1
|
Pei X, Li H, Yu H, Wang W, Mao D. APN Expression in Serum and Corpus Luteum: Regulation of Luteal Steroidogenesis Is Possibly Dependent on the AdipoR2/AMPK Pathway in Goats. Cells 2023; 12:1393. [PMID: 37408227 DOI: 10.3390/cells12101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Adiponectin (APN) is an essential adipokine for a variety of reproductive processes. To investigate the role of APN in goat corpora lutea (CLs), CLs and sera from different luteal phases were collected for analysis. The results showed that the APN structure and content had no significant divergence in different luteal phases both in CLs and sera; however, high molecular weight APN was dominant in serum, while low molecular weight APN was more present in CLs. The luteal expression of both AdipoR1/2 and T-cadherin (T-Ca) increased on D11 and 17. APN and its receptors (AdipoR1/2 and T-Ca) were mainly expressed in goat luteal steroidogenic cells. The steroidogenesis and APN structure in pregnant CLs had a similar model as in the mid-cycle CLs. To further explore the effects and mechanisms of APN in CLs, steroidogenic cells from pregnant CLs were isolated to detect the AMPK-mediated pathway by the activation of APN (AdipoRon) and knockdown of APN receptors. The results revealed that P-AMPK in goat luteal cells increased after incubation with APN (1 μg/mL) or AdipoRon (25 μM) for 1 h, and progesterone (P4) and steroidogenic proteins levels (STAR/CYP11A1/HSD3B) decreased after 24 h. APN did not affect the steroidogenic protein expression when cells were pretreated with Compound C or SiAMPK. APN increased P-AMPK and reduced the CYP11A1 expression and P4 levels when cells were pretreated with SiAdipoR1 or SiT-Ca, while APN failed to affect P-AMPK, the CYP11A1 expression or the P4 levels when pretreated with SiAdipoR2. Therefore, the different structural forms of APN in CLs and sera may possess distinct functions; APN might regulate luteal steroidogenesis through AdipoR2 which is most likely dependent on AMPK.
Collapse
Affiliation(s)
- Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
CHAUDHARY SANDEEPK, DUTTA NARAYAN, JADHAV SE, PATTANAIK AK. Effect of customised supplement on haemato-biochemical profile, serum minerals, metabolic hormones, antioxidant capacity and gene expression in crossbred calves. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2023. [DOI: 10.56093/ijans.v93i2.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Present experiment examined the supplementary effect of a tailor-made supplement to farmers’-based diet in crossbred calves. Male crossbred calves (15) were randomly allocated in 3 dietary treatments consisting of 5 calves in each. The dietary treatments were: Control- cereal straw-based diet with concentrate mixture as per the farmers’ practices; CS (customised supplement)- control diet with additional customised supplement @ 0.25% of BW; SD-standard diet. Serum glucose was higher in SD than control, however, CS had an intermediate response. The serum macro (Ca and i-P) and trace (Zn, Cu, Fe and Mn) minerals were higher in SD and CS than control. The serum T3 and T4 hormones were significantly higher in SD and CS than control group. The serum growth hormone (GH) and insulin-like growth factor-1 (IGF-1) were significantly higher in SD than control groups, however, SD had an intermediate position. The total antioxidant capacity (TAOC) was significantly higher in SD and CS than control group. The relative mRNA expression of cytokines, viz. IL-2 and IL-4 was significantly higher in SD and CS than control group. The relative mRNA expression of leptin (LEP) was significantly higher and ghrelin (GHRL) was significantly lower in SD than control group, however, CS had a transitional position. Thus, it can be concluded that supplementation of the customised supplement (@ 0.25% BW) to farmers’-based diet significantly improved the serum glucose concentration, metabolic hormone profile, antioxidant capacity and relative mRNA expression of cytokines and genes involved in energy metabolism in crossbred calves.
