1
|
Ouyang J. Transcription as a double-edged sword in genome maintenance. FEBS Lett 2025; 599:147-156. [PMID: 39704019 DOI: 10.1002/1873-3468.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Genome maintenance is essential for the integrity of the genetic blueprint, of which only a small fraction is transcribed in higher eukaryotes. DNA lesions occurring in the transcribed genome trigger transcription pausing and transcription-coupled DNA repair. There are two major transcription-coupled DNA repair pathways. The transcription-coupled nucleotide excision repair (TC-NER) pathway has been well studied for decades, while the transcription-coupled homologous recombination repair (TC-HR) pathway has recently gained attention. Importantly, recent studies have uncovered crucial roles of RNA transcripts in TC-HR, opening exciting directions for future research. Transcription also plays pivotal roles in regulating the stability of highly specialized genomic structures such as telomeres, centromeres, and fragile sites. Despite their positive function in genome maintenance, transcription and RNA transcripts can also be the sources of genomic instability, especially when colliding with DNA replication and forming unscheduled pathological RNA:DNA hybrids (R-loops), respectively. Pathological R-loops can result from transcriptional stress, which may be induced by transcription dysregulation. Future investigation into the interplay between transcription and DNA repair will reveal novel molecular bases for genome maintenance and transcriptional stress-associated genomic instability, providing therapeutic targets for human disease intervention.
Collapse
Affiliation(s)
- Jian Ouyang
- Department of Biochemistry and Molecular Biology
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
2
|
Martínez Del Río J, Frutos-Beltrán E, Sebastián-Martín A, Lasala F, Yasukawa K, Delgado R, Menéndez-Arias L. HIV-1 Reverse Transcriptase Error Rates and Transcriptional Thresholds Based on Single-strand Consensus Sequencing of Target RNA Derived From In Vitro-transcription and HIV-infected Cells. J Mol Biol 2024; 436:168815. [PMID: 39384034 DOI: 10.1016/j.jmb.2024.168815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Nucleotide incorporation and lacZ-based forward mutation assays have been widely used to determine the accuracy of reverse transcriptases (RTs) in RNA-dependent DNA polymerization reactions. However, they involve quite complex and laborious procedures, and cannot provide accurate error rates. Recently, NGS-based methods using barcodes opened the possibility of detecting all errors introduced by the RT, although their widespread use is limited by cost, due to the large size of libraries to be sequenced. In this study, we describe a novel and relatively simple NGS assay based on single-strand consensus sequencing that provides robust results with a relatively small number of raw sequences (around 60 Mb). The method has been validated by determining the error rate of HIV-1 (BH10 strain) RT using the HIV-1 protease-coding sequence as target. HIV-1 reverse transcription error rates in standard conditions (37 °C/3 mM Mg2+) using an in vitro-transcribed RNA were around 7.3 × 10-5. In agreement with previous reports, an 8-fold increase in RT's accuracy was observed after reducing Mg2+ concentration to 0.5 mM. The fidelity of HIV-1 RT was also higher at 50 °C than at 37 °C (error rate 1.5 × 10-5). Interestingly, error rates obtained with HIV-1 RNA from infected cells as template of the reverse transcription at 3 mM Mg2+ (7.4 × 10-5) were similar to those determined with the in vitro-transcribed RNA, and were reduced to 1.8 × 10-5 in the presence of 0.5 mM Mg2+. Values obtained at low magnesium concentrations were modestly higher than the transcription error rates calculated for human cells, thereby suggesting a realistic transcriptional threshold for our NGS-based error rate determinations.
Collapse
Affiliation(s)
- Javier Martínez Del Río
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Alba Sebastián-Martín
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Fátima Lasala
- Laboratory of Molecular Microbiology, Instituto de Investigación Hospital 12 de Octubre (lmas12), Madrid 28041, Spain
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rafael Delgado
- Laboratory of Molecular Microbiology, Instituto de Investigación Hospital 12 de Octubre (lmas12), Madrid 28041, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain.
