1
|
Kim J, Kang SJ, Jo N, Kim SJ, Jang S. Cancer prognosis using base excision repair genes. Mol Cells 2025:100186. [PMID: 39828060 DOI: 10.1016/j.mocell.2025.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The base excision repair (BER) pathway is a critical mechanism in genomic stability. This review investigates the role of the BER pathway in advanced cancer therapies considering the pivotal role of genetic factors in cancer patient responses and prognosis. BER factors significantly influence genetic instability and cancer prognosis, as well as the effectiveness of chemotherapy and radiation therapy. In various cancers such as breast, colon, lung, and bladder, BER factors have shown potential as critical biological markers for predicting cancer outcomes. This study focuses on the polymorphisms and expression levels of key BER genes, including OGG1, XRCC1, APE1, and Polβ. Our findings demonstrate that the expression levels of BER genes and proteins are closely associated with the risk, progression, treatment response, and prognosis of various cancers. These insights could improve cancer treatments and aid in the development of drugs targeting BER proteins. Ongoing research in this field requires extensive statistical analyses and large-scale prospective studies to effectively utilize BER protein levels. Ultimately, these results suggest that the BER pathway represents a potential target for cancer diagnosis, prognostic prediction, and the development of personalized therapeutic strategies. This paves the way for effective cancer treatment in the future.
Collapse
Affiliation(s)
- Jeongeun Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Su-Jin Kang
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea.
| | - Nayoon Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sunbok Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Noireterre A, Stutz F. Cdc48/p97 segregase: Spotlight on DNA-protein crosslinks. DNA Repair (Amst) 2024; 139:103691. [PMID: 38744091 DOI: 10.1016/j.dnarep.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland.
| |
Collapse
|
3
|
Torrecilla I, Ruggiano A, Kiianitsa K, Aljarbou F, Lascaux P, Hoslett G, Song W, Maizels N, Ramadan K. Isolation and detection of DNA-protein crosslinks in mammalian cells. Nucleic Acids Res 2024; 52:525-547. [PMID: 38084926 PMCID: PMC10810220 DOI: 10.1093/nar/gkad1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/26/2024] Open
Abstract
DNA-protein crosslinks (DPCs) are toxic DNA lesions wherein a protein is covalently attached to DNA. If not rapidly repaired, DPCs create obstacles that disturb DNA replication, transcription and DNA damage repair, ultimately leading to genome instability. The persistence of DPCs is associated with premature ageing, cancer and neurodegeneration. In mammalian cells, the repair of DPCs mainly relies on the proteolytic activities of SPRTN and the 26S proteasome, complemented by other enzymes including TDP1/2 and the MRN complex, and many of the activities involved are essential, restricting genetic approaches. For many years, the study of DPC repair in mammalian cells was hindered by the lack of standardised assays, most notably assays that reliably quantified the proteins or proteolytic fragments covalently bound to DNA. Recent interest in the field has spurred the development of several biochemical methods for DPC analysis. Here, we critically analyse the latest techniques for DPC isolation and the benefits and drawbacks of each. We aim to assist researchers in selecting the most suitable isolation method for their experimental requirements and questions, and to facilitate the comparison of results across different laboratories using different approaches.
Collapse
Affiliation(s)
- Ignacio Torrecilla
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Annamaria Ruggiano
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Kostantin Kiianitsa
- Department of Immunology, University of Washington, Seattle, WA 98195-7350, USA
| | - Ftoon Aljarbou
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Pauline Lascaux
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Gwendoline Hoslett
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Wei Song
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Nancy Maizels
- Department of Immunology, University of Washington, Seattle, WA 98195-7350, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Kristijan Ramadan
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
4
|
Essawy MM, Campbell C. Enzymatic Processing of DNA-Protein Crosslinks. Genes (Basel) 2024; 15:85. [PMID: 38254974 PMCID: PMC10815813 DOI: 10.3390/genes15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-protein crosslinks (DPCs) represent a unique and complex form of DNA damage formed by covalent attachment of proteins to DNA. DPCs are formed through a variety of mechanisms and can significantly impede essential cellular processes such as transcription and replication. For this reason, anti-cancer drugs that form DPCs have proven effective in cancer therapy. While cells rely on numerous different processes to remove DPCs, the molecular mechanisms responsible for orchestrating these processes remain obscure. Having this insight could potentially be harnessed therapeutically to improve clinical outcomes in the battle against cancer. In this review, we describe the ways cells enzymatically process DPCs. These processing events include direct reversal of the DPC via hydrolysis, nuclease digestion of the DNA backbone to delete the DPC and surrounding DNA, proteolytic processing of the crosslinked protein, as well as covalent modification of the DNA-crosslinked proteins with ubiquitin, SUMO, and Poly(ADP) Ribose (PAR).