Collapse
|
3
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
4
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
5
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
6
|
Thakre A, Gupta M, Magar SP, Bahiram KB, Sardar VM, Korde JP, Bonde SW, Hyder I. Transcriptional and translational abundance of visfatin (NAMPT) in buffalo ovary during estrous cycle and its in vitro effect on steroidogenesis. Domest Anim Endocrinol 2021; 75:106583. [PMID: 33249344 DOI: 10.1016/j.domaniend.2020.106583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 11/18/2022]
Abstract
Visfatin is a highly conserved adipokine protein having multiple biological effects, including regulation of reproduction. Evidence in recent years has shown a pivotal role of visfatin in ovarian functions. The present study was conducted to evaluate the mRNA and protein abundance of visfatin in ovarian follicles and corpora lutea (CL) during different stages of their development in the ovary of water buffalo (Bubalus bubalis) and to investigate the role of visfatin on estradiol (E2) and progesterone (P4) secretion. Ovarian follicles were categorized in to small (F1), medium (F2), large (F3), and preovulatory (F4) follicles, whereas the CL were categorized into early (CL1), mid (CL2), late (CL3), and regressing (CL4) CL stage. In follicles, the mRNA and protein abundance of visfatin increased with an increase in follicle size in granulosa cells (GCs) and theca interna (TI) cells. In CL, the transcript of visfatin was significantly (P < 0.05) higher in the late luteal phase (CL3) than that in other phases. The translational abundance of visfatin was significantly higher in the mid and late luteal phase. Visfatin was localized in the cytoplasm of GC and TI of ovarian follicles and small and large luteal cells of CL. GCs were cultured in vitro and treated at 0, 1, and 10 ng/mL visfatin either alone or in the presence of FSH (30 ng/mL) or IGF-I (10 ng/mL) for 48 h. The luteal cells were treated with visfatin at 0, 1, and 10 ng/mL dose for 48h. There was significant (P < 0.05) increase in estradiol (E2) secretion from GCs at 10 ng/mL dose of visfatin and visfatin (10 ng/mL) +IGF-I (10 ng/mL). Visfatin also increased (P < 0.05) progesterone (P4) secretion from cultured luteal cells at both 1 and 10 ng/mL dose. In GCs, visfatin in the presence of IGF-I increased the transcriptional abundance of cytochrome P45019A1 (CYP19A1), the gene for key enzyme aromatase. In luteal cells, the visfatin increased mRNA abundance of factors involved in progesterone synthesis viz. steroidogenic acute regulatory protein (StAR), cytochrome P45011A1 (CYP11A1), 3beta-hydroxysteroid dehydrogenase (HSD3B1). The present study provided evidence that visfatin is expressed in ovarian follicles and CL of buffalo ovary and visfatin has a stimulatory effect on estradiol and progesterone secretion in ovarian cells of water buffalo.
Collapse
Affiliation(s)
- A Thakre
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India
| | - M Gupta
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India.
| | - S P Magar
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India
| | - K B Bahiram
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India
| | - V M Sardar
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India
| | - J P Korde
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur 440006, India
| | - S W Bonde
- Department of Veterinary Biochemistry, Nagpur Veterinary College, Nagpur 440006, India
| | - I Hyder
- Department of Veterinary Physiology, NTR College of Veterinary Science, Gannavaram, 521101 India
| |
Collapse
|
7
|
Pandey Y, Pooja AR, Devi HL, Jalmeria NS, Punetha M, Kumar S, Paul A, Kumar K, Sonawane A, Samad HA, Singh G, Bag S, Sarkar M, Chouhan VS. Expression and functional role of IGFs during early pregnancy in placenta of water buffalo. Theriogenology 2020; 161:313-331. [PMID: 33373934 DOI: 10.1016/j.theriogenology.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/16/2023]
Abstract
