1
|
Perween N, Pekhale K, Haval G, Sirkar G, Bose GS, Mittal SPK, Ghaskadbi S, Ghaskadbi SS. Identification and characterization of multidomain monothiol glutaredoxin 3 from diploblastic Hydra. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110986. [PMID: 38703881 DOI: 10.1016/j.cbpb.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Intracellular antioxidant glutaredoxin controls cell proliferation and survival. Based on the active site, structure, and conserved domain motifs, it is classified into two classes. Class I contains dithiol Grxs with two cysteines in the consensus active site sequence CXXC, while class II has monothiol Grxs with one cysteine residue in the active site. Monothiol Grxs can also have an additional N-terminal thioredoxin (Trx)-like domain. Previously, we reported the characterization of Grx1 from Hydra vulgaris (HvGrx1), which is a dithiol isoform. Here, we report the molecular cloning, expression, analysis, and characterization of another isoform of Grx, which is the multidomain monothiol glutaredoxin-3 from Hydra vulgaris (HvGrx3). It encodes a protein with 303 amino acids and is significantly larger and more divergent than HvGrx1. In-silico analysis revealed that Grx1 and Grx3 have 22.5% and 9.9% identical nucleotide and amino acid sequences, respectively. HvGrx3 has two glutaredoxin domains and a thioredoxin-like domain at its amino terminus, unlike HvGrx1, which has a single glutaredoxin domain. Like other monothiol glutaredoxins, HvGrx3 failed to reduce glutathione-hydroxyethyl disulfide. In the whole Hydra, HvGrx3 was found to be expressed all over the body column, and treatment with H2O2 led to a significant upregulation of HvGrx3. When transfected in HCT116 (human colon cancer cells) cells, HvGrx3 enhanced cell proliferation and migration, indicating that this isoform could be involved in these cellular functions. These transfected cells also tolerate oxidative stress better.
Collapse
Affiliation(s)
- Nusrat Perween
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, M.C.E. Society's Abeda Inamdar Senior College, Pune 411001, India. https://twitter.com/nusratperween13
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Gauri Haval
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, Abasaheb Garware College, Pune 411004, India
| | - Gargi Sirkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Ganesh S Bose
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smriti P K Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune 411004, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
2
|
Ji X, Liu K, Li Q, Shen Q, Han F, Ye Q, Zheng C. A Mini-Review of Flavone Isomers Apigenin and Genistein in Prostate Cancer Treatment. Front Pharmacol 2022; 13:851589. [PMID: 35359832 PMCID: PMC8962830 DOI: 10.3389/fphar.2022.851589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
The initial responses to standard chemotherapies among prostate cancer (PCa) patients are usually significant, while most of them will finally develop drug resistance, rendering them with limited therapies. To discover new regimens for the treatment of PCa including resistant PCa, natural products, the richest source of bioactive compounds, can serve as a library for screening and identifying promising candidates, and flavones such as apigenin and genistein have been used in lab and clinical trials for treating PCa over decades. In this mini-review, we take a look into the progress of apigenin and genistein, which are isomers, in treating PCa in the past decade. While possessing very similar structure, these two isomers can both target the same signaling pathways; they also are found to work differently in PCa cells. Given that more combinations are being developed and tested, genistein appears to be the more promising option to be approved. The anticancer efficacies of these two flavones can be confirmed by in-vitro and in-vivo studies, and their applications remain to be validated in clinical trials. Information gained in this work may provide important information for new drug development and the potential application of apigenin and genistein in treating PCa.
Collapse
Affiliation(s)
- Xiaozhen Ji
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kai Liu
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qingyue Li
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qun Shen
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fangxuan Han
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qingmei Ye
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- *Correspondence: Qingmei Ye, ; Caijuan Zheng,
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- *Correspondence: Qingmei Ye, ; Caijuan Zheng,
| |
Collapse
|
3
|
Perween N, Pekhale K, Haval G, Mittal S, Ghaskadbi S, Ghaskadbi SS. Cloning and characterization of Thioredoxin 1 from the Cnidarian Hydra. J Biochem 2021; 171:41-51. [PMID: 34523686 DOI: 10.1093/jb/mvab092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/11/2021] [Indexed: 11/14/2022] Open
Abstract
Thioredoxins, small disulphide-containing redox proteins, play an important role in the regulation of cellular thiol redox balance through their disulfide reductase activity. In this study, we have identified, cloned, purified and characterized thioredoxin 1 (HvTrx1) from the Cnidarian Hydra vulgaris Ind-Pune. Bioinformatics analysis revealed that HvTrx1 contains an evolutionarily conserved catalytic active site CGPC and shows a closer phylogenetic relationship with vertebrate Trx1. Optimum pH and temperature for enzyme activity of purified HvTrx1 was found to be pH 7.0 and 25 °C respectively. Enzyme activity decreased significantly at acidic or alkaline pH as well as at higher temperatures. HvTrx1 was found to be expressed ubiquitously in whole mount in situ hybridization. Treatment of Hydra with hydrogen peroxide (H2O2), a highly reactive oxidizing agent, led to a significant increase in gene expression and enzyme activity of Trx1. Further experiments using PX12, an inhibitor of Trx1, indicated that Trx1 plays an important role in regeneration in Hydra. Finally, by using growth assay in E. coli and wound healing assay in human colon cancer cells, we demonstrate that HvTrx1 is functionally active in both prokaryotic and eukaryotic heterologous systems.
