1
|
Wilson C, Adams GG, Patel P, Windham K, Ennis C, Caffrey E. A Review of Recent Low-dose Research and Recommendations for Moving Forward. HEALTH PHYSICS 2024; 126:386-396. [PMID: 38568156 DOI: 10.1097/hp.0000000000001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT The linear no-threshold (LNT) model has been the regulatory "law of the land" for decades. Despite the long-standing use of LNT, there is significant ongoing scientific disagreement on the applicability of LNT to low-dose radiation risk. A review of the low-dose risk literature of the last 10 y does not provide a clear answer, but rather the body of literature seems to be split between LNT, non-linear risk functions (e.g., supra- or sub-linear), and hormetic models. Furthermore, recent studies have started to explore whether radiation can play a role in the development of several non-cancer effects, such as heart disease, Parkinson's disease, and diabetes, the mechanisms of which are still being explored. Based on this review, there is insufficient evidence to replace LNT as the regulatory model despite the fact that it contributes to public radiophobia, unpreparedness in radiation emergency response, and extreme cleanup costs both following radiological or nuclear incidents and for routine decommissioning of nuclear power plants. Rather, additional research is needed to further understand the implications of low doses of radiation. The authors present an approach to meaningfully contribute to the science of low-dose research that incorporates machine learning and Edisonian approaches to data analysis.
Collapse
Affiliation(s)
- Charles Wilson
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Grace G Adams
- Gryphon Scientific, LLC, 6930 Carrol Ave., Suite 810, Takoma Park, MD 20912
| | - Pooja Patel
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Kiran Windham
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Colby Ennis
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Emily Caffrey
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| |
Collapse
|
2
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
3
|
Guo J, Zhao Z, Shang Z, Tang Z, Zhu H, Zhang K. Nanodrugs with intrinsic radioprotective exertion: Turning the double-edged sword into a single-edged knife. EXPLORATION (BEIJING, CHINA) 2023; 3:20220119. [PMID: 37324033 PMCID: PMC10190950 DOI: 10.1002/exp.20220119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/10/2023] [Indexed: 06/17/2023]
Abstract
Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area. Herein, we made the systematic review on this topic, and discussed more specific types of radioprotective nanomaterials and more general clusters of the extensive nano-radioprotectants. In this review, we mainly focused on the development, design innovations, applications, challenges, and prospects of the intrinsic antiradiation nanomedicines, and presented a comprehensive overview, in-depth analysis as well as an updated understanding of the latest advances in this topic. We hope that this review will promote the interdisciplinarity across radiation medicine and nanotechnology and stimulate further valuable studies in this promising field.
Collapse
Affiliation(s)
- Jiaming Guo
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
| | - Zhemeng Zhao
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina
| | - Zeng‐Fu Shang
- Department of Radiation OncologySimmons Comprehensive Cancer Center at UT Southwestern Medical CenterDallasTexasUSA
| | - Zhongmin Tang
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Huanhuan Zhu
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Medical UniversityNanningGuangxiP. R. China
- Department of Oncology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanP. R. China
| |
Collapse
|
4
|
Sampadi B, Vermeulen S, Mišovic B, Boei JJ, Batth TS, Chang JG, Paulsen MT, Magnuson B, Schimmel J, Kool H, Olie CS, Everts B, Vertegaal ACO, Olsen JV, Ljungman M, Jeggo PA, Mullenders LHF, Vrieling H. Divergent Molecular and Cellular Responses to Low and High-Dose Ionizing Radiation. Cells 2022; 11:cells11233794. [PMID: 36497055 PMCID: PMC9739411 DOI: 10.3390/cells11233794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).
Collapse
Affiliation(s)
- Bharath Sampadi
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Correspondence: (B.S.); (H.V.)
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Branislav Mišovic
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Jan J. Boei
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Tanveer S. Batth
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jer-Gung Chang
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Michelle T. Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Magnuson
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Hanneke Kool
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Cyriel S. Olie
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Jesper V. Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Penny A. Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Leon H. F. Mullenders
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya 464-8601, Japan
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Correspondence: (B.S.); (H.V.)
| |
Collapse
|
5
|
Gao Y, Dong J, Chen M, Wang T, Yang Z, He K, Li Y, Wang K, Jiang J, Zhang S. Protective effect of low-dose radiation on doxorubicin-induced brain injury in mice. Arch Biochem Biophys 2022; 729:109390. [PMID: 36067878 DOI: 10.1016/j.abb.2022.109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND To investigate the protective effect of low-dose radiation (LDR) on brain injury in mice induced by doxorubicin (DOX). METHODS Sixty female BALB/C mice were randomly divided into the control (CTR) group, low-dose radiation (LDR) group, doxorubicin treatment (DOX) group and low-dose radiation before doxorubicin treatment (COM) group. After 72 h of exposure to 75 mGy, the mice were intraperitoneally injected with 7.5 mg/kg of doxorubicin and sacrificed 5 days later. Neuron-specific enolase (NSE), lactate dehydrogenase (LDH), adenosine triphosphate (ATP), neurotransmitters, inflammatory mediators, apoptosis- and oxidative stress-related mediators as well as mitochondrial dysfunction were examined. RESULTS Compared to the DOX group, the concentrations of DA, 5-HT, EPI and GABA in the COM group were significantly decreased, and the number of TUNEL-positive cells was decreased. In addition, the expression of proapoptotic proteins was downregulated in the COM group compared to the DOX group. Low-dose radiation in advance reduced reactive oxygen species and activated the SOD antioxidant defense system as indicated by significantly reduced GSH expression, increased GSSG expression, increased GPx expression and activation of the Nrf2 redox pathway. After low-dose radiation, the expression levels of ATP5f1, NDUFV1 and CYC1 were close to normal, and the mitochondrial respiratory control rate (RCR) and activity of respiratory chain complex enzymes also tended to be normal. Low-dose radiation upregulated the expression levels of IL-2 and IL-4 but downregulated the expression levels of IL-10 and TGF-β. CONCLUSION LDR has a protective effect on brain injury in mice treated with DOX. The mechanism is related to LDR alleviating mitochondrial dysfunction and oxidative stress, which promotes the production of antioxidant damage proteins, thus exerting an adaptive protective effect on cells.
Collapse
Affiliation(s)
- Yan Gao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, China
| | - Jingyao Dong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mengmeng Chen
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, China
| | - Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, China
| | - Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, China
| | - Yuewei Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, China
| | - Jian Jiang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, China.
| | - Shuang Zhang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, China.
| |
Collapse
|