Collapse
Affiliation(s)
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
5
|
Wei X, Yang K. PARP1 Incises Abasic Sites and Covalently Cross-links to 3'-DNA Termini via Cysteine Addition Not Reductive Amination. Biochemistry 2023; 62:1527-1530. [PMID: 37094109 DOI: 10.1021/acs.biochem.3c00138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Poly [ADP-ribose] polymerase 1 (PARP1) is a ubiquitous nuclear enzyme that plays multifaceted roles in the cellular response to DNA damage. Previous studies demonstrated that PARP1 incises the most frequently formed DNA lesion, the apurinic/apyrimidinic (AP) site, and in the process is trapped as a DNA-PARP1 cross-link at the 3'-terminus. The covalent linkage was proposed to be composed of a secondary amine resulting from formal reductive amination of an initially formed incision product. PARP1 cysteine residues were proposed to reduce the initially formed Schiff base. Here, we report evidence to support a different mechanism in which DNA-PARP1 cross-links result from cysteine addition to incised AP sites.
Collapse
Affiliation(s)
- Xiaoying Wei
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Leng X, Duxin JP. Targeting DNA-Protein Crosslinks via Post-Translational Modifications. Front Mol Biosci 2022; 9:944775. [PMID: 35860355 PMCID: PMC9289515 DOI: 10.3389/fmolb.2022.944775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Covalent binding of proteins to DNA forms DNA-protein crosslinks (DPCs), which represent cytotoxic DNA lesions that interfere with essential processes such as DNA replication and transcription. Cells possess different enzymatic activities to counteract DPCs. These include enzymes that degrade the adducted proteins, resolve the crosslinks, or incise the DNA to remove the crosslinked proteins. An important question is how DPCs are sensed and targeted for removal via the most suited pathway. Recent advances have shown the inherent role of DNA replication in triggering DPC removal by proteolysis. However, DPCs are also efficiently sensed and removed in the absence of DNA replication. In either scenario, post-translational modifications (PTMs) on DPCs play essential and versatile roles in orchestrating the repair routes. In this review, we summarize the current knowledge of the mechanisms that trigger DPC removal via PTMs, focusing on ubiquitylation, small ubiquitin-related modifier (SUMO) conjugation (SUMOylation), and poly (ADP-ribosyl)ation (PARylation). We also briefly discuss the current knowledge gaps and emerging hypotheses in the field.
Collapse
|
7
|
Keisner SV. Rucaparib and olaparib for the treatment of prostate cancer: A clinician's guide to choice of therapy. J Oncol Pharm Pract 2022; 28:1624-1633. [PMID: 35440240 DOI: 10.1177/10781552221094308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This review will provide an overview of the use rucaparib and olaparib in patients with metastatic castration resistant prostate cancer (mCRPC) with the goal to assist the clinician's decision-making process when considering these agents for an individual patient. DATA SOURCES Searches were conducted in PubMed, relevant meeting abstracts, clinicaltrials.gov, and United States Food and Drug Administration (FDA) documents to identify literature published through July 1, 2021, related to use of rucaparib and olaparib for treatment of prostate cancer. DATA SUMMARY In May 2020, the FDA approved rucaparib and olaparib for treatment of mCRPC that is homologous recombination repair (HRR)-deficient. Both agents are approved for previously-treated patients, but there are notable differences in strength of evidence, outcomes studied, required HRR alteration, and required prior therapies. In patients who qualify for therapy, additional factors that may help guide choice of PARP inhibitor include baseline organ function, drug interaction potential, toxicity profiles, and financial factors. CONCLUSIONS Rucaparib and olaparib have the potential to improve outcomes for patients with HRR-deficient mCRPC. Differences in strength of evidence and patient- and drug-specific characteristics will assist the clinician when choosing between agents.
