1
|
Quiñones JL, Tang M, Fang Q, Sobol RW, Demple B. C-terminal residues of DNA polymerase β and E3 ligase required for ubiquitin-linked proteolysis of oxidative DNA-protein crosslinks. DNA Repair (Amst) 2024; 143:103756. [PMID: 39243487 DOI: 10.1016/j.dnarep.2024.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Free radicals produce in DNA a large variety of base and deoxyribose lesions that are corrected by the base excision DNA repair (BER) system. However, the C1'-oxidized abasic residue 2-deoxyribonolactone (dL) traps DNA repair lyases in covalent DNA-protein crosslinks (DPC), including the core BER enzyme DNA polymerase beta (Polβ). Polβ-DPC are rapidly processed in mammalian cells by proteasome-dependent digestion. Blocking the proteasome causes oxidative Polβ-DPC to accumulate in a ubiquitylated form, and this accumulation is toxic to human cells. In the current study, we investigated the mechanism of Polβ-DPC processing in cells exposed to the dL-inducing oxidant 1,10-copper-ortho-phenanthroline. Alanine substitution of either or both of two Polβ C-terminal residues, lysine-206 and lysine-244, enhanced the accumulation of mutant Polβ-DPC relative to the wild-type protein, and removal of the mutant DPC was diminished. Substitution of the N-terminal lysines 41, 61, and 81 did not affect Polβ-DPC processing. For Polβ with the C-terminal lysine substitutions, the amount of ubiquitin in the stabilized DPC was lowered by ∼40 % relative to wild-type Polβ. Suppression of the HECT domain-containing E3 ubiquitin ligase TRIP12 augmented the formation of oxidative Polβ-DPC and prevented Polβ-DPC removal in oxidant-treated cells. Consistent with the toxicity of accumulated oxidative Polβ-DPC, TRIP12 knockdown increased oxidant-mediated cytotoxicity. Thus, ubiquitylation of lysine-206 and lysine-244 by TRIP12 is necessary for digestion of Polβ-DPC by the proteasome as the rapid first steps of DPC repair to prevent their cytotoxic accumulation. Understanding how DPC formed with Polβ or other AP lyases are repaired in vivo is an important step in revealing how cells cope with the toxic potential of such adducts.
Collapse
Affiliation(s)
- Jason L Quiñones
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Basic Science Tower 8-140, Stony Brook, New York 11794, USA
| | - Meiyi Tang
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Basic Science Tower 8-140, Stony Brook, New York 11794, USA
| | - Qingming Fang
- Mitchell Cancer Institute & Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W Sobol
- Mitchell Cancer Institute & Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Basic Science Tower 8-140, Stony Brook, New York 11794, USA; Department of Radiation Oncology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA.
| |
Collapse
|
2
|
Saville KM, Al-Rahahleh RQ, Siddiqui AH, Andrews ME, Roos WP, Koczor CA, Andrews JF, Hayat F, Migaud ME, Sobol RW. Oncometabolite 2-hydroxyglutarate suppresses basal protein levels of DNA polymerase beta that enhances alkylating agent and PARG inhibition induced cytotoxicity. DNA Repair (Amst) 2024; 140:103700. [PMID: 38897003 PMCID: PMC11239280 DOI: 10.1016/j.dnarep.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Mutations in isocitrate dehydrogenase isoform 1 (IDH1) are primarily found in secondary glioblastoma (GBM) and low-grade glioma but are rare in primary GBM. The standard treatment for GBM includes radiation combined with temozolomide, an alkylating agent. Fortunately, IDH1 mutant gliomas are sensitive to this treatment, resulting in a more favorable prognosis. However, it's estimated that up to 75 % of IDH1 mutant gliomas will progress to WHO grade IV over time and develop resistance to alkylating agents. Therefore, understanding the mechanism(s) by which IDH1 mutant gliomas confer sensitivity to alkylating agents is crucial for developing targeted chemotherapeutic approaches. The base excision repair (BER) pathway is responsible for repairing most base damage induced by alkylating agents. Defects in this pathway can lead to hypersensitivity to these agents due to unresolved DNA damage. The coordinated assembly and disassembly of BER protein complexes are essential for cell survival and for maintaining genomic integrity following alkylating agent exposure. These complexes rely on poly-ADP-ribose formation, an NAD+-dependent post-translational modification synthesized by PARP1 and PARP2 during the BER process. At the lesion site, poly-ADP-ribose facilitates the recruitment of XRCC1. This scaffold protein helps assemble BER proteins like DNA polymerase beta (Polβ), a bifunctional DNA polymerase containing both DNA synthesis and 5'-deoxyribose-phosphate lyase (5'dRP lyase) activity. Here, we confirm that IDH1 mutant glioma cells have defective NAD+ metabolism, but still produce sufficient nuclear NAD+ for robust PARP1 activation and BER complex formation in response to DNA damage. However, the overproduction of 2-hydroxyglutarate, an oncometabolite produced by the IDH1 R132H mutant protein, suppresses BER capacity by reducing Polβ protein levels. This defines a novel mechanism by which the IDH1 mutation in gliomas confers cellular sensitivity to alkylating agents and to inhibitors of the poly-ADP-ribose glycohydrolase, PARG.
