1
|
Li X, Li X, Qin J, Lei L, Guo H, Zheng X, Zeng X. Machine learning-derived peripheral blood transcriptomic biomarkers for early lung cancer diagnosis: Unveiling tumor-immune interaction mechanisms. Biofactors 2025; 51:e2129. [PMID: 39415336 DOI: 10.1002/biof.2129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
Lung cancer continues to be the leading cause of cancer-related mortality worldwide. Early detection and a comprehensive understanding of tumor-immune interactions are crucial for improving patient outcomes. This study aimed to develop a novel biomarker panel utilizing peripheral blood transcriptomics and machine learning algorithms for early lung cancer diagnosis, while simultaneously providing insights into tumor-immune crosstalk mechanisms. Leveraging a training cohort (GSE135304), we employed multiple machine learning algorithms to formulate a Lung Cancer Diagnostic Score (LCDS) based on peripheral blood transcriptomic features. The LCDS model's performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) in multiple validation cohorts (GSE42834, GSE157086, and an in-house dataset). Peripheral blood samples were obtained from 20 lung cancer patients and 10 healthy control subjects, representing an in-house cohort recruited at the Sixth People's Hospital of Chengdu. We employed advanced bioinformatics techniques to explore tumor-immune interactions through comprehensive immune infiltration and pathway enrichment analyses. Initial screening identified 844 differentially expressed genes, which were subsequently refined to 87 genes using the Boruta feature selection algorithm. The random forest (RF) algorithm demonstrated the highest accuracy in constructing the LCDS model, yielding a mean AUC of 0.938. Lower LCDS values were significantly associated with elevated immune scores and increased CD4+ and CD8+ T-cell infiltration, indicative of enhanced antitumor-immune responses. Higher LCDS scores correlated with activation of hypoxia, peroxisome proliferator-activated receptor (PPAR), and Toll-like receptor (TLR) signaling pathways, as well as reduced DNA damage repair pathway scores. Our study presents a novel, machine learning-derived peripheral blood transcriptomic biomarker panel with potential applications in early lung cancer diagnosis. The LCDS model not only demonstrates high accuracy in distinguishing lung cancer patients from healthy individuals but also offers valuable insights into tumor-immune interactions and underlying cancer biology. This approach may facilitate early lung cancer detection and contribute to a deeper understanding of the molecular and cellular mechanisms underlying tumor-immune crosstalk. Furthermore, our findings on the relationship between LCDS and immune infiltration patterns may have implications for future research on therapeutic strategies targeting the immune system in lung cancer.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Respiratory and Critical Care Medicine, Sixth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Xuebing Li
- Department of Respiratory and Critical Care Medicine, People's Hospital of Yaan, Yaan, Sichuan, China
| | - Jiangyue Qin
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Lei
- Department of Oncology, Sixth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Hua Guo
- Department of Respiratory and Critical Care Medicine, Sixth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Xi Zheng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuefeng Zeng
- Department of Respiratory and Critical Care Medicine, Sixth People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Ibrahim A, Atallah NM, Makhlouf S, Toss MS, Green A, Rakha E. Deciphering the Role of ASPM in Breast Cancer: A Comprehensive Multicohort Study. Cancers (Basel) 2024; 16:3814. [PMID: 39594769 PMCID: PMC11592464 DOI: 10.3390/cancers16223814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Assembly factor for spindle microtubules (ASPM) has gained significant attention in cancer research due to its association with tumor growth and progression. Through the analysis of large-scale genomic datasets, ASPM has been identified as the top upregulated gene in breast cancer (BC), characterized by high proliferation. This multicohort study aimed to investigate the clinicopathological and prognostic significance of ASPM mRNA and protein expression in BC. METHODS ASPM mRNA expression was assessed using the Cancer Genome Atlas (TCGA) BC cohort and has been further validated in the Molecular Taxonomy of BC International Consortium (METABRIC) (n = 1980), The Uppsala cohort (n = 249), in addition to the combined multicentric cohort (n = 7252). ASPM protein expression was evaluated in a large BC cohort (n = 1300) using immunohistochemistry. The correlations between ASPM expression, clinicopathological parameters, molecular subtypes and outcome were assessed. The response to taxane treatment was compared to the clinical prognosis of ASPM using the ROC plotter. RESULTS High ASPM mRNA and protein expression were significantly associated with aggressive BC features and poor survival across all cohorts. The association with poor outcomes was maintained in the adjuvant chemotherapy and radio-therapy-treated patients. Responders to taxane treatment showed significantly elevated ASPM levels compared to non-responders. CONCLUSIONS High ASPM expression predicts poor prognosis in BC. It may play a role in treatment resistance within a specific subgroup of patients. Further clinical trials are warranted to explore the potential of ASPM as a target for therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Asmaa Ibrahim
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.I.); (N.M.A.); (S.M.); (A.G.)
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Nehal M. Atallah
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.I.); (N.M.A.); (S.M.); (A.G.)
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebeen El-Kom P.O. Box 32951, Egypt
| | - Shorouk Makhlouf
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.I.); (N.M.A.); (S.M.); (A.G.)
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut P.O. Box 7111, Egypt
| | - Michael S. Toss
- Histopathology Department, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2TN, UK;
| | - Andrew Green
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.I.); (N.M.A.); (S.M.); (A.G.)
| | - Emad Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.I.); (N.M.A.); (S.M.); (A.G.)
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebeen El-Kom P.O. Box 32951, Egypt
- Pathology Department, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| |
Collapse
|
3
|
Leu YL, Cheng SF, Wang TH, Feng CH, Chen YJ, Hsieh YC, Lan YH, Chen CC. Increasing DNA damage sensitivity through corylin-mediated inhibition of homologous recombination. Biomed Pharmacother 2024; 176:116864. [PMID: 38865847 DOI: 10.1016/j.biopha.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND DNA repair allows the survival of cancer cells. Therefore, the development of DNA repair inhibitors is a critical need for sensitizing cancers to chemoradiation. Sae2CtIP has specific functions in initiating DNA end resection, as well as coordinating cell cycle checkpoints, and it also greatly interacts with the DDR at different levels. RESULTS In this study, we demonstrated that corylin, a potential sensitizer, causes deficiencies in DNA repair and DNA damage checkpoints in yeast cells. More specifically, corylin increases DNA damage sensitivity through the Sae2-dependent pathway and impairs the activation of Mec1-Ddc2, Rad53-p and γ-H2A. In breast cancer cells, corylin increases apoptosis and reduces proliferation following Dox treatment by inhibiting CtIP. Xenograft assays showed that treatment with corylin combined with Dox significantly reduced tumor growth in vivo. CONCLUSIONS Our findings herein delineate the mechanisms of action of corylin in regulating DNA repair and indicate that corylin has potential long-term clinical utility as a DDR inhibitor.
Collapse
Affiliation(s)
- Yann-Lii Leu
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC
| | - Shu-Fang Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan, ROC; Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Tong-Hong Wang
- Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC
| | - Chun-Hao Feng
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Yu-Ju Chen
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Yi-Cheng Hsieh
- Office of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX 77843, USA
| | - Yu-Hsuan Lan
- Department of Pharmacy, College of Pharmacy, China Medical University, No.100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, ROC.
| | - Chin-Chuan Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan, ROC; Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Healthy Aging Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC.
| |
Collapse
|
4
|
Paizula X, Wulaying A, Chen D, Ou J. KHSRP has oncogenic functions and regulates the expression and alternative splicing of DNA repair genes in breast cancer MDA-MB-231 cells. Sci Rep 2024; 14:14694. [PMID: 38926398 PMCID: PMC11208542 DOI: 10.1038/s41598-024-64687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer has become the most common type of cancers worldwide. Its high prevalence and malignant features are associated with various environmental factors and molecules. The KH-type splicing regulatory protein (KHSRP) participates in the development of breast cancer, while the underlying mechanisms are largely unknown. In this study, we silenced KHSRP expression in MDA-MB-231 cells by small interfering RNA (siKHSRP), and then assessed its effects on cellular features. Finally, we performed whole transcriptome sequencing (RNA-seq) experiments to explore the downstream targets of KHSRP, and validated their changed pattern using quantitative polymerase chain reaction. We found KHSRP showed higher expression level and was associated with worse prognosis in breast cancer patients. In siKHSRP samples, the proliferation, invasion, and migration abilities were significantly repressed compared with negative control (NC) samples, while the apoptosis level was increased. By investigating the RNA-seq data, we found KHSRP globally regulates the expression and alternative splicing profiles of MDA-MB-231 cells by identifying 1632 differentially expressed genes (DEGs) and 1630 HKSRP-regulated AS events (RASEs). Functional enriched analysis of DEGs demonstrated that cilium assembly and movement and extracellular matrix organization pathways were specifically enriched in up DEGs, consistent with the repressed migration and invasion abilities in siKHSRP cells. Interestingly, the cell cycle and DNA damage and repair associated pathways were enriched in both down DEGs and RASE genes, suggesting that KHSRP may modulate cell proliferation by regulating genes in these pathways. Finally, we validated the changed expression and AS patterns of genes in cell cycle and DNA damage/repair pathways. Expression levels of BIRC5, CCNA2, CDK1, FEN1, FOXM1, PTTG1, and UHRF1 were downregulated in siKHSRP samples. The AS patterns of PARK7, ERCC1, CENPX, and UBE2A were also dysregulated in siKHSRP samples and confirmed PCR experiments. In summary, our study comprehensively explored the downstream targets and their functions of KHSRP in breast cancer cells, highlighting the molecular mechanisms of KHSRP on the oncogenic features of breast cancer. The identified molecular targets could be served as potential therapeutic targets for breast cancer in future.