Adequate vascularisation is a key factor for successful fetal development. We hypothesized that Insulin-Like Growth Factor (IGF) family members regulate angiogenesis along with promoting fetal development and growth. In this experiment, we determined the expression and functional role of IGF family in placental compartments (caruncle; CAR, cotyledon; COT) during different stages of early pregnancy in the water buffalo (Bubalus bubalis). Samples were collected from early pregnancy 1 (EP1, 28-45 days), early pregnancy 2 (EP2, 45-90 days), and third stage of estrous cycle (11-16 days), which was taken as control. In addition, the role of IGF1 on mRNA expression of vWF, StAR, CYP11A1, 3βHSD, PCNA, and BAX were elucidated in cultured trophoblast cells (TCC) obtained from EP2. Quantitative real-time PCR (q-PCR), westernblot, and immunohistochemistry were done to investigate the gene expression, protein expression, and localization of examined factors, and RIA was also done to assess progesterone (P4) concentration. Expression of IGFs, its receptors and binding proteins were found to be significantly higher (p < 0.05) in both CAR and COT as compared to control during early pregnancy, except binding proteins IGFBP1, 3 and 4 which were significantly (p < 0.05) downregulated in COT with advancement of pregnancy. mRNA expression was consistent with the findings of immunoblotting and immunolocalization experiments. Trophoblasts cell culture (TCC) study showed a significant time and dose-dependent effect of IGF1 onsteroidogenic transcript, which was found to be maximum at 100 ng/ml that paralleled with P4 accretion in the media (p < 0.05). Further, IGF1 upregulated the transcripts of vWF, PCNA, and downregulated BAX at the same concentration (p < 0.05). Overall, our results demonstrated that the expression of IGFs is a site-specific phenomenon in placentome, which indicates autocrine/paracrine and endocrine function. Our in-vitro finding support that IGF1 plays a critical role in placental development by promoting angiogenesis, steroid synthesis, and cell proliferation during early pregnancy.
Collapse
Affiliation(s)
- Y Pandey
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - A R Pooja
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - H Lakshmi Devi
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - N Singh Jalmeria
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Meeti Punetha
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - S Kumar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - A Paul
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - K Kumar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Arvind Sonawane
- Animal Genetics Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - H A Samad
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - G Singh
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - S Bag
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - M Sarkar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - V S Chouhan
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
8
|
Pan D, Wang K, Cao G, Fan K, Liu H, Li P, Li H, Chenguang D. Inhibitory effect of central ghrelin on steroid synthesis affecting reproductive health in female mice. J Steroid Biochem Mol Biol 2020; 204:105750. [PMID: 32920127 DOI: 10.1016/j.jsbmb.2020.105750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022]
Abstract
Ghrelin is a 28-amino acid peptide hormone that regulates ovarian steroid hormone synthesis; however, there is limited evidence regarding the regulation of this pathway by ghrelin in mice ovary. Thus, we aimed to investigate whether central ghrelin action plays a role in murine reproductive health by inhibiting steroid synthesis. Further, we sought to examine the mechanism of central ghrelin action in ovarian steroid hormone synthesis. After the administration of intracerebroventricular ghrelin (1 nmol), we found reduced serum concentrations of oestradiol and progesterone and reduced secretion of follicle-stimulating hormone and luteinising hormone. Although ghrelin reduced 3β-hydroxysteroid dehydrogenase mRNA and protein levels in the hypothalamus, it did not affect the expression of steroidogenic acute regulatory protein and cytochrome P450 17A1. In the ovary, central ghrelin regulation indirectly inhibited the mRNA and protein levels of steroidogenic acute regulatory protein, cytochrome P450 17A1, and 3β-hydroxysteroid dehydrogenase. Moreover, no changes were observed in the expression of proliferating cell nuclear antigen and phosphorylation of extracellular signal-regulated kinase. We hypothesised that central ghrelin regulation suppressed serum oestradiol and progesterone levels by indirectly inhibiting the expression of steroidogenic acute regulatory protein, cytochrome P450 17A1, and 3β-hydroxysteroid dehydrogenase in the ovary. In this regulation, the suppressed secretion of the follicle-stimulating hormone and luteinising hormone in the pituitary by ghrelin could be involved. Furthermore, hypothalamic 3β-hydroxysteroid dehydrogenase expression is reduced by ghrelin injection.