| |
Collapse
|
3
|
Aubé F, Fontrodona N, Guiguettaz L, Vallin E, Fabbri L, Lapendry A, Vagner S, Ricci EP, Auboeuf D. Metabolism-dependent secondary effect of anti-MAPK cancer therapy on DNA repair. NAR Cancer 2024; 6:zcae019. [PMID: 38690580 PMCID: PMC11059277 DOI: 10.1093/narcan/zcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Amino acid bioavailability impacts mRNA translation in a codon-dependent manner. Here, we report that the anti-cancer MAPK inhibitors (MAPKi) decrease the intracellular concentration of aspartate and glutamate in melanoma cells. This coincides with the accumulation of ribosomes on codons corresponding to these amino acids and triggers the translation-dependent degradation of mRNAs encoding aspartate- and glutamate-rich proteins, involved in DNA metabolism such as DNA replication and repair. Consequently, cells that survive MAPKi degrade aspartate and glutamate likely to generate energy, which simultaneously decreases their requirement for amino acids due to the downregulation of aspartate- and glutamate-rich proteins involved in cell proliferation. Concomitantly, the downregulation of aspartate- and glutamate-rich proteins involved in DNA repair increases DNA damage loads. Thus, DNA repair defects, and therefore mutations, are at least in part a secondary effect of the metabolic adaptation of cells exposed to MAPKi.
Collapse
Affiliation(s)
- Fabien Aubé
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Nicolas Fontrodona
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Laura Guiguettaz
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Elodie Vallin
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
- Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Audrey Lapendry
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Stephan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
- Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Didier Auboeuf
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| |
Collapse
|
4
|
Bradley CC, Wang C, Gordon AJE, Wen AX, Luna PN, Cooke MB, Kohrn BF, Kennedy SR, Avadhanula V, Piedra PA, Lichtarge O, Shaw CA, Ronca SE, Herman C. Targeted accurate RNA consensus sequencing (tARC-seq) reveals mechanisms of replication error affecting SARS-CoV-2 divergence. Nat Microbiol 2024; 9:1382-1392. [PMID: 38649410 PMCID: PMC11384275 DOI: 10.1038/s41564-024-01655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
RNA viruses, like SARS-CoV-2, depend on their RNA-dependent RNA polymerases (RdRp) for replication, which is error prone. Monitoring replication errors is crucial for understanding the virus's evolution. Current methods lack the precision to detect rare de novo RNA mutations, particularly in low-input samples such as those from patients. Here we introduce a targeted accurate RNA consensus sequencing method (tARC-seq) to accurately determine the mutation frequency and types in SARS-CoV-2, both in cell culture and clinical samples. Our findings show an average of 2.68 × 10-5 de novo errors per cycle with a C > T bias that cannot be solely attributed to APOBEC editing. We identified hotspots and cold spots throughout the genome, correlating with high or low GC content, and pinpointed transcription regulatory sites as regions more susceptible to errors. tARC-seq captured template switching events including insertions, deletions and complex mutations. These insights shed light on the genetic diversity generation and evolutionary dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- Catherine C Bradley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor College of Medicine Medical Scientist Training Program, Houston, TX, USA
- Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars program, Houston, TX, USA
| | - Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alice X Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor College of Medicine Medical Scientist Training Program, Houston, TX, USA
- Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars program, Houston, TX, USA
| | - Pamela N Luna
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shannon E Ronca
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Feigin Biosafety Level 3 Facility, Texas Children's Hospital, Houston, TX, USA
- National School of Tropical Medicine, Department of Pediatrics Tropical Medicine, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Lyu Z, Villanueva P, O’Malley L, Murphy P, Augenstreich J, Briken V, Singh A, Ling J. Genome-wide screening reveals metabolic regulation of stop-codon readthrough by cyclic AMP. Nucleic Acids Res 2023; 51:9905-9919. [PMID: 37670559 PMCID: PMC10570021 DOI: 10.1093/nar/gkad725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Translational fidelity is critical for microbial fitness, survival and stress responses. Much remains unknown about the genetic and environmental control of translational fidelity and its single-cell heterogeneity. In this study, we used a high-throughput fluorescence-based assay to screen a knock-out library of Escherichia coli and identified over 20 genes critical for stop-codon readthrough. Most of these identified genes were not previously known to affect translational fidelity. Intriguingly, we show that several genes controlling metabolism, including cyaA and crp, enhance stop-codon readthrough. CyaA catalyzes the synthesis of cyclic adenosine monophosphate (cAMP). Combining RNA sequencing, metabolomics and biochemical analyses, we show that deleting cyaA impairs amino acid catabolism and production of ATP, thus repressing the transcription of rRNAs and tRNAs to decrease readthrough. Single-cell analyses further show that cAMP is a major driver of heterogeneity in stop-codon readthrough and rRNA expression. Our results highlight that carbon metabolism is tightly coupled with stop-codon readthrough.