Collapse
Affiliation(s)
- Xuelaiti Paizula
- The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, China
| | - Aliya Wulaying
- The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Dong Chen
- Innovation and Research Center, Wuhan Nissi Biotechnology Co., Ltd., Wuhan, China
| | - Jianghua Ou
- The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, China.
| |
Collapse
|
5
|
Singh AK, Yadav D, Malviya R. Splicing DNA Damage Adaptations for the Management of Cancer Cells. Curr Gene Ther 2024; 24:135-146. [PMID: 38282448 DOI: 10.2174/0115665232258528231018113410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 01/30/2024]
Abstract
Maintaining a tumour cell's resistance to apoptosis (organized cell death) is essential for cancer to metastasize. Signal molecules play a critical function in the tightly regulated apoptotic process. Apoptosis may be triggered by a wide variety of cellular stresses, including DNA damage, but its ultimate goal is always the same: the removal of damaged cells that might otherwise develop into tumours. Many chemotherapy drugs rely on cancer cells being able to undergo apoptosis as a means of killing them. The mechanisms by which DNA-damaging agents trigger apoptosis, the interplay between pro- and apoptosis-inducing signals, and the potential for alteration of these pathways in cancer are the primary topics of this review.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Chang Y, Huang Z, Quan H, Li H, Yang S, Song Y, Wang J, Yuan J, Wu C. Construction of a DNA damage repair gene signature for predicting prognosis and immune response in breast cancer. Front Oncol 2023; 12:1085632. [PMID: 36713553 PMCID: PMC9875088 DOI: 10.3389/fonc.2022.1085632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
DNA damage repair (DDR) genes are involved in developing breast cancer. Recently, a targeted therapeutic strategy through DNA repair machinery, including PARPi, has initially shown broad development and application prospects in breast cancer therapy. However, few studies that focused on the correlation between the expression level of DNA repair genes, prognosis, and immune response in breast cancer patients have been recently conducted. Herein, we focused on identifying differentially expressed DNA repair genes (DEGs) in breast cancer specimens and normal samples using the Wilcoxon rank-sum test. Biofunction enrichment analysis was performed with DEGs using the R software "cluster Profiler" package. DNA repair genes were involved in multivariate and univariate Cox regression analyses. After the optimization by AIC value, 11 DNA repair genes were sorted as prognostic DNA repair genes for breast cancer patients to calculate risk scores. Simultaneously, a nomogram was used to represent the prognostic model, which was validated using a calibration curve and C-index. Single-sample gene set enrichment analysis (ssGSEA), CIBERSORT algorithms, and ESTIMATE scores were applied to evaluate the immune filtration of tumor samples. Subsequently, anticarcinogen sensitivity analysis was performed using the R software "pRRophetic" package. Unsupervised clustering was used to excavate the correlation between the expression level of prognostic-significant DNA repair genes and clinical features. In summary, 56 DEGs were sorted, and their potential enriched biofunction pathways were revealed. In total, 11 DNA repair genes (UBE2A, RBBP8, RAD50 , FAAP20, RPA3, ENDOV, DDB2, UBE2V2, MRE11 , RRM2B, and PARP3 ) were preserved as prognostic genes to estimate risk score, which was applied to establish the prognostic model and stratified breast cancer patients into two groups with high or low risk. The calibration curve and C-index indicated that they reliably predicted the survival of breast cancer patients. Immune filtration analysis, anticarcinogen sensitivity analysis, and unsupervised clustering were applied to reveal the character of DNA repair genes between low- and high-risk groups. We identified 11 prognosis-significant DNA repair genes to establish prediction models and immune responses in breast cancer patients.
Collapse
Affiliation(s)
- Yiming Chang
- Jinzhou Medical University, Shanghai East Hospital, Shanghai, China
| | - Zhiyuan Huang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Quan
- Department of Breast Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Li
- Department of Gynaecology and Obstetrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuo Yang
- Department of Medical Imaging, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifei Song
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China,*Correspondence: Jian Yuan, ; Chenming Wu, ; Jian Wang,
| | - Jian Yuan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China,Ji’an Hospital, Shanghai East Hospital, Ji’an, China,*Correspondence: Jian Yuan, ; Chenming Wu, ; Jian Wang,
| | - Chenming Wu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Jian Yuan, ; Chenming Wu, ; Jian Wang,
| |
Collapse
|
7
|
Li C, Yu S, Chen J, Hou Q, Wang S, Qian C, Yin S. Risk stratification based on DNA damage-repair-related signature reflects the microenvironmental feature, metabolic status and therapeutic response of breast cancer. Front Immunol 2023; 14:1127982. [PMID: 37033959 PMCID: PMC10080010 DOI: 10.3389/fimmu.2023.1127982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
DNA damage-repair machinery participates in maintaining genomic integrity and affects tumorigenesis. Molecular signatures based on DNA damage-repair-related genes (DRGs) capable of comprehensively indicating the prognosis, tumor immunometabolic profile and therapeutic responsiveness of breast cancer (BRCA) patients are still lacking. Integrating public datasets and bioinformatics algorithms, we developed a robust prognostic signature based on 27 DRGs. Multiple patient cohorts identified significant differences in various types of survival between high- and low-risk patients stratified by the signature. The signature correlated well with clinicopathological factors and could serve as an independent prognostic indicator for BRCA patients. Furthermore, low-risk tumors were characterized by more infiltrated CD8+ T cells, follicular helper T cells, M1 macrophages, activated NK cells and resting dendritic cells, and fewer M0 and M2 macrophages. The favorable immune infiltration patterns of low-risk tumors were also accompanied by specific metabolic profiles, decreased DNA replication, and enhanced antitumor immunity. Low-risk patients may respond better to immunotherapy, and experience improved outcomes with conventional chemotherapy or targeted medicine. Real-world immunotherapy and chemotherapy cohorts verified the predictive results. Additionally, four small molecule compounds promising to target high-risk tumors were predicted. In vitro experiments confirmed the high expression of GNPNAT1 and MORF4L2 in BRCA tissues and their association with immune cells, and the knockdown of these two DRGs suppressed the proliferation of human BRCA cells. In summary, this DNA damage-repair-related signature performed well in predicting patient prognosis, immunometabolic profiles and therapeutic sensitivity, hopefully contributing to precision medicine and new target discovery of BRCA.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Qian
- *Correspondence: Cheng Qian, ; Shulei Yin,
| | - Shulei Yin
- *Correspondence: Cheng Qian, ; Shulei Yin,
| |
Collapse
|
8
|
Liu Y, Han J, Kong T, Xiao N, Mei Q, Liu J. DriverMP enables improved identification of cancer driver genes. Gigascience 2022; 12:giad106. [PMID: 38091511 PMCID: PMC10716827 DOI: 10.1093/gigascience/giad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cancer is widely regarded as a complex disease primarily driven by genetic mutations. A critical concern and significant obstacle lies in discerning driver genes amid an extensive array of passenger genes. FINDINGS We present a new method termed DriverMP for effectively prioritizing altered genes on a cancer-type level by considering mutated gene pairs. It is designed to first apply nonsilent somatic mutation data, protein‒protein interaction network data, and differential gene expression data to prioritize mutated gene pairs, and then individual mutated genes are prioritized based on prioritized mutated gene pairs. Application of this method in 10 cancer datasets from The Cancer Genome Atlas demonstrated its great improvements over all the compared state-of-the-art methods in identifying known driver genes. Then, a comprehensive analysis demonstrated the reliability of the novel driver genes that are strongly supported by clinical experiments, disease enrichment, or biological pathway analysis. CONCLUSIONS The new method, DriverMP, which is able to identify driver genes by effectively integrating the advantages of multiple kinds of cancer data, is available at https://github.com/LiuYangyangSDU/DriverMP. In addition, we have developed a novel driver gene database for 10 cancer types and an online service that can be freely accessed without registration for users. The DriverMP method, the database of novel drivers, and the user-friendly online server are expected to contribute to new diagnostic and therapeutic opportunities for cancers.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Jiyun Han
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Tongxin Kong
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Nannan Xiao
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Qinglin Mei
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Juntao Liu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| |
Collapse
|
9
|
Zhang Q, Liu X, Chen Z, Zhang S. Novel GIRlncRNA Signature for Predicting the Clinical Outcome and Therapeutic Response in NSCLC. Front Pharmacol 2022; 13:937531. [PMID: 35991889 PMCID: PMC9382191 DOI: 10.3389/fphar.2022.937531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Non–small cell lung cancer (NSCLC) is highly malignant with driver somatic mutations and genomic instability. Long non-coding RNAs (lncRNAs) play a vital role in regulating these two aspects. However, the identification of somatic mutation-derived, genomic instability-related lncRNAs (GIRlncRNAs) and their clinical significance in NSCLC remains largely unexplored. Methods: Clinical information, gene mutation, and lncRNA expression data were extracted from TCGA database. GIRlncRNAs were screened by a mutator hypothesis-derived computational frame. Co-expression, GO, and KEGG enrichment analyses were performed to investigate the biological functions. Cox and LASSO regression analyses were performed to create a prognostic risk model based on the GIRlncRNA signature (GIRlncSig). The prediction efficiency of the model was evaluated by using correlation analyses with mutation, driver gene, immune microenvironment contexture, and therapeutic response. The prognostic performance of the model was evaluated by external datasets. A nomogram was established and validated in the testing set and TCGA dataset. Results: A total of 1446 GIRlncRNAs were selected from the screen, and the established GIRlncSig was used to classify patients into high- and low-risk groups. Enrichment analyses showed that GIRlncRNAs were mainly associated with nucleic acid metabolism and DNA damage repair pathways. Cox analyses further identified 19 GIRlncRNAs to construct a GIRlncSig-based risk score model. According to Cox regression and stratification analyses, 14 risk lncRNAs (AC023824.3, AC013287.1, AP000829.1, LINC01611, AC097451.1, AC025419.1, AC079949.2, LINC01600, AC004862.1, AC021594.1, MYRF-AS1, LINC02434, LINC02412, and LINC00337) and five protective lncRNAs (LINC01067, AC012645.1, AL512604.3, AC008278.2, and AC089998.1) were considered powerful predictors. Analyses of the model showed that these GIRlncRNAs were correlated with somatic mutation pattern, immune microenvironment infiltration, immunotherapeutic response, drug sensitivity, and survival of NSCLC patients. The GIRlncSig risk score model demonstrated good predictive performance (AUCs of ROC for 10-year survival was 0.69) and prognostic value in different NSCLC datasets. The nomogram comprising GIRlncSig and tumor stage exhibited improved robustness and feasibility for predicting NSCLC prognosis. Conclusion: The newly identified GIRlncRNAs are powerful biomarkers for clinical outcome and prognosis of NSCLC. Our study highlights that the GIRlncSig-based score model may be a useful tool for risk stratification and management of NSCLC patients, which deserves further evaluation in future prospective studies.
