has been associated with transcriptional elongation and the DNA damage response. Sites function as scaffolds or docking platforms for proteins involved in transcription or DNA repair; however, not all sites are equal, with some sites resulting in actively transcribed chromatin and others associated with gene silencing. All events are written by E3 ubiquitin ligases, predominantly of the RING (really interesting new gene) finger type. One of the most well-studied events is monoubiquitination of histone H2B at lysine 120 (H2Bub1), written predominantly by the RING finger complex RNF20-RNF40 and generally associated with active transcription. Monoubiquitination of histone H2A at lysine 119 (H2AK119ub1) is also well-studied, its E3 ubiquitin ligase constituting part of the Polycomb Repressor Complex 1 (PRC1), RING1B-BMI1, associated with transcriptional silencing. Both modifications are activated as part of the DNA damage response. Histone monoubiquitination is a key epigenomic event shaping the chromatin landscape of malignancy and influencing how cells respond to DNA damage. This review discusses a number of these sites and the E3 RING finger ubiquitin ligases that write them.
Collapse
Affiliation(s)
- Deborah J Marsh
- University of Technology Sydney, Translational Oncology Group, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia.
| | - Kristie-Ann Dickson
- University of Technology Sydney, Translational Oncology Group, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia.
| |
Collapse
|
41
|
The Role of DNA/Histone Modifying Enzymes and Chromatin Remodeling Complexes in Testicular Germ Cell Tumors. Cancers (Basel) 2018; 11:cancers11010006. [PMID: 30577487 PMCID: PMC6357018 DOI: 10.3390/cancers11010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
It is well established that cancer cells exhibit alterations in chromatin structure and accessibility. Indeed, the dysregulation of many protein-coding players with enzymatic activity (DNA and histone-modifying enzymes) and chromatin remodelers have been depicted in various tumor models in recent years. Still, little attention has been directed towards testicular germ cell tumors (TGCTs)-representing the most common neoplasm among young adult Caucasian men-with most studies focusing on exploring the role of DNA methyltransferases (DNMTs) and DNA demethylases (TETs). TGCTs represent a complex tumor model, associated with developmental and embryogenesis-related phenomena, and display seldom (cyto)genetic aberrations, leaving room for Epigenetics to explain such morphological and clinical diversity. Herein, we have summarized the major findings that were reported in literature regarding the dysregulation of DNA/histone-modifying enzymes and chromatin remodelers in TGCTs. Additionally, we performed in silico analysis of The Cancer Genome Atlas database to find the most relevant of those players in TGCTs. We concluded that several DNA/histone-modifying enzymes and chromatin remodelers may serve as biomarkers for subtyping, dictating prognosis and survival, and, possibly, for serving as targets of directed, less toxic therapies.
Collapse
|
42
|
McHugh A, Fernandes K, South AP, Mellerio JE, Salas-Alanís JC, Proby CM, Leigh IM, Saville MK. Preclinical comparison of proteasome and ubiquitin E1 enzyme inhibitors in cutaneous squamous cell carcinoma: the identification of mechanisms of differential sensitivity. Oncotarget 2018; 9:20265-20281. [PMID: 29755650 PMCID: PMC5945540 DOI: 10.18632/oncotarget.24750] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/02/2018] [Indexed: 11/25/2022] Open
Abstract
Proteasome inhibitors have distinct properties and the biochemical consequences of suppressing ubiquitin E1 enzymes and the proteasome differ. We compared the effects of the proteasome inhibitors bortezomib, ixazomib and carfilzomib and the ubiquitin E1 enzyme inhibitor MLN7243/TAK-243 on cell viability and cell death in normal keratinocytes and cutaneous squamous cell carcinoma (cSCC) cell lines. The effects of both a pulse of treatment and more extended incubation were investigated. This is relevant to directly-delivered therapy (topical treatment/intratumoral injection) where the time of exposure can be controlled and a short exposure may better reflect systemically-delivered inhibitor pharmacokinetics. These agents can selectively kill cSCC cells but there are variations in the pattern of cSCC cell line sensitivity/resistance. Variations in the responses to proteasome inhibitors are associated with differences in the specificity of the inhibitors for the three proteolytic activities of the proteasome. There is greater selectivity for killing cSCC cells compared to normal keratinocytes with a pulse of proteasome inhibitor treatment than with a more extended exposure. We provide evidence that c-MYC-dependent NOXA upregulation confers susceptibility to a short incubation with proteasome inhibitors by priming cSCC cells for rapid BAK-dependent death. We observed that bortezomib-resistant cSCC cells can be sensitive to MLN7243-induced death. Low expression of the ubiquitin E1 UBA1/UBE1 participates in conferring susceptibility to MLN7243 by increasing sensitivity to MLN7243-mediated attenuation of ubiquitination. This study supports further investigation of the potential of proteasome and ubiquitin E1 inhibition for cSCC therapy. Direct delivery of inhibitors could facilitate adequate exposure of skin cancers.