Collapse
Affiliation(s)
- Deng Pan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Kun Wang
- Institute of Grain and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Kuikui Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Haodong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Penghui Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Haijun Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
| | - Du Chenguang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China; Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, 014109, China.
| |
Collapse
|
9
|
Martin ACC, Parker AJ, Furnus CC, Relling AE. Ghrelin antagonist overrides the mRNA expression of NPY in hypothalamus in feed restricted ewes. PLoS One 2020; 15:e0238465. [PMID: 32903269 PMCID: PMC7480856 DOI: 10.1371/journal.pone.0238465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022] Open
Abstract
A negative energy balance (NEB) is detrimental to reproduction in animals. A suggested link between NEB and reproductive failure is the gastrointestinal hormone ghrelin, because of the association between ghrelin and the hypothalamo-pituitary-gonadal axis. The [D-Lys3]-Growth Hormone Releasing Peptide-6 ([D-Lys3]-GHRP-6) is a ghrelin antagonist that acts on ghrelin receptors (GHS-R1). The objective of this study was to evaluate the effect of [D-Lys3]-GHRP-6 on reproduction variables in feed restricted ewes. Two experiments were conducted. Experiment I was conducted for 30 days; and Experiment II for 13 days. In both experiments the ewes (n = 18) were randomly assigned to: Control (CO): fed to meet maintenance requirements; Feed restriction (FR): 80% of maintenance restriction; or Ghrelin antagonist (GA): feed restricted and daily subcutaneous of 7.5μg/kg of [D-Lys3]-GHRP-6. Plasma was collected to measure hormones and metabolite concentration. In Experiment II, the hypothalamus and ovaries were collected on day 13. In both Experiments, sheep allocated to the FR and GA treatments decreased their body weight compared with sheep in the CO group (P < 0.06); progesterone however, did not differ between treatments (P > 0.10). Experiment I: Plasma ghrelin concentration was greater (P < 0.01) in FR and GA compared with CO ewes. Plasma non-esterified fatty acids concentration was greater (P < 0.01) in GA and FR than CO. Experiment II: Kisspeptin1-Receptor (Kiss1-R) mRNA expression was greater in FR (P < 0.01) and tended to be greater in GA (P = 0.10) compared with CO ewes. The neuro peptide-Y (NPY) mRNA expression was greater (P = 0.03) in FR than CO; and tended to be greater (P = 0.06) compared with GA ewes. Growth hormone releasing hormone (GhRH) mRNA expression was greater in GA (P = 0.04) and tended to be greater in FR (P = 0.07) compared with CO ewes. Feed restriction increased GhRH, NPY, and Kiss-R mRNA expression in hypothalamus without affecting reproductive variables.Ghrelin antagonist may prevent an increase inNPY expression in ewes.
Collapse
Affiliation(s)
- Ana C. Carranza Martin
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States of America
- IGEVET—Instituto de Genética Veterinaria Prof. Fernando N. Dulout (UNLP-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Anthony J. Parker
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States of America
| | - Cecilia C. Furnus
- IGEVET—Instituto de Genética Veterinaria Prof. Fernando N. Dulout (UNLP-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Alejandro Enrique Relling
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States of America
- * E-mail:
| |
Collapse
|
10
|
Early growth response gene mediates in VEGF and FGF signaling as dissected by CRISPR in corpus luteum of water buffalo. Sci Rep 2020; 10:6849. [PMID: 32321973 PMCID: PMC7176634 DOI: 10.1038/s41598-020-63804-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
The EGR family comprises of EGR 1, EGR 2, EGR 3 and EGR 4 which are involved in the transactivation of several genes. A broad range of extracellular stimuli by growth factors is capable of activating EGR mediated transactivation of genes involved in angiogenesis and cell proliferation. However, their role in controlling VEGF A and FGF 2 signaling in the CL of water buffalo is not known. The present study was conducted to understand the role of EGR mediated regulation of VEGF A and FGF 2 signaling in buffalo luteal cells. Towards this goal, luteal cells were cultured and treated with VEGF A and FGF 2 and the mRNA expression pattern of EGR family members were documented. The EGR 1 message was found to be up-regulated in luteal cells of buffalo at 72 hours of culture. The functional validation of EGR 1 gene was accomplished by knocking out (KO) of EGR 1 in cultured luteal cells by CRISPR/Cas9 mediated gene editing technology. The EGR 1 KO cells were then cultured and stimulated with VEGF A and FGF 2. It was observed that VEGF A and FGF 2 induced angiogenesis, cell proliferation and steroidogenesis in wild type luteal cells, whereas the response of the growth factors was attenuated in the EGR 1 KO cells. Taken together our study provides evidence convincingly that both VEGF and FGF mediate their biological action through a common intermediate, EGR 1, to regulate corpus luteum function of buffalo.