Collapse
Affiliation(s)
- Qiangzhe Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xicheng Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Sihe Zhang, , https://orcid.org/0000-0002-8923-1993
| |
Collapse
|
10
|
Manjunath M, Swaroop S, Pradhan SS, Rao K R, Mahadeva R, Sivaramakrishnan V, Choudhary B. Integrated Transcriptome and Metabolomic Analysis Reveal Anti-Angiogenic Properties of Disarib, a Novel Bcl2-Specific Inhibitor. Genes (Basel) 2022; 13:genes13071208. [PMID: 35885991 PMCID: PMC9316176 DOI: 10.3390/genes13071208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Transcriptomic profiling of several drugs in cancer cell lines has been utilised to obtain drug-specific signatures and guided combination therapy to combat drug resistance and toxicity. Global metabolomics reflects changes due to altered activity of enzymes, environmental factors, etc. Integrating transcriptomics and metabolomics can provide genotype-phenotype correlation, providing meaningful insights into alterations in gene expression and its outcome to understand differential metabolism and guide therapy. This study uses a multi-omics approach to understand the global gene expression and metabolite changes induced by Disarib, a novel Bcl2-specific inhibitor in the Ehrlich adenocarcinoma (EAC) breast cancer mouse model. RNAseq analysis was performed on EAC mouse tumours treated with Disarib and compared to the controls. The expression of 6 oncogenes and 101 tumour suppressor genes interacting with Bcl2 and Bak were modulated upon Disarib treatment. Cancer hallmark pathways like DNA repair, Cell cycle, angiogenesis, and mitochondrial metabolism were downregulated, and programmed cell death platelet-related pathways were upregulated. Global metabolomic profiling using LC-MS revealed that Oncometabolites like carnitine, oleic acid, glycine, and arginine were elevated in tumour mice compared to normal and were downregulated upon Disarib treatment. Integrated transcriptomic and metabolomic profiles identified arginine metabolism, histidine, and purine metabolism to be altered upon Disarib treatment. Pro-angiogenic metabolites, arginine, palmitic acid, oleic acid, and myristoleic acid were downregulated in Disarib-treated mice. We further validated the effect of Disarib on angiogenesis by qRT-PCR analysis of genes in the VEGF pathway. Disarib treatment led to the downregulation of pro-angiogenic markers. Furthermore, the chorioallantoic membrane assay displayed a reduction in the formation of the number of secondary blood vessels upon Disarib treatment. Disarib reduces tumours by reducing oncometabolite and activating apoptosis and downregulating angiogenesis.
Collapse
Affiliation(s)
- Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sai Swaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Raksha Rao K
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
| | - Raghunandan Mahadeva
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
- Correspondence:
| |
Collapse
|
11
|
DNA Repair Protein HELQ and XAB2 as Chemoresponse and Prognosis Biomarkers in Ascites Tumor Cells of High-Grade Serous Ovarian Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7521934. [PMID: 35392433 PMCID: PMC8983184 DOI: 10.1155/2022/7521934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is an important mediator for responsiveness of platinum-based chemotherapy. Our study is aimed at investigating the NER-related genes expression in ascites tumor cells and its application in the prediction of chemoresponse in high-grade serous ovarian cancer (HGSC) patients. The relationship between 16 NER-related genes and the prognosis of ovarian cancer was analyzed in the TCGA database. NER-related genes including HELQ and XAB2 expressions were determined via immunocytochemistry in ascites cell samples from 92 ovarian cancer patients prior to primary cytoreduction surgery. Kaplan-Meier analysis and Cox model were used to investigate the association between NER-related gene expression and prognosis/chemotherapeutic response. Predicting models were constructed using a training cohort of 60 patients and validated in a validation cohort of 32 patients. We found that high expression of HELQ and XAB2 in the training cohort was associated with poor prognosis (for HELQ, P = 0.001, HR = 2.83, 95% CI: 1.46-5.49; for XAB2, P = 0.008, HR = 2.38, 95% CI: 1.23-4.63) and platinum resistance (for HELQ, P < 0.001; for XAB2, P = 0.006). In the validation cohort, the combination of HELQ and XAB2 (AUC = 0.863) showed the highest AUC. The expression levels of HELQ (RR 5.7, 95% CI 1.7-19.2) and XAB2 (RR 3.2, 95% CI 0.9-10.8) in ascites tumor cells were positively correlated to the risk of platinum resistance. In summary, we revealed that the expression levels of HELQ and XAB2 are candidate predictors for primary chemotherapy responsiveness and prognosis in HGSC. Ascites cytology is applicable as a promising method for chemosensitivity prediction in HGSC.
Collapse
|
12
|
Zhao S, Xu B, Ma W, Chen H, Jiang C, Cai J, Meng X. DNA Damage Repair in Brain Tumor Immunotherapy. Front Immunol 2022; 12:829268. [PMID: 35095931 PMCID: PMC8792754 DOI: 10.3389/fimmu.2021.829268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
With the gradual understanding of tumor development, many tumor therapies have been invented and applied in clinical work, and immunotherapy has been widely concerned as an emerging hot topic in the last decade. It is worth noting that immunotherapy is nowadays applied under too harsh conditions, and many tumors are defined as “cold tumors” that are not sensitive to immunotherapy, and brain tumors are typical of them. However, there is much evidence that suggests a link between DNA damage repair mechanisms and immunotherapy. This may be a breakthrough for the application of immunotherapy in brain tumors. Therefore, in this review, first, we will describe the common pathways of DNA damage repair. Second, we will focus on immunotherapy and analyze the mechanisms of DNA damage repair involved in the immune process. Third, we will review biomarkers that have been or may be used to evaluate immunotherapy for brain tumors, such as TAMs, RPA, and other molecules that may provide a precursor assessment for the rational implementation of immunotherapy for brain tumors. Finally, we will discuss the rational combination of immunotherapy with other therapeutic approaches that have an impact on the DNA damage repair process in order to open new pathways for the application of immunotherapy in brain tumors, to maximize the effect of immunotherapy on DNA damage repair mechanisms, and to provide ideas and guidance for immunotherapy in brain tumors.
Collapse
Affiliation(s)
- Shihong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boya Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Rasool R, Ullah I, Mubeen B, Alshehri S, Imam SS, Ghoneim MM, Alzarea SI, Al-Abbasi FA, Murtaza BN, Kazmi I, Nadeem MS. Theranostic Interpolation of Genomic Instability in Breast Cancer. Int J Mol Sci 2022; 23:ijms23031861. [PMID: 35163783 PMCID: PMC8836911 DOI: 10.3390/ijms23031861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is a diverse disease caused by mutations in multiple genes accompanying epigenetic aberrations of hazardous genes and protein pathways, which distress tumor-suppressor genes and the expression of oncogenes. Alteration in any of the several physiological mechanisms such as cell cycle checkpoints, DNA repair machinery, mitotic checkpoints, and telomere maintenance results in genomic instability. Theranostic has the potential to foretell and estimate therapy response, contributing a valuable opportunity to modify the ongoing treatments and has developed new treatment strategies in a personalized manner. “Omics” technologies play a key role while studying genomic instability in breast cancer, and broadly include various aspects of proteomics, genomics, metabolomics, and tumor grading. Certain computational techniques have been designed to facilitate the early diagnosis of cancer and predict disease-specific therapies, which can produce many effective results. Several diverse tools are used to investigate genomic instability and underlying mechanisms. The current review aimed to explore the genomic landscape, tumor heterogeneity, and possible mechanisms of genomic instability involved in initiating breast cancer. We also discuss the implications of computational biology regarding mutational and pathway analyses, identification of prognostic markers, and the development of strategies for precision medicine. We also review different technologies required for the investigation of genomic instability in breast cancer cells, including recent therapeutic and preventive advances in breast cancer.
Collapse
Affiliation(s)
- Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (I.K.); (M.S.N.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (I.K.); (M.S.N.)
| |
Collapse
|
14
|
Kneubil M, Goulart K, Brollo J, Coelho G, Mandelli J, Orlandin B, Corso L, Roesch-Ely M, Henriques J. Predictive value of DNA repair gene expression for response to neoadjuvant chemotherapy in breast cancer. Braz J Med Biol Res 2022; 55:e11857. [PMID: 35293552 PMCID: PMC8922549 DOI: 10.1590/1414-431x2021e11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
Genome-wide analysis using microarrays has revolutionized breast cancer (BC)
research. A substantial body of evidence supports the clinical utility of the
21-gene assay (Oncotype DX) and 70-gene assay (MammaPrint) to predict BC
recurrence and the magnitude of benefit from chemotherapy. However, there is
currently no genetic tool able to predict chemosensitivity and chemoresistance
to neoadjuvant chemotherapy (NACT) during BC treatment. In this study, we
explored the predictive value of DNA repair gene expression in the neoadjuvant
setting. We selected 98 patients with BC treated with NACT. We assessed DNA
repair expression in 98 formalin-fixed, paraffin-embedded core biopsy fragments
used at diagnosis and in 32 formalin-fixed, paraffin-embedded post-NACT residual
tumors using quantitative reverse transcription-polymerase chain reaction. The
following genes were selected: BRCA1, PALB2,
RAD51C, BRCA2, ATM,
FANCA, MSH2, XPA,
ERCC1, PARP1, and SNM1.
Of 98 patients, 33 (33.7%) achieved pathologic complete response (pCR). The DNA
expression of 2 genes assessed in pre-NACT biopsies (PALB2 and
ERCC1) was lower in pCR than in non-pCR patients (P=0.005
and P=0.009, respectively). There was no correlation between molecular subtype
and expression of DNA repair genes. The genes BRCA2 (P=0.009),
ATM (P=0.004), FANCA (P=0.001), and
PARP1 (P=0.011) showed a lower expression in post-NACT
residual tumor samples (n=32) than in pre-NACT biopsy samples (n=98). The
expression of 2 genes (PALB2 and ERCC1) was
lower in pCR patients. These alterations in DNA repair could be considered
suitable targets for cancer therapy.
Collapse
Affiliation(s)
- M.C. Kneubil
- Universidade de Caxias do Sul, Brasil; Universidade de Caxias do Sul, Brasil
| | | | - J. Brollo
- Universidade de Caxias do Sul, Brasil
| | | | | | | | - L.L. Corso
- Universidade de Caxias do Sul, Brasil; Instituto Hercílio Randon, Brasil
| | | | - J.A.P. Henriques
- Universidade de Caxias do Sul, Brasil; Universidade do Vale do Taquari - UNIVATES, Brasil
| |
Collapse
|
15
|
Occult triple negative male breast cancer. The usefulness of molecular platforms. A case report. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2021. [DOI: 10.1016/j.cpccr.2021.100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Camarillo R, Jimeno S, Huertas P. The Effect of Atypical Nucleic Acids Structures in DNA Double Strand Break Repair: A Tale of R-loops and G-Quadruplexes. Front Genet 2021; 12:742434. [PMID: 34691154 PMCID: PMC8531813 DOI: 10.3389/fgene.2021.742434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
The fine tuning of the DNA double strand break repair pathway choice relies on different regulatory layers that respond to environmental and local cues. Among them, the presence of non-canonical nucleic acids structures seems to create challenges for the repair of nearby DNA double strand breaks. In this review, we focus on the recently published effects of G-quadruplexes and R-loops on DNA end resection and homologous recombination. Finally, we hypothesized a connection between those two atypical DNA structures in inhibiting the DNA end resection step of HR.