Collapse
Affiliation(s)
- Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Patricia Villanueva
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Liam O’Malley
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Parker Murphy
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering and Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| |
Collapse
|
6
|
Romero Romero ML, Landerer C, Poehls J, Toth‐Petroczy A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci 2022; 31:e4397. [PMID: 36040266 PMCID: PMC9375231 DOI: 10.1002/pro.4397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Errors in DNA replication generate genetic mutations, while errors in transcription and translation lead to phenotypic mutations. Phenotypic mutations are orders of magnitude more frequent than genetic ones, yet they are less understood. Here, we review the types of phenotypic mutations, their quantifications, and their role in protein evolution and disease. The diversity generated by phenotypic mutation can facilitate adaptive evolution. Indeed, phenotypic mutations, such as ribosomal frameshift and stop codon readthrough, sometimes serve to regulate protein expression and function. Phenotypic mutations have often been linked to fitness decrease and diseases. Thus, understanding the protein heterogeneity and phenotypic diversity caused by phenotypic mutations will advance our understanding of protein evolution and have implications on human health and diseases.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
7
|
Bradley CC, Gordon AJE, Wang C, Cooke MB, Kohrn BF, Kennedy SR, Lichtarge O, Ronca SE, Herman C. RNA polymerase inaccuracy underlies SARS-CoV-2 variants and vaccine heterogeneity. RESEARCH SQUARE 2022:rs.3.rs-1690086. [PMID: 35677076 PMCID: PMC9176646 DOI: 10.21203/rs.3.rs-1690086/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Both the SARS-CoV-2 virus and its mRNA vaccines depend on RNA polymerases (RNAP)1,2; however, these enzymes are inherently error-prone and can introduce variants into the RNA3. To understand SARS-CoV-2 evolution and vaccine efficacy, it is critical to identify the extent and distribution of errors introduced by the RNAPs involved in each process. Current methods lack the sensitivity and specificity to measure de novo RNA variants in low input samples like viral isolates3. Here, we determine the frequency and nature of RNA errors in both SARS-CoV-2 and its vaccine using a targeted Accurate RNA Consensus sequencing method (tARC-seq). We found that the viral RNA-dependent RNAP (RdRp) makes ~1 error every 10,000 nucleotides - higher than previous estimates4. We also observed that RNA variants are not randomly distributed across the genome but are associated with certain genomic features and genes, such as S (Spike). tARC-seq captured a number of large insertions, deletions and complex mutations that can be modeled through non-programmed RdRp template switching. This template switching feature of RdRp explains many key genetic changes observed during the evolution of different lineages worldwide, including Omicron. Further sequencing of the Pfizer-BioNTech COVID-19 vaccine revealed an RNA variant frequency of ~1 in 5,000, meaning most of the vaccine transcripts produced in vitro by T7 phage RNAP harbor a variant. These results demonstrate the extraordinary genetic diversity of viral populations and the heterogeneous nature of an mRNA vaccine fueled by RNAP inaccuracy. Along with functional studies and pandemic data, tARC-seq variant spectra can inform models to predict how SARS-CoV-2 may evolve. Finally, our results may help improve future vaccine development and study design as mRNA therapies continue to gain traction.
Collapse
Affiliation(s)
- Catherine C Bradley
- Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas 77030, USA
- Baylor College of Medicine Medical Scientist Training Program; Houston, Texas 77030, USA
- Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars program; Houston, Texas 77030, USA
| | - Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas 77030, USA
| | - Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas 77030, USA
| | - Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas 77030, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, WA 98195, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, WA 98195, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas 77030, USA
| | - Shannon E Ronca
- Feigin Biosafety Level 3 Facility, Texas Children's Hospital; Houston, Texas 77030, USA
- National School of Tropical Medicine, Department of Pediatrics Tropical Medicine, Texas Children's Hospital and Baylor College of Medicine; Houston, Texas 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine; Houston, Texas 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine; Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine; Houston, TX 77030, USA
| |
Collapse
|
8
|
Gong P. Within and Beyond the Nucleotide Addition Cycle of Viral RNA-dependent RNA Polymerases. Front Mol Biosci 2022; 8:822218. [PMID: 35083282 PMCID: PMC8784604 DOI: 10.3389/fmolb.2021.822218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Nucleotide addition cycle (NAC) is a fundamental process utilized by nucleic acid polymerases when carrying out nucleic acid biosynthesis. An induced-fit mechanism is usually taken by these polymerases upon NTP/dNTP substrate binding, leading to active site closure and formation of a phosphodiester bond. In viral RNA-dependent RNA polymerases, the post-chemistry translocation is stringently controlled by a structurally conserved motif, resulting in asymmetric movement of the template-product duplex. This perspective focuses on viral RdRP NAC and related mechanisms that have not been structurally clarified to date. Firstly, RdRP movement along the template strand in the absence of catalytic events may be relevant to catalytic complex dissociation or proofreading. Secondly, pyrophosphate or non-cognate NTP-mediated cleavage of the product strand 3′-nucleotide can also play a role in reactivating paused or arrested catalytic complexes. Furthermore, non-cognate NTP substrates, including NTP analog inhibitors, can not only alter NAC when being misincorporated, but also impact on subsequent NACs. Complications and challenges related to these topics are also discussed.
