1
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Łazowski K, Faraz M, Vaisman A, Ashton NW, Jonczyk P, Fijalkowska IJ, Clausen AR, Woodgate R, Makiela-Dzbenska K. Strand specificity of ribonucleotide excision repair in Escherichia coli. Nucleic Acids Res 2023; 51:1766-1782. [PMID: 36762476 PMCID: PMC9976901 DOI: 10.1093/nar/gkad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
In Escherichia coli, replication of both strands of genomic DNA is carried out by a single replicase-DNA polymerase III holoenzyme (pol III HE). However, in certain genetic backgrounds, the low-fidelity TLS polymerase, DNA polymerase V (pol V) gains access to undamaged genomic DNA where it promotes elevated levels of spontaneous mutagenesis preferentially on the lagging strand. We employed active site mutants of pol III (pol IIIα_S759N) and pol V (pol V_Y11A) to analyze ribonucleotide incorporation and removal from the E. coli chromosome on a genome-wide scale under conditions of normal replication, as well as SOS induction. Using a variety of methods tuned to the specific properties of these polymerases (analysis of lacI mutational spectra, lacZ reversion assay, HydEn-seq, alkaline gel electrophoresis), we present evidence that repair of ribonucleotides from both DNA strands in E. coli is unequal. While RNase HII plays a primary role in leading-strand Ribonucleotide Excision Repair (RER), the lagging strand is subject to other repair systems (RNase HI and under conditions of SOS activation also Nucleotide Excision Repair). Importantly, we suggest that RNase HI activity can also influence the repair of single ribonucleotides incorporated by the replicase pol III HE into the lagging strand.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Mahmood Faraz
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Piotr Jonczyk
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anders R Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Karolina Makiela-Dzbenska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
3
|
Vaisman A, Łazowski K, Reijns MAM, Walsh E, McDonald JP, Moreno KC, Quiros DR, Schmidt M, Kranz H, Yang W, Makiela-Dzbenska K, Woodgate R. Novel Escherichia coli active site dnaE alleles with altered base and sugar selectivity. Mol Microbiol 2021; 116:909-925. [PMID: 34181784 PMCID: PMC8485763 DOI: 10.1111/mmi.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
The Escherichia coli dnaE gene encodes the α‐catalytic subunit (pol IIIα) of DNA polymerase III, the cell’s main replicase. Like all high‐fidelity DNA polymerases, pol III possesses stringent base and sugar discrimination. The latter is mediated by a so‐called “steric gate” residue in the active site of the polymerase that physically clashes with the 2′‐OH of an incoming ribonucleotide. Our structural modeling data suggest that H760 is the steric gate residue in E.coli pol IIIα. To understand how H760 and the adjacent S759 residue help maintain genome stability, we generated DNA fragments in which the codons for H760 or S759 were systematically changed to the other nineteen naturally occurring amino acids and attempted to clone them into a plasmid expressing pol III core (α‐θ‐ε subunits). Of the possible 38 mutants, only nine were successfully sub‐cloned: three with substitutions at H760 and 6 with substitutions at S759. Three of the plasmid‐encoded alleles, S759C, S759N, and S759T, exhibited mild to moderate mutator activity and were moved onto the chromosome for further characterization. These studies revealed altered phenotypes regarding deoxyribonucleotide base selectivity and ribonucleotide discrimination. We believe that these are the first dnaE mutants with such phenotypes to be reported in the literature.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Martin A M Reijns
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Erin Walsh
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kristiniana C Moreno
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Dominic R Quiros
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marlen Schmidt
- Gen-H Genetic Engineering Heidelberg GmbH, Heidelberg, Germany
| | - Harald Kranz
- Gen-H Genetic Engineering Heidelberg GmbH, Heidelberg, Germany
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karolina Makiela-Dzbenska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Effect of mismatch repair on the mutational footprint of the bacterial SOS mutator activity. DNA Repair (Amst) 2021; 103:103130. [PMID: 33991871 DOI: 10.1016/j.dnarep.2021.103130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022]
Abstract
The bacterial SOS response to DNA damage induces an error-prone repair program that is mutagenic. In Escherichia coli, SOS-induced mutations are caused by the translesion synthesis (TLS) activity of two error-prone polymerases (EPPs), Pol IV and Pol V. The mutational footprint of the EPPs is confounded by both DNA damage and repair, as mutations are targeted to DNA lesions via TLS and corrected by the mismatch repair (MMR) system. To remove these factors and assess untargeted EPP mutations genome-wide, we constructed spontaneous SOS mutator strains deficient in MMR, then analyzed their mutational footprints by mutation accumulation and whole genome sequencing. Our analysis reveals new features of untargeted SOS-mutagenesis, showing how MMR alters its spectrum, sequence specificity, and strand-bias. Our data support a model where the EPPs prefer to act on the lagging strand of the replication fork, producing base pair mismatches that are differentially repaired by MMR depending on the type of mismatch.
Collapse
|