Collapse
Affiliation(s)
- Sidney Veach Keisner
- Department of Pharmacy Practice, College of Pharmacy, 12215University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
8
|
He YF, Huang J, Qian Y, Liu DB, Liu QF. Lipopolysaccharide induces pyroptosis through regulation of autophagy in cardiomyocytes. Cardiovasc Diagn Ther 2021; 11:1025-1035. [PMID: 34815953 DOI: 10.21037/cdt-21-293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/30/2021] [Indexed: 11/06/2022]
Abstract
Background Autophagy, a stress response in eukaryotic cells, is closely related to cardiogenic diseases. Pyroptosis, a newly discovered way of programmed cell death, also plays an important role in cardiovascular disease. However, the role and relationship of autophagy and pyroptosis in lipopolysaccharide (LPS)-induced inflammatory response of cardiomyocytes were still unclear. Methods Western blot was performed to determine the expression of poly ADP-ribosepolmesera-1 (PARP-1), LC3B, NLRP3 and GSDMD in cardiomyocytes after the treatment of LPS. Transfection of si-LC3B, western blot and immunofluorescence (IF) staining were performed to investigate the role of autophagy in LPS-induced pyroptosis. Co-immunoprecipitation (Co-IP) assays and quantitative real-time PCR (qRT-PCR) were conducted to explore whether PARP-1 binding to LC3B and modulating its expression. Transfections of si-PARP-1, western blot and IF were carried out to confirm the role of PARP-1 in the regulation of LPS-induced pyroptosis by autophagy. Results LPS induces autophagy and pyroptosis in cardiomyocytes, enhanced the level of autophagy and inhibited the level of pyroptosis in the concentration of 4 µg/mL. We further proved that autophagy inhibits LPS-induced pyroptosis in cardiomyocytes. In addition, PARP-1 binding to LC3B and regulate the expression of LC3B. Finally, we proved that knockdown of PARP-1 rescued the inhibition of autophagy on LPS-induced pyroptosis of cardiomyocytes. Conclusions LPS induces pyroptosis through regulation of autophagy via PARP-1 at a specific concentration, above which it causes deposition of autophagy flow to promote pyroptosis. Inhibiting LPS-induced pyroptosis could be a promising therapeutic target in treating cardiovascular diseases.
Collapse
Affiliation(s)
- You-Fu He
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Provincial Cardiovascular Disease Clinical Medicine Research Center, Guiyang, China.,Medical College, Guizhou University, Guiyang, China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Provincial Cardiovascular Disease Clinical Medicine Research Center, Guiyang, China.,Medical College, Guizhou University, Guiyang, China
| | - Yu Qian
- Department of Cardiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - De-Bin Liu
- Department of Cardiology, Shantou Second People's Hospital, Shantou, China
| | - Qi-Fang Liu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Provincial Cardiovascular Disease Clinical Medicine Research Center, Guiyang, China
| |
Collapse
|
9
|
Saha LK, Murai Y, Saha S, Jo U, Tsuda M, Takeda S, Pommier Y. Replication-dependent cytotoxicity and Spartan-mediated repair of trapped PARP1-DNA complexes. Nucleic Acids Res 2021; 49:10493-10506. [PMID: 34551432 DOI: 10.1093/nar/gkab777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA-protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1-DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1-DNA complexes.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yasuhisa Murai
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Masataka Tsuda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.,Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
11
|
The Role of Nucleotide Excision Repair in Cisplatin-Induced Peripheral Neuropathy: Mechanism, Prevention, and Treatment. Int J Mol Sci 2021; 22:ijms22041975. [PMID: 33671279 PMCID: PMC7921932 DOI: 10.3390/ijms22041975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common dose-limiting effects of cancer treatment and results in dose reduction and discontinuation of life-saving chemotherapy. Its debilitating effects are often permanent and lead to lifelong impairment of quality of life in cancer patients. While the mechanisms underlying the toxicity are not yet fully defined, dorsal root ganglia sensory neurons play an integral role in symptom development. DNA-platinum adducts accumulate in these cells and inhibit normal cellular function. Nucleotide excision repair (NER) is integral to the repair of platinum adducts, and proteins involved in its mechanism serve as potential targets for future therapeutics. This review aims to highlight NER’s role in cisplatin-induced peripheral neuropathy, summarize current clinical approaches to the toxicity, and discuss future perspectives for the prevention and treatment of CIPN.
Collapse
|
12
|
Khodyreva S, Lavrik O. Non-canonical interaction of DNA repair proteins with intact and cleaved AP sites. DNA Repair (Amst) 2020; 90:102847. [DOI: 10.1016/j.dnarep.2020.102847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
|