Collapse
Affiliation(s)
- Rosa Camarillo
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
17
|
Xie S, Wang Y, Huang J, Li G. A novel m6A-related prognostic signature for predicting the overall survival of hepatocellular carcinoma patients. IET Syst Biol 2021; 16:1-17. [PMID: 34647424 PMCID: PMC8849219 DOI: 10.1049/syb2.12036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/25/2021] [Accepted: 10/03/2021] [Indexed: 12/13/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) comprises most cases of liver cancer with a poor prognosis. N6‐methyladenosine (m6A) plays important biological functions in cancers. Thus, the present research was aimed to determine biomarkers of m6A regulators that could effectively predict the prognosis of LIHC patients. Based on the data collected from the Cancer Genome Atlas (TCGA) database, the correlation between the mRNA expression levels and copy number variation (CNV) patterns were determined. Higher mRNA expression resulted from the increasing number of 9 genes. Using the univariate Cox regression analysis, 11 m6A regulators that had close correlations with the LIHC prognosis were identified. In addition, under the support of the multivariate Cox regression models and the least absolute shrinkage and selection operator, a 4‐gene (YTHDF2, IGF2BP3, KIAA1429, and ALKBH5) signature of m6A regulators was constructed. This signature was expected to present a prognostic value in LIHC (log‐rank test p value < 0.0001). The GSE76427 (n = 94) and ICGC‐LIRI‐JP (n = 212) datasets were used to validate the prognostic signature, suggesting strong power to predict patients' prognosis for LIHC. To sum up, genetic alterations in m6A regulatory genes were identified as reliable and effective biomarkers for predicting the prognosis of LIHC patients.
Collapse
Affiliation(s)
- Shiyang Xie
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Yaxuan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Jin Huang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Yang J, Huang Q, Guo Y, Wei Z, Zhou L, Chen H. DIAPH1 Promotes Laryngeal Squamous Cell Carcinoma Progression Through Cell Cycle Regulation. Front Oncol 2021; 11:716876. [PMID: 34631544 PMCID: PMC8494199 DOI: 10.3389/fonc.2021.716876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
The diaphanous related formin 1 (DIAPH1) protein is involved in the regulation of dynamic cytoskeleton reorganization, which is closely related to mitosis and the cell cycle. Cell cycle disorders are generally regarded as important underlying causes of many cancers. In the current study, we have revealed that DIAPH1 expression is an independent prognostic factor for overall survival in patients with laryngeal squamous cell carcinoma (LSCC) and that DIAPH1 promotes colony formation, cell proliferation, and G1/S progression in LSCC cells. Additionally, DIAPH1 promotes growth of AMC-HN-8 LSCC-derived tumors in vivo. In this study, RNA-sequencing analysis revealed that DIAPH1 knockdown led to changes in the expression of genes associated with signaling during the cell cycle. Using western blot analyses, we further demonstrated that DIAPH1 knockdown resulted in upregulation of p21Waf1/Cip1, p19Ink4d, p27Kip1, and p16Ink4a and downregulation of cyclinA2, cyclinD1, CDK2, CDK4, and CDK6. These results suggest that DIAPH1 influences the expression of genes in several signaling pathways and promotes LSCC progression by regulating the cell cycle.
Collapse
Affiliation(s)
- Jiechao Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nangtong University, Wuxi, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Qiang Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yang Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Zheqiang Wei
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Liang Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Hui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Alemi F, Raei Sadigh A, Malakoti F, Elhaei Y, Ghaffari SH, Maleki M, Asemi Z, Yousefi B, Targhazeh N, Majidinia M. Molecular mechanisms involved in DNA repair in human cancers: An overview of PI3k/Akt signaling and PIKKs crosstalk. J Cell Physiol 2021; 237:313-328. [PMID: 34515349 DOI: 10.1002/jcp.30573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
The cellular genome is frequently subjected to abundant endogenous and exogenous factors that induce DNA damage. Most of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family members are activated in response to DNA damage and are the most important DNA damage response (DDR) proteins. The DDR system protects the cells against the wrecking effects of these genotoxicants and repairs the DNA damage caused by them. If the DNA damage is severe, such as when DNA is the goal of chemo-radiotherapy, the DDR drives cells toward cell cycle arrest and apoptosis. Some intracellular pathways, such as PI3K/Akt, which is overactivated in most cancers, could stimulate the DDR process and failure of chemo-radiotherapy with the increasing repair of damaged DNA. This signaling pathway induces DNA repair through the regulation of proteins that are involved in DDR like BRCA1, HMGB1, and P53. In this review, we will focus on the crosstalk of the PI3K/Akt and PIKKs involved in DDR and then discuss current achievements in the sensitization of cancer cells to chemo-radiotherapy by PI3K/Akt inhibitors.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Elhaei
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Hamed Ghaffari
- Department of Orthopedics, Shohada Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Ahmed F, Adnan M, Malik A, Tariq S, Kamal F, Ijaz B. Perception of breast cancer risk factors: Dysregulation of TGF-β/miRNA axis in Pakistani females. PLoS One 2021; 16:e0255243. [PMID: 34297787 PMCID: PMC8301651 DOI: 10.1371/journal.pone.0255243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023] Open
Abstract
Breast cancer poses a serious health risk for women throughout the world. Among the Asian population, Pakistani women have the highest risk of developing breast cancer. One out of nine women is diagnosed with breast cancer in Pakistan. The etiology and the risk factor leading to breast cancer are largely unknown. In the current study the risk factors that are most pertinent to the Pakistani population, the etiology, molecular mechanisms of tumor progression, and therapeutic targets of breast cancer are studied. A correlative, cross-sectional, descriptive, and questionnaire-based study was designed to predict the risk factors in breast cancer patients. Invasive Ductal Carcinoma (90%) and grade-II tumor (73.2%) formation are more common in our patient’s data set. Clinical parameters such as mean age of 47.5 years (SD ± 11.17), disturbed menstrual cycle (> 2), cousin marriages (repeated), and lactation period (< 0.5 Y) along with stress, dietary and environmental factors have an essential role in the development of breast cancer. In addition to this in silico analysis was performed to screen the miRNA regulating the TGF-beta pathway using TargetScanHuman, and correlation was depicted through Mindjet Manager. The information thus obtained was observed in breast cancer clinical samples both in peripheral blood mononuclear cells, and biopsy through quantitative real-time PCR. There was a significant dysregulation (**P>0.001) of the TGF-β1 signaling pathway and the miRNAs (miR-29a, miR-140, and miR-148a) in patients’ biopsy in grade and stage specifically, correlated with expression in blood samples. miRNAs (miR-29a and miR-140, miR-148a) can be an effective diagnostic and prognostic marker as they regulate SMAD4 and SMAD2 expression respectively in breast cancer blood and biopsy samples. Therefore, proactive therapeutic strategies can be devised considering negatively regulated cascade genes and amalgamated miRNAs to control breast cancer better.
Collapse
Affiliation(s)
- Fayyaz Ahmed
- Laboratory of Applied and Functional Genomics, National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Muhammad Adnan
- Laboratory of Applied and Functional Genomics, National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Ayesha Malik
- Laboratory of Applied and Functional Genomics, National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Somayya Tariq
- Laboratory of Applied and Functional Genomics, National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Farukh Kamal
- Department of Pathology, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Bushra Ijaz
- Laboratory of Applied and Functional Genomics, National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
- * E-mail:
| |
Collapse
|
21
|
Peng Q, Wen T, Liu D, Wang S, Jiang X, Zhao S, Huang G. DSN1 is a prognostic biomarker and correlated with clinical characterize in breast cancer. Int Immunopharmacol 2021; 101:107605. [PMID: 34238686 DOI: 10.1016/j.intimp.2021.107605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
DSN1 affects cell cycle progression and is associated with clinical-pathological features in colorectal and hepatocellular carcinomas. However, the biological function of DSN1 in breast cancer is still indistinct. In this study, we comprehensively analyzed the correlation between DSN1 expression in different molecular subtypes or stages of breast cancer and investigated the prognostic value of DSN1 in databases such as Oncomine, Cancer Cell Line Encyclopedia, UALCAN, Human Protein Atlas, Kaplan-Meier Plotter, OncoLnc, GEPIA. Moreover, we investigated the correlation of DSN1 with tumor-infiltrating immune cells in the different tumor microenvironments via Tumor Immune Estimation Resource database and explore DSN1 co-expression networks in breast cancer via LinkedOmics analysis, NetworkAnalyst database analysis. Finally, we also performed our immunohistochemical experiments to explore the expression of DSN1 in different stages or subtypes of breast cancer. The findings in this article shed light on the essential role of DSN1 in breast cancers as well as suggested that the upregulation of DSN1 expression was strongly associated with poor prognosis and decreased survival in breast cancer, and there were significant differences in its expression in different pathological subtypes and stages of breast cancer.
Collapse
Affiliation(s)
- Qing Peng
- Department of VIP clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China.
| | - Tingyu Wen
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Dongyang Liu
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China.
| | - Suguo Wang
- Department of VIP clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Xinting Jiang
- Department of VIP clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Shiju Zhao
- Department of VIP clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China.
| | - Gaozhong Huang
- Department of VIP clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China.
| |
Collapse
|
22
|
Cumova A, Vymetalkova V, Opattova A, Bouskova V, Pardini B, Kopeckova K, Kozevnikovova R, Lickova K, Ambrus M, Vodickova L, Naccarati A, Soucek P, Vodicka P. Genetic variations in 3´UTRs of SMUG1 and NEIL2 genes modulate breast cancer risk, survival and therapy response. Mutagenesis 2021; 36:269-279. [PMID: 34097065 DOI: 10.1093/mutage/geab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/06/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy in women accounting for approximately 2 million new cases worldwide annually. Several genetic, epigenetic and environmental factors are known to be involved in BC development and progression, including alterations in post-transcriptional gene regulation mediated by microRNAs (miRNAs). Single nucleotide polymorphisms (SNPs) located in miRNA binding sites (miRSNPs) in 3'-untranslated (UTR) regions of target genes may affect miRNA-binding affinity and consequently modulate gene expression. We have previously reported a significant association of miRSNPs in the SMUG1 and NEIL2 genes with overall survival in colorectal cancer patients. SMUG1 and NEIL2 are DNA glycosylases involved in base excision DNA repair (BER). Assuming that certain genetic traits are common for solid tumours, we have investigated wherever variations in SMUG1 and NEIL2 genes display an association with BC risk, prognosis, and therapy response in a group of 673 BC patients and 675 healthy female controls. Patients with TC genotype of NEIL2 rs6997097 and receiving only hormonal therapy displayed markedly shorter overall survival (OS) (HR=4.15, 95% CI=1.7-10.16, P= 0.002) and disease-free survival (DFS) (HR=2.56, 95% CI=1.5-5.7, P= 0.02). Our results suggest that regulation of base excision repair glycosylases operated by miRNAs may modulate the prognosis of hormonally treated BC.