Collapse
Affiliation(s)
- Angela McHugh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Kenneth Fernandes
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jemima E Mellerio
- St. John's Institute of Dermatology, King's College London, Guy's Campus, London, SE1 7EH, UK
| | - Julio C Salas-Alanís
- DEBRA Mexico, Azteca Guadalupe, Nuevo Leon, 67150 Mexico.,Hospital Regional "Lic. Adolfo Lopez Mateos", Colonia Florida, Del Alvaro Obregon, 01030 Ciudad de Mexico
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Irene M Leigh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.,Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Mark K Saville
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
43
|
mRNA Processing Factor CstF-50 and Ubiquitin Escort Factor p97 Are BRCA1/BARD1 Cofactors Involved in Chromatin Remodeling during the DNA Damage Response. Mol Cell Biol 2018; 38:MCB.00364-17. [PMID: 29180510 PMCID: PMC5789026 DOI: 10.1128/mcb.00364-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023] Open
Abstract
The cellular response to DNA damage is an intricate mechanism that involves the interplay among several pathways. In this study, we provide evidence of the roles of the polyadenylation factor cleavage stimulation factor 50 (CstF-50) and the ubiquitin (Ub) escort factor p97 as cofactors of BRCA1/BARD1 E3 Ub ligase, facilitating chromatin remodeling during the DNA damage response (DDR). CstF-50 and p97 formed complexes with BRCA1/BARD1, Ub, and some BRCA1/BARD1 substrates, such as RNA polymerase (RNAP) II and histones. Furthermore, CstF-50 and p97 had an additive effect on the activation of the ubiquitination of these BRCA1/BARD1 substrates during DDR. Importantly, as a result of these functional interactions, BRCA1/BARD1/CstF-50/p97 had a specific effect on the chromatin structure of genes that were differentially expressed. This study provides new insights into the roles of RNA processing, BRCA1/BARD1, the Ub pathway, and chromatin structure during DDR.
Collapse
|
44
|
Zhou Z, Rajasingh S, Barani B, Samanta S, Dawn B, Wang R, Rajasingh J. Therapy of Infectious Diseases Using Epigenetic Approaches. EPIGENETICS IN HUMAN DISEASE 2018:689-715. [DOI: 10.1016/b978-0-12-812215-0.00022-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
45
|
Hashimoto JG, Gavin DP, Wiren KM, Crabbe JC, Guizzetti M. Prefrontal cortex expression of chromatin modifier genes in male WSP and WSR mice changes across ethanol dependence, withdrawal, and abstinence. Alcohol 2017; 60:83-94. [PMID: 28433423 PMCID: PMC5497775 DOI: 10.1016/j.alcohol.2017.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Alcohol-use disorder (AUD) is a relapsing disorder associated with excessive ethanol consumption. Recent studies support the involvement of epigenetic mechanisms in the development of AUD. Studies carried out so far have focused on a few specific epigenetic modifications. The goal of this project was to investigate gene expression changes of epigenetic regulators that mediate a broad array of chromatin modifications after chronic alcohol exposure, chronic alcohol exposure followed by 8 h withdrawal, and chronic alcohol exposure followed by 21 days of abstinence in Withdrawal-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) selected mouse lines. We found that chronic vapor exposure to highly intoxicating levels of ethanol alters the expression of several chromatin remodeling genes measured by quantitative PCR array analyses. The identified effects were independent of selected lines, which, however, displayed baseline differences in epigenetic gene expression. We reported dysregulation in the expression of genes involved in histone acetylation, deacetylation, lysine and arginine methylation and ubiquitinationhylation during chronic ethanol exposure and withdrawal, but not after 21 days of abstinence. Ethanol-induced changes are consistent with decreased histone acetylation and with decreased deposition of the permissive ubiquitination mark H2BK120ub, associated with reduced transcription. On the other hand, ethanol-induced changes in the expression of genes involved in histone lysine methylation are consistent with increased transcription. The net result of these modifications on gene expression is likely to depend on the combination of the specific histone tail modifications present at a given time on a given promoter. Since alcohol does not modulate gene expression unidirectionally, it is not surprising that alcohol does not unidirectionally alter chromatin structure toward a closed or open state, as suggested by the results of this study.