Collapse
Affiliation(s)
- Nusrat Perween
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.,Department of Zoology, Abeda Inamdar Senior College, Pune 411001, India
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Gauri Haval
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.,Department of Zoology, Abasaheb Garware College, Pune 411004, India
| | - Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune 411004, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
4
|
Galande AA, Saijo M, Ghaskadbi SS, Ghaskadbi S. Xeroderma pigmentosum A homolog from Hydra partially complements DNA repair defect in human XPA-deficient cells. J Biosci 2021. [DOI: 10.1007/s12038-021-00170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Barve A, Galande AA, Ghaskadbi SS, Ghaskadbi S. DNA Repair Repertoire of the Enigmatic Hydra. Front Genet 2021; 12:670695. [PMID: 33995496 PMCID: PMC8117345 DOI: 10.3389/fgene.2021.670695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Since its discovery by Abraham Trembley in 1744, hydra has been a popular research organism. Features like spectacular regeneration capacity, peculiar tissue dynamics, continuous pattern formation, unique evolutionary position, and an apparent lack of organismal senescence make hydra an intriguing animal to study. While a large body of work has taken place, particularly in the domain of evolutionary developmental biology of hydra, in recent years, the focus has shifted to molecular mechanisms underlying various phenomena. DNA repair is a fundamental cellular process that helps to maintain integrity of the genome through multiple repair pathways found across taxa, from archaea to higher animals. DNA repair capacity and senescence are known to be closely associated, with mutations in several repair pathways leading to premature ageing phenotypes. Analysis of DNA repair in an animal like hydra could offer clues into several aspects including hydra’s purported lack of organismal ageing, evolution of DNA repair systems in metazoa, and alternative functions of repair proteins. We review here the different DNA repair mechanisms known so far in hydra. Hydra genes from various DNA repair pathways show very high similarity with their vertebrate orthologues, indicating conservation at the level of sequence, structure, and function. Notably, most hydra repair genes are more similar to deuterostome counterparts than to common model invertebrates, hinting at ancient evolutionary origins of repair pathways and further highlighting the relevance of organisms like hydra as model systems. It appears that hydra has the full repertoire of DNA repair pathways, which are employed in stress as well as normal physiological conditions and may have a link with its observed lack of senescence. The close correspondence of hydra repair genes with higher vertebrates further demonstrates the need for deeper studies of various repair components, their interconnections, and functions in this early metazoan.
Collapse
Affiliation(s)
- Apurva Barve
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India.,Centre of Excellence in Science and Mathematics Education, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Alisha A Galande
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| |
Collapse
|
6
|
Zhu W, Hu J, Chi J, Li Y, Yang B, Hu W, Chen F, Xu C, Chai L, Bao Y. Label-Free Proteomics Reveals the Molecular Mechanism of Subculture Induced Strain Degeneration and Discovery of Indicative Index for Degeneration in Pleurotus ostreatus. Molecules 2020; 25:molecules25214920. [PMID: 33114310 PMCID: PMC7660624 DOI: 10.3390/molecules25214920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Pleurotus ostreatus is one of the widely cultivated edible fungi across the world. Mycelial subculture is an indispensable part in the process of cultivation and production for all kinds of edible fungi. However, successive subcultures usually lead to strain degeneration. The degenerated strains usually have a decrease in stress resistance, yield, and an alteration in fruiting time, which will subsequently result in tremendous economic loss. Through proteomic analysis, we identified the differentially expressed proteins (DEPs) in the mycelium of Pleurotus ostreatus from different subcultured generations. We found that the DNA damage repair system, especially the double-strand breaks (DSBs), repairs via homologous recombination, was impaired in the subcultured mycelium, and gradual accumulation of the DSBs would lead to the strain degeneration after successive subculture. The TUNEL assay further confirmed our finding about the DNA breaks in the subcultured mycelium. Interestingly, the enzyme activity of laccase, carboxylic ester hydrolase, α-galactosidase, and catalase directly related to passage number could be used as the characteristic index for strain degeneration determination. Our results not only reveal for the first time at the molecular level that genomic instability is the cause of degeneration, but also provide an applicable approach for monitoring strain degeneration in process of edible fungi cultivation and production.