Collapse
Affiliation(s)
- Andrea Cumova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alena Opattova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Bouskova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Barbara Pardini
- IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katerina Kopeckova
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Katerina Lickova
- Radiotherapy and Oncology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Miloslav Ambrus
- Radiotherapy and Oncology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alessio Naccarati
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Pavel Soucek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
23
|
Long G, Ouyang W, Zhang Y, Sun G, Gan J, Hu Z, Li H. Identification of a DNA Repair Gene Signature and Establishment of a Prognostic Nomogram Predicting Biochemical-Recurrence-Free Survival of Prostate Cancer. Front Mol Biosci 2021; 8:608369. [PMID: 33778002 PMCID: PMC7991107 DOI: 10.3389/fmolb.2021.608369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The incidence of prostate cancer (PCa) is high and increasing worldwide. The prognosis of PCa is relatively good, but it is important to identify the patients with a high risk of biochemical recurrence (BCR) so that additional treatment could be applied. Method: Level 3 mRNA expression and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) to serve as training data. The GSE84042 dataset was used as a validation set. Univariate Cox, lasso Cox, and stepwise multivariate Cox regression were applied to identify a DNA repair gene (DRG) signature. The performance of the DRG signature was assessed based on Kaplan–Meier curve, receiver operating characteristic (ROC), and Harrell’s concordance index (C-index). Furtherly, a prognostic nomogram was established and evaluated likewise. Results: A novel four DRG signature was established to predict BCR of PCa, which included POLM, NUDT15, AEN, and HELQ. The ROC and C index presented good performance in both training dataset and validation dataset. The patients were stratified by the signature into high- and low-risk groups with distinct BCR survival. Multivariate Cox analysis revealed that the DRG signature is an independent prognostic factor for PCa. Also, the DRG signature high-risk was related to a higher homologous recombination deficiency (HRD) score. The nomogram, incorporating the DRG signature and clinicopathological parameters, was able to predict the BCR with high efficiency and showed superior performance compared to models that consisted of only clinicopathological parameters. Conclusion: Our study identified a DRG signature and established a prognostic nomogram, which were reliable in predicting the BCR of PCa. This model could help with individualized treatment and medical decision making.
Collapse
Affiliation(s)
- Gongwei Long
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Ouyang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucong Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahua Gan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Cai M, Li H, Chen R, Zhou X. MRPL13 Promotes Tumor Cell Proliferation, Migration and EMT Process in Breast Cancer Through the PI3K-AKT-mTOR Pathway. Cancer Manag Res 2021; 13:2009-2024. [PMID: 33658859 PMCID: PMC7920513 DOI: 10.2147/cmar.s296038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Breast cancer (BC), with varying histopathology, biology and response to systemic treatment, is the second leading cause of cancer-related mortality. Previous studies have inferred that the expression of mitochondrial ribosomal proteins (MRPs) is possibly related to the occurrence/progression of BC. MRPL13 might be one of the potential MRP candidates that are involved in BC tumorigenesis, but its role in BC has rarely been reported. The purpose of the current study was to evaluate the prognostic significance of MRPL13, as well as to explore its potential biological functions in BC. Materials and Methods A series of bioinformatic and statistical methods were adopted to assess the MRPL13 expression profile, its relationship with clinicopathological characteristics, copy number variation (CNV), impact on clinical outcomes and relevant functions. All the results are analysed by 1097 BC patients collected from The Cancer Genome Atlas (TCGA) dataset and 52 clinical samples for immunohistochemistry (IHC) assay. Results The results demonstrated that the expression of MRPL13 in BC tissues was remarkably elevated than that in normal breast tissues. In addition, the Kaplan-Meier curves and Cox model indicated that patients with high MRPL13 expression were connected to a worse prognosis, heralding the independent prognostic value of this protein in BC. Moreover, an enrichment analysis showed that MRPL13 was mainly involved in cell cycle/division-related, RNA processing (degradation/splicing), MYC targets and the MTORC1 pathways. In addition, RNA interference (RNAi)-mediated MRPL13 silencing remarkedly inhibited proliferation and migration as well as the expression of EMT-related genes of BC cells in vitro. Mechanistically, attenuation of MRPL13 significantly suppressed the phosphorylation of AKT and mTOR, which could be partially abolished by 740Y-P (a PI3K agonist). Conclusion Our results provide evidence for the first time that increased MRPL13 expression correlates with adverse clinicopathological variables and unfavorable clinical outcomes of BC patients. Knockdown of MRPL13 restrains the proliferation and migration potential and EMT process of BC through inhibiting PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Miaomiao Cai
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Runfa Chen
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Xiang Zhou
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| |
Collapse
|
25
|
Azari H, Mousavi P, Karimi E, Sadri F, Zarei M, Rafat M, Shekari M. The expanding role of CDR1-AS in the regulation and development of cancer and human diseases. J Cell Physiol 2021; 236:771-790. [PMID: 32697389 DOI: 10.1002/jcp.29950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
CircRNAs are a superabundant and highly conserved group of noncoding RNAs (ncRNAs) that are characterized by their high stability and integrity compared with linear forms of ncRNAs. Recently, their critical role in gene expression regulation has been shown; thus, it is not far-fetched to believe that their abnormal expression can be a cause of different kinds of diseases such as cancer, neurodegenerative, and autoimmune diseases. They can have a function in variety of biological processes such as microRNA (miRNA) sponging, interacting with RNA-binding proteins, or even an ability to translate to proteins. A huge challenge in finding diagnostic biomarkers is finding noninvasive biomarkers that can be detected in human fluids, especially blood samples. CircRNAs are becoming candidate biomarkers for diagnosis and prognosis of these diseases through their ability to transverse from the blood-brain barrier and their broad presence in circulating exosomes. The circRNA for miRNA-7 (ciRS-7) is newly recognized, and acknowledged to being related to human pathology and cancer progression. In this review, we first briefly summarize the latest studies about their characteristics, biogenesis, and their mechanisms of action in the regulation and development of human diseases. Finally, we provide a list of diseases that are linked to one member of this novel class of ncRNAs called ciRS-7.
Collapse
Affiliation(s)
- Hanieh Azari
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Elham Karimi
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Sadri
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahboobeh Zarei
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Milad Rafat
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Shekari
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
26
|
Bakshi D, Katoch A, Chakraborty S, Shah R, Sharma B, Bhat A, Verma S, Bhat GR, Nagpal A, Vaishnavi S, Goswami A, Kumar R. ANKLE1 as New Hotspot Mutation for Breast Cancer in Indian Population and Has a Role in DNA Damage and Repair in Mammalian Cells. Front Genet 2021; 11:609758. [PMID: 33584808 PMCID: PMC7873468 DOI: 10.3389/fgene.2020.609758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer has replaced cervical cancer as being the most common and having the highest mortality among women in India. ANKLE gene is conserved among organisms during evolutionary succession and is a member of LEM family proteins in lower metazoans and is involved in critical functions in the nuclear architecture, gene expression and cell signaling. ANKLE1 is the human orthologous of LEM-3 and is involved in DNA damage response and DNA repair. Whole Exome Sequencing (WES) of paired breast cancer samples was performed and ANKLE1 was found to be a new possible hotspot for predisposition of breast cancer. The mass array genotyping for breast cancer variant rs2363956 further confirmed the ANKLE1 association with the studied population of breast cancer. To elucidate the role of ANKLE1 in DNA damage, it was knocked down in MCF-7 breast cancer cell line and the expression of γH2AX was assessed. ANKLE1 knockdown cells displayed elevated levels of γ-H2AX foci in response to the cisplatin induced replication stress. The localization pattern of ANKLE1 further emphasized the role of ANKLE1 in DNA repair process. We observed that ANKLE1 is required for maintaining genomic stability and plays a role in DNA damage and repair process. These findings provided a molecular basis for the suspected role of ANKLE1 in human breast cancer and suggested an important role of this gene in controlling breast cancer development among women in India.
Collapse
Affiliation(s)
| | - Archana Katoch
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR) Jammu, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Souneek Chakraborty
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR) Jammu, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ruchi Shah
- Shri Mata Vaishno Devi University, Katra, India
| | | | - Amrita Bhat
- Shri Mata Vaishno Devi University, Katra, India
| | | | | | | | | | - Anindya Goswami
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR) Jammu, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | | |
Collapse
|
27
|
Recurrent PALB2 mutations and the risk of cancers of bladder or kidney in Polish population. Hered Cancer Clin Pract 2021; 19:6. [PMID: 33419454 PMCID: PMC7796646 DOI: 10.1186/s13053-020-00161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Introduction The role of PALB2 in carcinogenesis remains to be clarified. Our main goal was to determine the prevalence of PALB2 (509_510delGA and 172_175delTTGT) mutations in bladder and kidney cancer patients from Polish population. Materials and methods 1413 patients with bladder and 810 cases with kidney cancer and 4702 controls were genotyped for two PALB2 variants: 509_510delGA and 172_175delTTGT. Results Two mutations of PALB2 gene were detected in 5 of 1413 (0.35%) unselected bladder cases and in 10 of 4702 controls (odds ratio [OR], 1.7; 95% CI 0.56–4.88; p = 0.52). Among 810 unselected kidney cancer cases two PALB2 mutations were reported in two patients (0,24%) (odds ratio [OR], (OR = 1.2; 95% CI 0.25–5.13; p = 0.84). In cases with mutations in PALB2 gene cancer family history was negative. Conclusion We found no difference in the prevalence of recurrent PALB2 mutations between cases and healthy controls. The mutations in PALB2 gene seem not to play a major role in bladder and kidney cancer development in Polish patients.
Collapse
|
28
|
The cross-talk between signaling pathways, noncoding RNAs and DNA damage response: Emerging players in cancer progression. DNA Repair (Amst) 2021; 98:103036. [PMID: 33429260 DOI: 10.1016/j.dnarep.2020.103036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
The DNA damage response (DDR) pathway's primary purpose is to maintain the genome structure's integrity and stability. A great deal of effort has done to understand the exact molecular mechanisms of non-coding RNAs, such as lncRNA, miRNAs, and circRNAs, in distinct cellular and genomic processes and cancer progression. In this regard, the ncRNAs possible regulatory role in DDR via modulation of key components expression and controlling repair signaling pathway activation is validated. Therefore, in this article, we will discuss the latest developments of ncRNAs contribution in different aspects of DNA repair through regulation of ATM-ATR, P53, and other regulatory signaling pathways.