Collapse
Affiliation(s)
- Kate M Saville
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Rasha Q Al-Rahahleh
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Aisha H Siddiqui
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Morgan E Andrews
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Wynand P Roos
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Christopher A Koczor
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Joel F Andrews
- Department Biochemistry and Molecular Biology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Faisal Hayat
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Marie E Migaud
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Robert W Sobol
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
3
|
Inanc B, Fang Q, Andrews JF, Zeng X, Clark J, Li J, Dey NB, Ibrahim M, Sykora P, Yu Z, Braganza A, Verheij M, Jonkers J, Yates NA, Vens C, Sobol RW. TRIP12 governs DNA Polymerase β involvement in DNA damage response and repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588474. [PMID: 38645048 PMCID: PMC11030427 DOI: 10.1101/2024.04.08.588474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The multitude of DNA lesion types, and the nuclear dynamic context in which they occur, present a challenge for genome integrity maintenance as this requires the engagement of different DNA repair pathways. Specific 'repair controllers' that facilitate DNA repair pathway crosstalk between double strand break (DSB) repair and base excision repair (BER), and regulate BER protein trafficking at lesion sites, have yet to be identified. We find that DNA polymerase β (Polβ), crucial for BER, is ubiquitylated in a BER complex-dependent manner by TRIP12, an E3 ligase that partners with UBR5 and restrains DSB repair signaling. Here we find that, TRIP12, but not UBR5, controls cellular levels and chromatin loading of Polβ. Required for Polβ foci formation, TRIP12 regulates Polβ involvement after DNA damage. Notably, excessive TRIP12-mediated shuttling of Polβ affects DSB formation and radiation sensitivity, underscoring its precedence for BER. We conclude that the herein discovered trafficking function at the nexus of DNA repair signaling pathways, towards Polβ-directed BER, optimizes DNA repair pathway choice at complex lesion sites.
Collapse
|
4
|
Sobol RW. Mouse models to explore the biological and organismic role of DNA polymerase beta. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:57-71. [PMID: 38619421 PMCID: PMC11027944 DOI: 10.1002/em.22593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Gene knock-out (KO) mouse models for DNA polymerase beta (Polβ) revealed that loss of Polβ leads to neonatal lethality, highlighting the critical organismic role for this DNA polymerase. While biochemical analysis and gene KO cell lines have confirmed its biochemical role in base excision repair and in TET-mediated demethylation, more long-lived mouse models continue to be developed to further define its organismic role. The Polb-KO mouse was the first of the Cre-mediated tissue-specific KO mouse models. This technology was exploited to investigate roles for Polβ in V(D)J recombination (variable-diversity-joining rearrangement), DNA demethylation, gene complementation, SPO11-induced DNA double-strand break repair, germ cell genome stability, as well as neuronal differentiation, susceptibility to genotoxin-induced DNA damage, and cancer onset. The revolution in knock-in (KI) mouse models was made possible by CRISPR/cas9-mediated gene editing directly in C57BL/6 zygotes. This technology has helped identify phenotypes associated with germline or somatic mutants of Polβ. Such KI mouse models have helped uncover the importance of key Polβ active site residues or specific Polβ enzyme activities, such as the PolbY265C mouse that develops lupus symptoms. More recently, we have used this KI technology to mutate the Polb gene with two codon changes, yielding the PolbL301R/V303R mouse. In this KI mouse model, the expressed Polβ protein cannot bind to its obligate heterodimer partner, Xrcc1. Although the expressed mutant Polβ protein is proteolytically unstable and defective in recruitment to sites of DNA damage, the homozygous PolbL301R/V303R mouse is viable and fertile, yet small in stature. We expect that this and additional targeted mouse models under development are poised to reveal new biological and organismic roles for Polβ.
Collapse
Affiliation(s)
- Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
5
|
Almohdar D, Gulkis M, Ortiz A, Tang Q, Sobol RW, Çağlayan M. Impact of polβ/XRCC1 Interaction Variants on the Efficiency of Nick Sealing by DNA Ligase IIIα in the Base Excision Repair Pathway. J Mol Biol 2024; 436:168410. [PMID: 38135179 PMCID: PMC11090158 DOI: 10.1016/j.jmb.2023.168410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Base excision repair (BER) requires a coordination from gap filling by DNA polymerase (pol) β to subsequent nick sealing by DNA ligase (LIG) IIIα at downstream steps of the repair pathway. X-ray cross-complementing protein 1 (XRCC1), a non-enzymatic scaffolding protein, forms repair complexes with polβ and LIGIIIα. Yet, the impact of the polβ mutations that affect XRCC1 interaction and protein stability on the repair pathway coordination during nick sealing by LIGIIIα remains unknown. Our results show that the polβ colon cancer-associated variant T304 exhibits a reduced interaction with XRCC1 and the mutations in the interaction interface of V303 loop (L301R/V303R/V306R) and at the lysine residues (K206A/K244A) that prevent ubiquitin-mediated degradation of the protein exhibit a diminished repair protein complex formation with XRCC1. Furthermore, we demonstrate no significant effect on gap and nick DNA binding affinity of wild-type polβ by these mutations. Finally, our results reveal that XRCC1 leads to an efficient channeling of nick repair products after nucleotide incorporation by polβ variants to LIGIIIα, which is compromised by the L301R/V303R/V306R and K206A/K244A mutations. Overall, our findings provide insight into how the mutations in the polβ/XRCC1 interface and the regions affecting protein stability could dictate accurate BER pathway coordination at the downstream steps involving nick sealing by LIGIIIα.
Collapse
Affiliation(s)
- Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Abigail Ortiz
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Qun Tang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|