Collapse
Affiliation(s)
- Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States
| | - David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL, 60612, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, 60612, United States
| | - Kristine M Wiren
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States.
| |
Collapse
|
46
|
Villa-Hernández S, Bueno A, Bermejo R. The Multiple Roles of Ubiquitylation in Regulating Challenged DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:395-419. [PMID: 29357068 DOI: 10.1007/978-981-10-6955-0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA replication is essential for the propagation of life and the development of complex organisms. However, replication is a risky process as it can lead to mutations and chromosomal alterations. Conditions challenging DNA synthesis by replicative polymerases or DNA helix unwinding, generally termed as replication stress, can halt replication fork progression. Stalled replication forks are unstable, and mechanisms exist to protect their integrity, which promote an efficient restart of DNA synthesis and counteract fork collapse characterized by the accumulation of DNA lesions and mutagenic events. DNA replication is a highly regulated process, and several mechanisms control replication timing and integrity both during unperturbed cell cycles and in response to replication stress. Work over the last two decades has revealed that key steps of DNA replication are controlled by conjugation of the small peptide ubiquitin. While ubiquitylation was traditionally linked to protein degradation, the complexity and flexibility of the ubiquitin system in regulating protein function have recently emerged. Here we review the multiple roles exerted by ubiquitin-conjugating enzymes and ubiquitin-specific proteases, as well as readers of ubiquitin chains, in the control of eukaryotic DNA replication and replication-coupled DNA damage tolerance and repair.
Collapse
Affiliation(s)
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | |
Collapse
|
47
|
Alterations of Epigenetic Regulators in Pancreatic Cancer and Their Clinical Implications. Int J Mol Sci 2016; 17:ijms17122138. [PMID: 27999365 PMCID: PMC5187938 DOI: 10.3390/ijms17122138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancer types with a five-year survival less than 7%. Emerging evidence revealed that many genetic alterations in pancreatic cancer target epigenetic regulators. Some of these mutations are driver mutations in cancer development. Several most important mechanisms of epigenetic regulations include DNA methylation, histone modifications (methylation, acetylation, and ubiquitination), chromatin remodeling, and non-coding ribonucleic acids (RNAs). These modifications can alter chromatin structure and promoter accessibility, and thus lead to aberrant gene expression. However, exactly how these alterations affect epigenetic reprogramming in pancreatic cancer cells and in different stages of tumor development is still not clear. This mini-review summarizes the current knowledge of epigenetic alterations in pancreatic cancer development and progression, and discusses the clinical applications of epigenetic regulators as diagnostic biomarkers and therapeutic targets in pancreatic cancer.
Collapse
|
48
|
Mao P, Wyrick JJ. Emerging roles for histone modifications in DNA excision repair. FEMS Yeast Res 2016; 16:fow090. [PMID: 27737893 DOI: 10.1093/femsyr/fow090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/27/2022] Open
Abstract
DNA repair is critical to maintain genome stability. In eukaryotic cells, DNA repair is complicated by the packaging of the DNA 'substrate' into chromatin. DNA repair pathways utilize different mechanisms to overcome the barrier presented by chromatin to efficiently locate and remove DNA lesions in the genome. DNA excision repair pathways are responsible for repairing a majority of DNA lesions arising in the genome. Excision repair pathways include nucleotide excision repair (NER) and base excision repair (BER), which repair bulky and non-bulky DNA lesions, respectively. Numerous studies have suggested that chromatin inhibits both NER and BER in vitro and in vivo Growing evidence demonstrates that histone modifications have important roles in regulating the activity of NER and BER enzymes in chromatin. Here, we will discuss the roles of different histone modifications and the corresponding modifying enzymes in DNA excision repair, highlighting the role of yeast as a model organism for many of these studies.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
49
|
Xu H, Chen X, Xu X, Shi R, Suo S, Cheng K, Zheng Z, Wang M, Wang L, Zhao Y, Tian B, Hua Y. Lysine Acetylation and Succinylation in HeLa Cells and their Essential Roles in Response to UV-induced Stress. Sci Rep 2016; 6:30212. [PMID: 27452117 PMCID: PMC4959001 DOI: 10.1038/srep30212] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation and succinylation are major types of protein acylation that are important in many cellular processes including gene transcription, cellular metabolism, DNA damage response. Malfunctions in these post-translational modifications are associated with genome instability and disease in higher organisms. In this study, we used high-resolution nano liquid chromatography-tandem mass spectrometry combined with affinity purification to quantify the dynamic changes of protein acetylation and succinylation in response to ultraviolet (UV)-induced cell stress. A total of 3345 acetylation sites in 1440 proteins and 567 succinylation sites in 246 proteins were identified, many of which have not been reported previously. Bioinformatics analysis revealed that these proteins are involved in many important biological processes, including cell signalling transduction, protein localization and cell metabolism. Crosstalk analysis between these two modifications indicated that modification switches might regulate protein function in response to UV-induced DNA damage. We further illustrated that FEN1 acetylation at different sites could lead to different cellular phenotypes, suggesting the multiple function involvement of FEN1 acetylation under DNA damage stress. These systematic analyses provided valuable resources and new insight into the potential role of lysine acetylation and succinylation under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hong Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Xuanyi Chen
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Xu
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Rongyi Shi
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Shasha Suo
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Kaiying Cheng
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Zhiguo Zheng
- Institute of Zhejiang Cancer Research, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Meixia Wang
- Zhejiang Institute of Microbiology, Hangzhou, 310000, China
| | - Liangyan Wang
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Ye Zhao
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Bing Tian
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Yuejin Hua
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| |
Collapse
|