Collapse
|
29
|
DNA damage response and breast cancer development: Possible therapeutic applications of ATR, ATM, PARP, BRCA1 inhibition. DNA Repair (Amst) 2020; 98:103032. [PMID: 33494010 DOI: 10.1016/j.dnarep.2020.103032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common and significant cancers in females regarding the loss of life quality. Similar to other cancers, one of the etiologic factors in breast cancer is DNA damage. A plethora of molecules are responsible for sensing DNA damage and mediating actions which lead to DNA repair, senescence, cell cycle arrest and if damage is unbearable to apoptosis. In each of these, aberrations leading to unrepaired damage was resulted in uncontrolled proliferation and cancer. Another cellular function is autophagy defined as a process eliminating of unnecessary proteins in stress cases involved in pathogenesis of cancer. Knowing their role in cancer, scholars have tried to develop strategies in order to target DDR and autophagy. Further, the interactions of DDR and autophagy plus their regulatory role on each other have been focused simultaneously. The present review study has aimed to illustrate the importance of DDR and autophagy in breast cancer according to the related studies and uncover the relation between DDR and autophagy and its significance in breast cancer therapy.
Collapse
|
30
|
Hu H, Zhu Y, Pu N, Burkhart RA, Burns W, Laheru D, Zheng L, He J, Goggins MG, Yu J. Association of Germline Variants in Human DNA Damage Repair Genes and Response to Adjuvant Chemotherapy in Resected Pancreatic Ductal Adenocarcinoma. J Am Coll Surg 2020; 231:527-535.e14. [PMID: 32659497 DOI: 10.1016/j.jamcollsurg.2020.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/28/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The frequency and significance of the germline variants in DNA damage repair genes still need to be elucidated in patients with sporadic pancreatic ductal adenocarcinoma (PDAC). Our purpose was to determine whether germline variants in DNA damage repair genes were associated with survival of patients with sporadic PDAC. STUDY DESIGN We retrospectively identified 854 patients with sporadic PDAC with germline DNA sequenced in targeted 22 DNA damage repair genes by next-generation sequencing. Outcomes were compared in terms of clinicopathologic features, disease-free survival (DFS), and overall survival (OS). RESULTS Nineteen patients had deleterious mutations; 103 had variant(s) of unknown significance (VUS). Germline DNA damage repair deleterious variant carriers had superior DFS (median, 19.1 months vs 11.9 months, p = 0.012) and OS (median, 29.7 months vs 20.2 months, p = 0.034), as compared with wild-type patients. Germline DNA damage repair VUS variant carriers also had superior DFS when compared with wild-type patients. In subgroup analysis, this improved survival was limited to patients receiving adjuvant chemotherapy, deleterious variant carriers vs wild-type patients DFS (median 36.3 months vs 13.1 months, p = 0.006) and OS (median 43.7 months vs 24.3 months, p = 0.045), VUS variant carriers vs wild-type patients DFS (16.5 months vs 13.1 months, p = 0.007). CONCLUSIONS Having a deleterious variant in a DNA damage repair gene is associated with improved survival after resection and adjuvant chemotherapy for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Haijie Hu
- Department of Biliary Surgery, West China Hospital of Sichuan University, Sichuan, China; Department of Surgery, Baltimore, MD; The Johns Hopkins University School of Medicine The Pancreatic Cancer Precision Medicine Center of Excellence, Baltimore, MD
| | - Yayun Zhu
- Department of Surgery, Baltimore, MD; Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Ning Pu
- Department of Surgery, Baltimore, MD; The Johns Hopkins University School of Medicine The Pancreatic Cancer Precision Medicine Center of Excellence, Baltimore, MD
| | - Richard A Burkhart
- Department of Surgery, Baltimore, MD; Department Oncology, Baltimore, MD; The Johns Hopkins University School of Medicine The Pancreatic Cancer Precision Medicine Center of Excellence, Baltimore, MD; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - William Burns
- Department of Surgery, Baltimore, MD; Department Oncology, Baltimore, MD; The Johns Hopkins University School of Medicine The Pancreatic Cancer Precision Medicine Center of Excellence, Baltimore, MD; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Daniel Laheru
- Department Pathology, Baltimore, MD; Department Oncology, Baltimore, MD; Department Medicine, Baltimore, MD; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; The Skip Viragh Center for Pancreas Cancer, Baltimore, MD; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, MD
| | - Lei Zheng
- Department of Surgery, Baltimore, MD; Department Oncology, Baltimore, MD; The Johns Hopkins University School of Medicine The Pancreatic Cancer Precision Medicine Center of Excellence, Baltimore, MD; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; The Skip Viragh Center for Pancreas Cancer, Baltimore, MD; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, MD
| | - Jin He
- Department of Surgery, Baltimore, MD; Department Oncology, Baltimore, MD; The Johns Hopkins University School of Medicine The Pancreatic Cancer Precision Medicine Center of Excellence, Baltimore, MD; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Michael G Goggins
- Department Pathology, Baltimore, MD; Department Medicine, Baltimore, MD; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; The Skip Viragh Center for Pancreas Cancer, Baltimore, MD
| | - Jun Yu
- Department of Surgery, Baltimore, MD; The Johns Hopkins University School of Medicine The Pancreatic Cancer Precision Medicine Center of Excellence, Baltimore, MD; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD.
| |
Collapse
|
31
|
Salvati A, Gigantino V, Nassa G, Mirici Cappa V, Ventola GM, Cracas DGC, Mastrocinque R, Rizzo F, Tarallo R, Weisz A, Giurato G. Global View of Candidate Therapeutic Target Genes in Hormone-Responsive Breast Cancer. Int J Mol Sci 2020; 21:ijms21114068. [PMID: 32517194 PMCID: PMC7312026 DOI: 10.3390/ijms21114068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease characterized by different biopathological features, differential response to therapy and substantial variability in long-term-survival. BC heterogeneity recapitulates genetic and epigenetic alterations affecting transformed cell behavior. The estrogen receptor alpha positive (ERα+) is the most common BC subtype, generally associated with a better prognosis and improved long-term survival, when compared to ERα-tumors. This is mainly due to the efficacy of endocrine therapy, that interfering with estrogen biosynthesis and actions blocks ER-mediated cell proliferation and tumor spread. Acquired resistance to endocrine therapy, however, represents a great challenge in the clinical management of ERα+ BC, causing tumor growth and recurrence irrespective of estrogen blockade. Improving overall survival in such cases requires new and effective anticancer drugs, allowing adjuvant treatments able to overcome resistance to first-line endocrine therapy. To date, several studies focus on the application of loss-of-function genome-wide screenings to identify key (hub) “fitness” genes essential for BC progression and representing candidate drug targets to overcome lack of response, or acquired resistance, to current therapies. Here, we review the biological significance of essential genes and relative functional pathways affected in ERα+ BC, most of which are strictly interconnected with each other and represent potential effective targets for novel molecular therapies.
Collapse
Affiliation(s)
- Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | - Valeria Mirici Cappa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | | | | | | | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
- CRGS—Genome Research Center for Health, University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (G.G.); Tel.: +39-089-965043 (A.W.); +39-089-968286 (G.G.)
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
- Correspondence: (A.W.); (G.G.); Tel.: +39-089-965043 (A.W.); +39-089-968286 (G.G.)
| |
Collapse
|
32
|
Ferraro MG, Piccolo M, Misso G, Maione F, Montesarchio D, Caraglia M, Paduano L, Santamaria R, Irace C. Breast Cancer Chemotherapeutic Options: A General Overview on the Preclinical Validation of a Multi-Target Ruthenium(III) Complex Lodged in Nucleolipid Nanosystems. Cells 2020; 9:E1412. [PMID: 32517101 PMCID: PMC7349411 DOI: 10.3390/cells9061412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
In this review we have showcased the preclinical development of original amphiphilic nanomaterials designed for ruthenium-based anticancer treatments, to be placed within the current metallodrugs approach leading over the past decade to advanced multitarget agents endowed with limited toxicity and resistance. This strategy could allow for new options for breast cancer (BC) interventions, including the triple-negative subtype (TNBC) with poor therapeutic alternatives. BC is currently the second most widespread cancer and the primary cause of cancer death in women. Hence, the availability of novel chemotherapeutic weapons is a basic requirement to fight BC subtypes. Anticancer drugs based on ruthenium are among the most explored and advanced next-generation metallotherapeutics, with NAMI-A and KP1019 as two iconic ruthenium complexes having undergone clinical trials. In addition, many nanomaterial Ru complexes have been recently conceived and developed into anticancer drugs demonstrating attractive properties. In this field, we focused on the evaluation of a Ru(III) complex-named AziRu-incorporated into a suite of both zwitterionic and cationic nucleolipid nanosystems, which proved to be very effective for the in vivo targeting of breast cancer cells (BBC). Mechanisms of action have been widely explored in the context of preclinical evaluations in vitro, highlighting a multitarget action on cell death pathways which are typically deregulated in neoplasms onset and progression. Moreover, being AziRu inspired by the well-known NAMI-A complex, information on non-nanostructured Ru-based anticancer agents have been included in a precise manner.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| |
Collapse
|
33
|
Gan S, Dai H, Li R, Liu W, Ye R, Ha Y, Di X, Hu W, Zhang Z, Sun Y. Identification of key differentially expressed genes between ER-positive/HER2-negative breast cancer and ER-negative/HER2-negative breast cancer using integrated bioinformatics analysis. Gland Surg 2020; 9:661-675. [PMID: 32775256 DOI: 10.21037/gs.2020.03.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Treatment strategies for various subtypes of breast cancer (BC) are different based on their distinct molecular characteristics. Therefore, it is very important to identify key differentially expressed genes (DEGs) between ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Methods Gene expression profiles of GSE22093 and GSE23988 were obtained from the Gene Expression Omnibus database. There were 74 ER-positive/HER2-negative BC tissues and 85 ER-negative/HER2-negative BC tissues in the two profile datasets. DEGs between ER-positive/HER2-negative tissues and ER-negative/HER2-negative BC tissues were identified by the GEO2R tool. The common DEGs among the two datasets were detected with Venn software online. Next, we made use of the Database for Annotation, Visualization and Integrated Discovery to analyze enriched Kyoto Encyclopedia of Gene and Genome (KEGG) pathways and gene ontology terms. Then, the protein-protein interactions (PPIs) of these DEGs were visualized by Cytoscape with the Search Tool for the Retrieval of Interacting Genes. Of the proteins in the PPI network, Molecular Complex Detection plug-in analysis identified nine core upregulated genes and one core downregulated gene. UALCAN and Gene Expression Profiling Interactive Analysis were applied to determine the expression of these 10 genes in BC. Furthermore, for the analysis of overall survival among those genes, the Kaplan-Meier method was implemented. Results Ninety-three common DEGs (63 upregulated and 30 downregulated) were identified. KEGG pathway enrichment analysis showed that upregulated DEGs were particularly enriched in the progesterone-mediated oocyte maturation pathway. In addition, PGR might be a prognostic biomarker for ER-positive/HER2-negative BC. CCND1 is a poor prognostic biomarker for ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Moreover, TFF1, AGR2 and EGFR might be predictive biomarkers of node metastasis in ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Conclusions CCND1, AGR2, PGR, TFF1 and EGFR are the key DEGs between ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Further studies are required to confirm the functions of the identified genes.