Collapse
Affiliation(s)
- Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, China
- *Correspondence: Peng Gong,
| |
Collapse
|
9
|
Danchin A. In vivo, in vitro and in silico: an open space for the development of microbe-based applications of synthetic biology. Microb Biotechnol 2022; 15:42-64. [PMID: 34570957 PMCID: PMC8719824 DOI: 10.1111/1751-7915.13937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Living systems are studied using three complementary approaches: living cells, cell-free systems and computer-mediated modelling. Progresses in understanding, allowing researchers to create novel chassis and industrial processes rest on a cycle that combines in vivo, in vitro and in silico studies. This design-build-test-learn iteration loop cycle between experiments and analyses combines together physiology, genetics, biochemistry and bioinformatics in a way that keeps going forward. Because computer-aided approaches are not directly constrained by the material nature of the entities of interest, we illustrate here how this virtuous cycle allows researchers to explore chemistry which is foreign to that present in extant life, from whole chassis to novel metabolic cycles. Particular emphasis is placed on the importance of evolution.
Collapse
Affiliation(s)
- Antoine Danchin
- Kodikos LabsInstitut Cochin24 rue du Faubourg Saint‐JacquesParis75014France
| |
Collapse
|
10
|
Zhang H, Wu J, Lyu Z, Ling J. Impact of alanyl-tRNA synthetase editing deficiency in yeast. Nucleic Acids Res 2021; 49:9953-9964. [PMID: 34500470 PMCID: PMC8464055 DOI: 10.1093/nar/gkab766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that provide the ribosome with aminoacyl-tRNA substrates for protein synthesis. Mutations in aaRSs lead to various neurological disorders in humans. Many aaRSs utilize editing to prevent error propagation during translation. Editing defects in alanyl-tRNA synthetase (AlaRS) cause neurodegeneration and cardioproteinopathy in mice and are associated with microcephaly in human patients. The cellular impact of AlaRS editing deficiency in eukaryotes remains unclear. Here we use yeast as a model organism to systematically investigate the physiological role of AlaRS editing. Our RNA sequencing and quantitative proteomics results reveal that AlaRS editing defects surprisingly activate the general amino acid control pathway and attenuate the heatshock response. We have confirmed these results with reporter and growth assays. In addition, AlaRS editing defects downregulate carbon metabolism and attenuate protein synthesis. Supplying yeast cells with extra carbon source partially rescues the heat sensitivity caused by AlaRS editing deficiency. These findings are in stark contrast with the cellular effects caused by editing deficiency in other aaRSs. Our study therefore highlights the idiosyncratic role of AlaRS editing compared with other aaRSs and provides a model for the physiological impact caused by the lack of AlaRS editing.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jiang Wu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Metabolic stress promotes stop-codon readthrough and phenotypic heterogeneity. Proc Natl Acad Sci U S A 2020; 117:22167-22172. [PMID: 32839318 DOI: 10.1073/pnas.2013543117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accurate protein synthesis is a tightly controlled biological process with multiple quality control steps safeguarded by aminoacyl-transfer RNA (tRNA) synthetases and the ribosome. Reduced translational accuracy leads to various physiological changes in both prokaryotes and eukaryotes. Termination of translation is signaled by stop codons and catalyzed by release factors. Occasionally, stop codons can be suppressed by near-cognate aminoacyl-tRNAs, resulting in protein variants with extended C termini. We have recently shown that stop-codon readthrough is heterogeneous among single bacterial cells. However, little is known about how environmental factors affect the level and heterogeneity of stop-codon readthrough. In this study, we have combined dual-fluorescence reporters, mass spectrometry, mathematical modeling, and single-cell approaches to demonstrate that a metabolic stress caused by excess carbon substantially increases both the level and heterogeneity of stop-codon readthrough. Excess carbon leads to accumulation of acid metabolites, which lower the pH and the activity of release factors to promote readthrough. Furthermore, our time-lapse microscopy experiments show that single cells with high readthrough levels are more adapted to severe acid stress conditions and are more sensitive to an aminoglycoside antibiotic. Our work thus reveals a metabolic stress that promotes translational heterogeneity and phenotypic diversity.