Collapse
|
11
|
Gupta M, Bahiram KB, Sardar VM, Korde JP, Magar SP, Bonde SW, Kurkure NV. Expression and localization of adiponectin and its receptors in ovarian follicles during different stages of development and the modulatory effect of adiponectin on steroid production in water buffalo. Reprod Domest Anim 2019; 54:1291-1303. [DOI: 10.1111/rda.13529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Mahesh Gupta
- Department of Veterinary Physiology Nagpur Veterinary College Nagpur India
| | | | | | | | - Swapnil P. Magar
- Department of Veterinary Physiology Nagpur Veterinary College Nagpur India
| | | | | |
Collapse
|
12
|
Abundance of adiponectin mRNA transcript in the buffalo corpus luteum during the estrous cycle and effects on progesterone secretion in vitro. Anim Reprod Sci 2019; 208:106110. [PMID: 31405469 DOI: 10.1016/j.anireprosci.2019.106110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Adiponectin is an adipocyte derived cytokine implicated in energy homeostasis, insulin resistance and is involved in the regulation of reproduction both centrally and peripherally in animals. The present study was conducted to investigate adiponectin (ADIPOQ) and its receptors ADIPOR1 and ADIPOR2 abundance of mRNA transcript and protein in different stages of corpora lutea (CL) development during the estrous cycle of water buffalo and to determine the effect of adiponectin on cultured luteal cells of water buffalo (Bubalus bubalis). The results indicate adiponectin, ADIPOR1, and ADIPOR2 were present in buffalo corpora lutea (CL) throughout the estrous cycle. The abundance of adiponectin and its receptors was greater in the early and regressing and was less in mid- and late-stages of CL functionality. Adiponectin and its receptors were localized in the cytoplasm of small and large luteal cells. Furthermore, luteal cells were cultured in the in-vitro culture system and were treated with 1 and 10 μg/mL dose of adiponectin for 48 h. Adiponectin at both doses decreased (P < 0.05) progesterone (P4) secretion from cultured luteal cells and also suppressed the abundance of factors involved in P4productionv [Steroidogenic Acute Regulatory Protein (STAR), cytochrome P45011A1 (CYP11A1) and 3β-hydroxysteroid dehydrogenase (HSD3B1) at the 10 μg/mL dose as compared to adiponectin non-supplemented cells]. In conclusion, results of the present study indicate adiponectin and its receptors are present in bubaline CL and adiponectin inhibits P4 production in cultured luteal cells. The findings indicate adiponectin affects luteal dynamics and reproductive functions in water buffalo.
Collapse
|
13
|
Mishra GK, Patra MK, Singh LK, Upmanyu V, Chakravarti S, Karikalan M, Bag S, Singh SK, Das GK, Kumar H, Krishnaswamy N. Expression and functional role of kisspeptin and its receptor in the cyclic corpus luteum of buffalo (Bubalus bubalis). Theriogenology 2019; 130:71-78. [PMID: 30870709 DOI: 10.1016/j.theriogenology.2019.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Affiliation(s)
- G K Mishra
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M K Patra
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India.