Collapse
Affiliation(s)
- Siyuan Gan
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Haixia Dai
- Department of Ultrasound, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Wang Liu
- Department of Respiratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Ruifang Ye
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yanping Ha
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaoqing Di
- Department of Pathology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Wenhua Hu
- Department of Pathology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Zhi Zhang
- Department of Thyroid and Mammary Vascular Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
34
|
Zhang X, Yang H. Research Progress on Long Non-coding RNAs and Drug Resistance of Breast Cancer. Clin Breast Cancer 2020; 20:275-282. [PMID: 32414649 DOI: 10.1016/j.clbc.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
Abstract
Breast cancer, as the foremost cause of women's death in the world, is highly metastatic and mutable. Resistance to drugs for chemotherapies, endocrine therapies, and targeted therapies is an important factor that impacts the prognosis of breast cancer. Long non-coding ribonucleic acids (LncRNAs) are crucial regulators of intracellular gene expressions. Some researchers have suggested that expression level of several types of LncRNAs were closely related to the prognosis of patients with breast cancer. LncRNAs significantly impact biological processes such as drug transport, detoxication, apoptosis, epithelial to mesenchymal transition (EMT), and autophagy by regulating intracellular signaling pathways such as multi-drug resistance gene 1 (MDR1), nuclear factor erythroid 2-related factor 2 (NRF2), phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), transforming growth factor-β (TGF-β), BRCA1/2, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This paper will summarize research progress on correlations between LncRNA and drug resistance of breast cancer. It will particularly expound molecular mechanisms through which LncRNAs regulate drug resistance of breast cancer. It will further discuss the feasibility as molecular markers for forecasting drug resistance of breast cancer and may be becoming new targets for treating breast cancer in the future.
Collapse
Affiliation(s)
- Xiping Zhang
- Department of Breast Surgery, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China
| | - Hongjian Yang
- Department of Breast Surgery, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
35
|
López-Cortés A, Paz-Y-Miño C, Guerrero S, Cabrera-Andrade A, Barigye SJ, Munteanu CR, González-Díaz H, Pazos A, Pérez-Castillo Y, Tejera E. OncoOmics approaches to reveal essential genes in breast cancer: a panoramic view from pathogenesis to precision medicine. Sci Rep 2020; 10:5285. [PMID: 32210335 PMCID: PMC7093549 DOI: 10.1038/s41598-020-62279-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related death among women and the most commonly diagnosed cancer worldwide. Although in recent years large-scale efforts have focused on identifying new therapeutic targets, a better understanding of BC molecular processes is required. Here we focused on elucidating the molecular hallmarks of BC heterogeneity and the oncogenic mutations involved in precision medicine that remains poorly defined. To fill this gap, we established an OncoOmics strategy that consists of analyzing genomic alterations, signaling pathways, protein-protein interactome network, protein expression, dependency maps in cell lines and patient-derived xenografts in 230 previously prioritized genes to reveal essential genes in breast cancer. As results, the OncoOmics BC essential genes were rationally filtered to 140. mRNA up-regulation was the most prevalent genomic alteration. The most altered signaling pathways were associated with basal-like and Her2-enriched molecular subtypes. RAC1, AKT1, CCND1, PIK3CA, ERBB2, CDH1, MAPK14, TP53, MAPK1, SRC, RAC3, BCL2, CTNNB1, EGFR, CDK2, GRB2, MED1 and GATA3 were essential genes in at least three OncoOmics approaches. Drugs with the highest amount of clinical trials in phases 3 and 4 were paclitaxel, docetaxel, trastuzumab, tamoxifen and doxorubicin. Lastly, we collected ~3,500 somatic and germline oncogenic variants associated with 50 essential genes, which in turn had therapeutic connectivity with 73 drugs. In conclusion, the OncoOmics strategy reveals essential genes capable of accelerating the development of targeted therapies for precision oncology.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, Quito, 170129, Ecuador.
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruna, 15071, Spain.
- Red Latinoamericana de Implementación y Validación de Guías Clínicas Farmacogenómicas (RELIVAF-CYTED), Quito, Ecuador.
| | - César Paz-Y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, Quito, 170129, Ecuador
| | - Santiago Guerrero
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, Quito, 170129, Ecuador
| | - Alejandro Cabrera-Andrade
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruna, 15071, Spain
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
| | - Stephen J Barigye
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruna, 15071, Spain
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruna, 15006, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), Campus de Elviña s/n, A Coruna, 15071, Spain
| | - Humberto González-Díaz
- Department of Organic Chemistry II, University of the Basque Country UPV/EHU, Leioa, 48940, Biscay, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Biscay, Spain
| | - Alejandro Pazos
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruna, 15071, Spain
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruna, 15006, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), Campus de Elviña s/n, A Coruna, 15071, Spain
| | - Yunierkis Pérez-Castillo
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
- Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
| | - Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador.
- Facultad de Ingeniería y Ciencias Agropecuarias, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador.
| |
Collapse
|
36
|
Li S, He Y, Li C, Liu X, Shen Y, Wu Y, Bai N, Li Q. The association between the methylation frequency of BRCA1/2 gene promoter and occurrence and prognosis of breast carcinoma: A meta-analysis. Medicine (Baltimore) 2020; 99:e19345. [PMID: 32150073 PMCID: PMC7478499 DOI: 10.1097/md.0000000000019345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Breast cancer susceptibility gene 1/2 (BRCA1/2) is a promising tumor marker in many types of cancer. However, the methylation frequency of BRCA1/2 gene with occurrence risk and survival benefit of patients with breast carcinoma remains controversy. The aim of the present study was to assess the relationship between BRCA1/2 gene promoter methylation and the occurrence and prognosis in breast carcinoma based on a meta-analysis, meanwhile, this article explored the differential expression levels of BRCA1/2 gene promoter methylation in peripheral blood and tumor tissues of breast cancer patients. METHODS Electronic databases (PubMed, Medline, Cochrane Library, and CNKI) were searched up to June 2019. The number of BRCA1/2 promoter methylation-positive and -negative patients in breast carcinoma patients were measured, and hazard ratio (HR) with 95% confidence interval (CI) for the association between BRCA1/2 gene promoter methylation and the prognosis of breast carcinoma patients. Primary end points were presence of breast cancer, overall survival (OS), disease-free survival (DFS). Statistical analysis was performed with STATA 12.0. RESULTS AND CONCLUSIONS Fifty-eight articles including 19,084 individuals met full eligibility criteria. We observed that the frequency of BRCA1 gene promoter methylation was higher in breast cancer tissues compared with normal tissues, and the prognostic analysis suggested that BRCA1 gene promoter methylation was significantly associated with poor overall survival and poor disease-free survival. This study also verified that there was no statistically significant difference in the methylation frequency of BRCA1 gene promoter between peripheral blood and tumor tissues in breast cancer patients, which suggests that the detection of BRCA1 promoter methylation in peripheral blood may be a non-invasive and rapid way to monitor the occurrence breast cancer.
Collapse
Affiliation(s)
- Shu Li
- Clinical Laboratory, Chongqing Health Center for Women and Children
| | - Yong He
- Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing
| | - Chunli Li
- Clinical Laboratory, Chongqing Health Center for Women and Children
| | - Xing Liu
- Clinical Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Shen
- Clinical Laboratory, Chongqing Health Center for Women and Children
| | - Yang Wu
- Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing
| | - Ningjing Bai
- Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing
| | - Qiuhong Li
- Clinical Laboratory, Chongqing Health Center for Women and Children
| |
Collapse
|
37
|
Majidinia M, Mir SM, Mirza-Aghazadeh-Attari M, Asghari R, Kafil HS, Safa A, Mahmoodpoor A, Yousefi B. MicroRNAs, DNA damage response and ageing. Biogerontology 2020; 21:275-291. [PMID: 32067137 DOI: 10.1007/s10522-020-09862-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Ageing is a multifactorial and integrated gradual deterioration affecting the most of biological process of cells. MiRNAs are differentially expressed in the cellular senescence and play important role in regulating of genes expression involved in features of ageing. The perception of miRNAs functions in ageing regulation can be useful in clarifying the mechanisms underlying ageing and designing of therapeutic strategies. The preservation of genomic integrity through DNA damage response (DDR) is related to the process of cellular senescence. The recent studies have shown that miRNAs has directly regulated the expression of numerous proteins in DDR pathways. In this review study, DDR pathways, miRNA biogenesis and functions, current finding on DDR regulations, molecular biology of ageing and the role of miRNAs in these processes have been studied. Finally, a brief explanation about the therapeutic function of miRNAs in ageing regarding its regulation of DDR has been provided.
Collapse
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mostafa Mir
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Roghaieh Asghari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Stem Cell Center Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam. .,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Center Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Abstract
Cancer is a multi-step process during which cells acquire mutations that eventually lead to uncontrolled cell growth and division and evasion of programmed cell death. The oncogenes such as Ras and c-Myc may be responsible in all three major stages of cancer i.e., early, intermediate, and late. The NF-κB has been shown to control the expression of genes linked with tumor pathways such as chronic inflammation, tumor cell survival, anti-apoptosis, proliferation, invasion, and angiogenesis. In the last few decades, various biomarker pathways have been identified that play a critical role in carcinogenesis such as Ras, NF-κB and DNA damage.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India.,Department of Nano-Therapeutics, Institute of Nano Science and Technology (INST), Habitat Centre, Mohali, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
39
|
The oncogenic roles of bacterial infections in development of cancer. Microb Pathog 2020; 141:104019. [PMID: 32006638 DOI: 10.1016/j.micpath.2020.104019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Initiation of cancer is interconnected with different factors like infections. It has been estimated that infections, particularly viruses, participate in about 20% of all cancers. Bacteria as the most common infectious agents are also reported to be emerging players in the establishment of malignant cells. Microbial infections are able to modulate host cell transformation for promoting malignant features through the production of carcinogenic metabolites participating in inflammation responses, disruption of cell metabolism, and integrity and also genomic or epigenetic manipulations. It seems that the best example of the role of bacteria in cancer promotion is Helicobacter pylori infection, which is related to gastric cancer. World Health Organization (WHO) describes bacterium as class I carcinogens. Several bacterial infections have been reported in association with prevalent cancers. In this review, we will summarize the role of known bacterial infections in the initiation of the main common cancers, which show high mortality in the world. Examining the microbiomes in cancer patients is important and necessary to better understand the pathogenesis of this disease and also to plan therapeutic interventions.