Collapse
|
12
|
Martín-Alonso S, Frutos-Beltrán E, Menéndez-Arias L. Reverse Transcriptase: From Transcriptomics to Genome Editing. Trends Biotechnol 2020; 39:194-210. [PMID: 32653101 DOI: 10.1016/j.tibtech.2020.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/01/2023]
Abstract
Reverse transcriptases (RTs) are enzymes that can generate a complementary strand of DNA (cDNA) from RNA. Coupled with PCR, RTs have been widely used to detect RNAs and to clone expressed genes. Classical retroviral RTs have been improved by protein engineering. These enzymes and newly characterized RTs are key elements in the development of next-generation sequencing techniques that are now being applied to the study of transcriptomics. In addition, engineered RTs fused to a CRISPR/Cas9 nickase have recently shown great potential as tools to manipulate eukaryotic genomes. In this review, we discuss the properties and uses of wild type and engineered RTs in biotechnological applications, from conventional RT-PCR to recently introduced prime editing.
Collapse
Affiliation(s)
- Samara Martín-Alonso
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain. @cbm.csic.es
| |
Collapse
|
13
|
Auboeuf D. Physicochemical Foundations of Life that Direct Evolution: Chance and Natural Selection are not Evolutionary Driving Forces. Life (Basel) 2020; 10:life10020007. [PMID: 31973071 PMCID: PMC7175370 DOI: 10.3390/life10020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The current framework of evolutionary theory postulates that evolution relies on random mutations generating a diversity of phenotypes on which natural selection acts. This framework was established using a top-down approach as it originated from Darwinism, which is based on observations made of complex multicellular organisms and, then, modified to fit a DNA-centric view. In this article, it is argued that based on a bottom-up approach starting from the physicochemical properties of nucleic and amino acid polymers, we should reject the facts that (i) natural selection plays a dominant role in evolution and (ii) the probability of mutations is independent of the generated phenotype. It is shown that the adaptation of a phenotype to an environment does not correspond to organism fitness, but rather corresponds to maintaining the genome stability and integrity. In a stable environment, the phenotype maintains the stability of its originating genome and both (genome and phenotype) are reproduced identically. In an unstable environment (i.e., corresponding to variations in physicochemical parameters above a physiological range), the phenotype no longer maintains the stability of its originating genome, but instead influences its variations. Indeed, environment- and cellular-dependent physicochemical parameters define the probability of mutations in terms of frequency, nature, and location in a genome. Evolution is non-deterministic because it relies on probabilistic physicochemical rules, and evolution is driven by a bidirectional interplay between genome and phenotype in which the phenotype ensures the stability of its originating genome in a cellular and environmental physicochemical parameter-depending manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| |
Collapse
|
14
|
Agapov A, Kulbachinskiy A. Four paralogous Gfh factors in the extremophilic bacterium Deinococcus peraridilitoris have distinct effects on various steps of transcription. Biochimie 2019; 170:21-25. [PMID: 31843578 DOI: 10.1016/j.biochi.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
Gre factors are ubiquitous transcription regulators that stimulate co-transcriptional RNA cleavage by bacterial RNA polymerase (RNAP). Here, we show that the stress-resistant bacterium Deinococcus peraridilitoris encodes four Gre factor homologs, Gfh proteins, that have distinct effects on transcription by RNAP. Two of the factors, Gfh1α and Gfh2β inhibit transcription initiation, and one of them, Gfh1α can also regulate transcription elongation. We show that this factor strongly stimulates transcriptional pausing and intrinsic termination in the presence of manganese ions but has no effect on RNA cleavage. Thus, some Gfh factors encoded by Deinococci serve as lineage-specific transcription inhibitors that may play a role in stress resistance, while the functions of others remain to be discovered.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|