Collapse
Affiliation(s)
- Weiwei Zhu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Jinbo Hu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingliang Chi
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Yang Li
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Bing Yang
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
| | - Wenli Hu
- Core Facility Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Fei Chen
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Chong Xu
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Linshan Chai
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (J.C.); (Y.L.); (F.C.); (C.X.); (L.C.)
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124021, China
- Correspondence: ; Tel.: +86-427-2631777; Fax: +86-411-84706365
| |
Collapse
|
7
|
Haval GA, Pekhale KD, Perween NA, Ghaskadbi SM, Ghaskadbi SS. Excess hydrogen peroxide inhibits head and foot regeneration in hydra by affecting DNA repair and expression of essential genes. J Biochem Mol Toxicol 2020; 34:e22577. [PMID: 32627281 DOI: 10.1002/jbt.22577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 11/07/2022]
Abstract
Reactive oxygen species (ROS) are necessary for various cellular processes. However, excess ROS cause damage to many biological molecules and therefore must be tightly regulated in time and space. Hydrogen peroxide (H2 O2 ) is the most commonly used ROS as second messenger in the cell. It is a relatively long-lived freely diffusible signaling molecule during early events of injury. In the Cnidarian hydra, injury-induced ROS production is essential for regeneration to proceed. In the present study, we have examined influence of varying exposure to H2 O2 on head and foot regeneration in the middlepieces of trisected hydra. We find that longer (4 hours) exposure to 1 mM H2 O2 inhibits both head and foot regeneration while shorter exposure (2 hours) does not. Longer exposure to H2 O2 resulted in extensive damage to DNA that could not be repaired, probably due to suboptimal induction of APE1, an enzyme necessary for base excision repair (BER). Concomitantly, genes involved in activation of Wnt pathway, necessary for head regeneration, were significantly downregulated. This appeared to be due to failure of both stabilization and transient nuclear localization of β-catenin. Similarly, genes involved in foot regeneration were also downregulated on longer exposure to H2 O2 . Thus, exposure to excess ROS inhibits regenerative processes in hydra through reduced expression of genes involved in regeneration and diminished DNA repair.
Collapse
Affiliation(s)
- Gauri A Haval
- Department of Zoology, Savitribai Phule Pune University, Pune, India.,Department of Zoology, Abasaheb Garware College, Pune, India
| | - Komal D Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Nusrat A Perween
- Department of Zoology, Savitribai Phule Pune University, Pune, India.,Department of Zoology, Abeda Inamdar Senior College, Pune, India
| | - Surendra M Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Savitribai Phule Pune University, Pune, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
8
|
Analysis of the conserved NER helicases (XPB and XPD) and UV-induced DNA damage in Hydra. Biochim Biophys Acta Gen Subj 2018; 1862:2031-2042. [PMID: 29959982 DOI: 10.1016/j.bbagen.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleotide excision repair (NER) pathway is an evolutionarily conserved mechanism of genome maintenance. It detects and repairs distortions in DNA double helix. Xeroderma Pigmentosum group B (XPB) and group D (XPD) are important helicases in NER and are also critical subunits of TFIIH complex. We have studied XPB and XPD for the first time from the basal metazoan Hydra which exhibits lack of organismal senescence. METHODS In silico analysis of proteins was performed using MEGA 6.0, Clustal Omega, Swiss Model, etc. Gene expression was studied by in situ hybridization and qRT-PCR. Repair of CPDs was studied by DNA blot assay. Interactions between proteins were determined by co- immunoprecipitation. HyXPB and HyXPD were cloned in pET28b, overexpressed and helicase activity of purified proteins was checked. RESULTS In silico analysis revealed presence of seven classical helicase motifs in HyXPB and HyXPD. Both proteins revealed polarity-dependent helicase activity. Hydra repairs most of the thymine dimers induced by UVC (500 J/m2) by 72 h post-UV exposure. HyXPB and HyXPD transcripts, localized all over the body column, remained unaltered post-UV exposure indicating their constitutive expression. In spite of high levels of sequence conservation, XPB and XPD failed to rescue defects in human XPB- and XPD-deficient cell lines. This was due to their inability to get incorporated into the TFIIH multiprotein complex. CONCLUSIONS Present results along with our earlier work on DNA repair proteins in Hydra bring out the utility of Hydra as model system to study evolution of DNA repair mechanisms in metazoans.
Collapse
|