Collapse
|
40
|
DNA damage repair functions and targeted treatment in breast cancer. Breast Cancer 2020; 27:355-362. [PMID: 31898156 DOI: 10.1007/s12282-019-01038-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Cell DNA is continuously attacked by endogenous and exogenous agents, which causes DNA damage. During long-term evolution, complex defense systems for DNA damage repair are formed by cells to maintain genome stability. Defects in the DNA damage repair process may lead to various diseases, including tumors. Therefore, DNA damage repair systems have become a new anti-tumor drug target. To date, a number of inhibitors related to DNA damage repair systems have been developed, particularly for tumors with BRCA1 and BRCA2 mutations. Poly (ADP-ribose) polymerase inhibitors developed by synthetic lethality are widely used in individualized tumor therapy. In this review, we briefly introduce the mechanisms underlying DNA damage repair, particularly in breast cancer, and mainly focus on new treatments targeting the DNA damage repair pathway in breast cancer.
Collapse
|
41
|
Yu Z, Cao W, Ren Y, Zhang Q, Liu J. ATPase copper transporter A, negatively regulated by miR-148a-3p, contributes to cisplatin resistance in breast cancer cells. Clin Transl Med 2020; 10:57-73. [PMID: 32508020 PMCID: PMC7240853 DOI: 10.1002/ctm2.19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Breast cancer is the leading cause of death among women. Cisplatin is an effective drug for breast cancer, but resistance often develops during long term chemotherapy. While the mechanism of chemotherapy resistance is still not fully understood. METHODS Survival analyses of ATP7A and ATP7B were used to evaluate their effects on the development of Breast invasive carcinoma (BRCA). Immunostaining, flow cytometry, and IC50 assay were utilized to examine the effects of ATP7A-siRNA combined with cisplatin on apoptosis in breast cancer cells. Q-PCR, western blotting, and dual-luciferase assay were employed to confirm ATP7A is a novel target gene of miR-148a-3p. RESULTS In this current study, we identified knocking-down ATP7A could enhance cytotoxicity treatment of cisplatin in breast cancer cells. We also demonstrated miR-148a-3p overexpression in BRCA cells increased the sensitivity to cisplatin, and subsequently enhanced DNA damage and apoptosis. Moreover, we found ATP7A is a novel target gene of miR-148a-3p. In brief, our results showed miR-148a could accelerate chemotherapy induced-apoptosis in breast cancer cells by inhibiting ATP7A expression. CONCLUSIONS Our results highlight that inhibition of ATP7A is a potential strategy for targeting breast cancer resistant to cisplatin, and we provided an interesting method to compare the involvement of various genes in the assessment of cisplatin resistance.
Collapse
Affiliation(s)
- Ze Yu
- Institute of tumor immunologyAffiliated Tumor HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Weifan Cao
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Yuan Ren
- Pediatric LaboratoryFirst affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qijia Zhang
- Hepatobiliary Internal MedicineZhuhai Integrated Traditional Chinese and Western Medicine HospitalZhuhaiChina
| | - Jia Liu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
42
|
Long W, Wang J, Xu F, Wu H, Mu X, Wang J, Sun Y, Zhang XD. Catalytic PtPd bimetal nanocrystals with high-index facets for radiation injury repair. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Abstract
The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.
Collapse
|
44
|
DNA Repair Deficiency in Breast Cancer: Opportunities for Immunotherapy. JOURNAL OF ONCOLOGY 2019; 2019:4325105. [PMID: 31320901 PMCID: PMC6607732 DOI: 10.1155/2019/4325105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Historically the development of anticancer treatments has been focused on their effect on tumor cells alone. However, newer treatments have shifted attention to targets on immune cells, resulting in dramatic responses. The effect of DNA repair deficiency on the microenvironment remains an area of key interest. Moreover, established therapies such as DNA damaging treatments such as chemotherapy and PARP inhibitors further modify the tumor microenvironment. Here we describe DNA repair pathways in breast cancer and activation of innate immune pathways in DNA repair deficiency, in particular, the STING (STimulator of INterferon Genes) pathway. Breast tumors with DNA repair deficiency are associated with upregulation of immune checkpoints including PD-L1 (Programmed Death Ligand-1) and may represent a target population for single agent or combination immunotherapy treatment.
Collapse
|
45
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
46
|
Aktas BY, Guner G, Guven DC, Arslan C, Dizdar O. Exploiting DNA repair defects in breast cancer: from chemotherapy to immunotherapy. Expert Rev Anticancer Ther 2019; 19:589-601. [PMID: 31181965 DOI: 10.1080/14737140.2019.1631162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Impaired DNA damage response (DDR) and subsequent genomic instability are associated with the carcinogenic process itself, but it also results in sensitivity of tumor cells to certain drugs and can be exploited to treat cancer by inducing deadly mutations or mitotic catastrophe. Exploiting DDR defects in breast cancer cells has been one of the main strategies in both conventional chemotherapy, targeted therapies, or immunotherapies. Areas covered: In this review, the authors first discuss DDR mechanisms in healthy cells and DDR defects in breast cancer, then focus on current therapies and developments in the treatment of DDR-deficient breast cancer. Expert opinion: Among conventional chemotherapeutics, platinum-based regimens, in particular, seem to be effective in DDR-deficient patients. PARP inhibitors represent one of the successful models of translational research in this area and clinical data showed high efficacy and reasonable toxicity with these agents in patients with breast cancer and BRCA mutation. Recent studies have underlined that some subtypes of breast cancer are highly immunogenic. Promising activity has been shown with immunotherapeutic agents, particularly in DDR-deficient breast cancers. Chemotherapeutics, DNA-repair pathway inhibitors, and immunotherapies might result in further improved outcomes in certain subsets of patients with breast cancer and DDR.
Collapse
Affiliation(s)
- Burak Yasin Aktas
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| | - Gurkan Guner
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| | - Deniz Can Guven
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| | - Cagatay Arslan
- b Bahcesehir University , Faculty of Medicine, Department of Internal Medicine and Medical Oncology , Istanbul , Turkey
| | - Omer Dizdar
- a Department of Medical Oncology , Hacettepe University Cancer Institute , Ankara , Turkey
| |
Collapse
|
47
|
Samavarchi Tehrani S, Mahmoodzadeh Hosseini H, Yousefi T, Abolghasemi M, Qujeq D, Maniati M, Amani J. The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer. J Cell Biochem 2019; 120:1080-1105. [PMID: 30378148 DOI: 10.1002/jcb.27617] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 01/24/2023]
Abstract
DNA damage response (DDR) is a regulatory system responsible for maintaining genome integrity and stability, which can sense and transduce DNA damage signals. The severity of damage appears to determine DDRs, which can include damage repair, cell-cycle arrest, and apoptosis. Furthermore, defective components in DNA damage and repair machinery are an underlying cause for the development and progression of various types of cancers. Increasing evidence indicates that there is an association between trace elements and DDR/repair mechanisms. In fact, trace elements seem to affect mediators of DDR. Besides, it has been revealed that oxidative stress (OS) and trace elements are associated with cancer development. In this review, we discuss the role of some critical trace elements in the risk of cancer. In addition, we provide a brief introduction on DDR and OS in cancer. Finally, we will further review the interactions between some important trace elements including selenium, zinc, chromium, cadmium, and arsenic, and DDR, and OS in cancer.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Abolghasemi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Karimian A, Azizian K, Parsian H, Rafieian S, Shafiei‐Irannejad V, Kheyrollah M, Yousefi M, Majidinia M, Yousefi B. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol 2019; 234:12267-12277. [PMID: 30697727 DOI: 10.1002/jcp.27972] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
- Cancer & Immunology Research Center, Kurdistan University of Medical Sciences Sanandaj Iran
- Student Research Committee, Babol University of Medical Sciences Babol Iran
| | - Khalil Azizian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science Tabriz Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Sona Rafieian
- Department of Oral and Maxillofacial Pathology School of Dentistry, Zanjan University of Medical Sciences Zanjan Iran
| | | | - Maryam Kheyrollah
- Department of Molecular Medicine National Institue of Genetic Engeneering and Biotechnology Tehran Iran
| | - Mehdi Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Majidinia
- Tumor Research Center, Urmia University of Medical Sciences Urmia Iran
| | - Bahman Yousefi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
49
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
50
|
Karimian A, Mir SM, Parsian H, Refieyan S, Mirza-Aghazadeh-Attari M, Yousefi B, Majidinia M. Crosstalk between Phosphoinositide 3-kinase/Akt signaling pathway with DNA damage response and oxidative stress in cancer. J Cell Biochem 2018; 120:10248-10272. [PMID: 30592328 DOI: 10.1002/jcb.28309] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022]
Abstract
The phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway is one of the well-characterized and most important signaling pathways activated in response to DNA damage. This review discusses the most recent discoveries on the involvement of PI3K/Akt signaling pathway in cancer development, as well as stimulation of some important signaling networks involved in the maintenance of cellular homeostasis upon DNA damage, with an exploration of how PI3K/Akt signaling pathway contributes to the regulation of modulators and effectors underlying DNA damage response, the intricate, protein-based signal transduction network, which decides between cell cycle arrest, DNA repair, and apoptosis, the elimination of irreparably damaged cells to maintain homeostasis. The review continues by looking at the interplay between cell cycle checkpoints, checking the repair of damage inflicted to the DNA before entering DNA replication to facilitate DNA synthesis, and PI3K/Akt signaling pathway. We then investigate the challenges the cells overcome to ameliorate damages induced by oxidative activities, for example, the recruitment of many pathways and factors to maintain integrity and hemostasis. Finally, the review provides a discussion of how cells use the PI3K/Akt signaling pathway to regulate the balance between these networks.
Collapse
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sayed Mostafa Mir
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sona Refieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|