| | - L Kipjen Singh
- Division of Animal Reproduction, Gynaecology and Obstetrics, ICAR- National Dairy Research Institute Karnal, 132 001, Haryana, India
| | - V Upmanyu
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S Chakravarti
- Biological Products Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M Karikalan
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S Bag
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S K Singh
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - G K Das
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - H Kumar
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - N Krishnaswamy
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| |
Collapse
|
14
|
Paul A, Punetha M, Kumar S, Sonwane A, Chouhan VS, Singh G, Maurya VP, Sarkar M. Regulation of steroidogenic function of luteal cells by thrombospondin and insulin in water buffalo (Bubalus bubalis). Reprod Fertil Dev 2019; 31:751-759. [DOI: 10.1071/rd18188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
The present study examined the effect of exogenous thrombospondin 1 (TSP1) on the steroidogenic function of luteal cells cultured invitro. Furthermore, the transcriptional interaction of insulin with TSP1 and its receptor, cluster of differentiation 36 (CD36) were also investigated. At the highest dose (500ngmL−1) TSP1 significantly downregulated the expression of the angiogenic marker von Willebrand factor (vWF) and progesterone production in cultured luteal cells. Moreover, the simultaneous upregulation in the expression of caspase 3 by exogenous TSP1 was consistent with a reduction in the number of viable luteal cells as determined by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltertrazolium bromide (MTT) assay after 72h of culture. However, the expression of critical enzymes in the progesterone synthetic pathway was not significantly modulated by treatment with TSP1 in cultured luteal cells. Knocking out of endogenous TSP1 with the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPRassociated protein9 (Cas9) system improved the viability of luteal cells as well as increasing progesterone production and decreasing caspase 3 activation. Insulin treatment suppressed the expression of TSP1 and CD36 in cultured luteal cells in a dose- and time-dependent manner. To conclude, TSP1 acts as a negative endogenous regulator of angiogenesis that attenuates progesterone production, possibly by reducing the number of luteal cells via apoptosis during luteal regression, whereas insulin as a luteinising signal may have inhibited the thrombospondin system for the efficient development of luteal function.
Collapse
|
15
|
Mishra SR, Bharati J, Rajesh G, Chauhan VS, Taru Sharma G, Bag S, Maurya VP, Singh G, Sarkar M. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) synergistically promote steroidogenesis and survival of cultured buffalo granulosa cells. Anim Reprod Sci 2017; 179:88-97. [PMID: 28238531 DOI: 10.1016/j.anireprosci.2017.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/17/2017] [Indexed: 02/06/2023]
Abstract
The present study investigated the combined effect of fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGF-A) on estradiol (E2) secretion and relative abundance of mRNA for aromatase enzyme (CYP19A1), proliferating cell nuclear antigen (PCNA) and BCL-2 associated X protein (BAX) in cultured buffalo granulosa cells (GCs). Follicles were isolated and classified into four groups based on size and E2 concentration in follicular fluid (FF): Small, 4-6mm diameter, E2<0.5ng/ml; Medium, 7-9mm, E2=0.5-5ng/ml; Large, 10-13mm, E2=5-40ng/ml; Preovulatory (PFs), >14mm, E2>180ng/ml. The GCs of PF were cultured in 24 well cell culture plates and allowed to become 75-80% confluent. Then cultured GCs were treated with FGF2 (200ng/ml) and VEGF-A (100ng/ml) separately and in combination for three incubation periods (24, 48 and 72h). Estradiol secretion was greater in GCs treated with FGF2+VEGF-A compared to FGF2 or VEGF-A at all incubation periods and was greatest (P<0.05) at 72h of incubation. The relative abundance of CYP19A1 and PCNA mRNA were relatively consistent with the amount E2 secretion. In contrast, the relative abundance of Bax mRNA was less in GCs treated with the combination of FGF2 and VEGF-A as compared to either FGF2 or VEGF-A alone and the least concentration (P<0.05) was at 72h of incubation. Findings with use of immunocytochemistry of cells treated with these factors were consistent to the relative abundance of mRNA transcript for the factor. The present findings indicate that FGF2 and VEGF-A may function in a synergistic manner to promote steroidogenesis and survival of cultured buffalo GCs.
Collapse
Affiliation(s)
- S R Mishra
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Jaya Bharati
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - G Rajesh
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - V S Chauhan
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - G Taru Sharma
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - S Bag
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - V P Maurya
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - G Singh
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - M Sarkar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| |
Collapse
|
16
|
Rajesh G, Paul A, Mishra SR, Bharati J, Thakur N, Mondal T, Soren S, Harikumar S, Narayanan K, Chouhan VS, Bag S, Das BC, Singh G, Maurya VP, Sharma GT, Sarkar M. Expression and functional role of Bone Morphogenetic Proteins (BMPs) in cyclical corpus luteum in buffalo (Bubalus bubalis). Gen Comp Endocrinol 2017; 240:198-213. [PMID: 27815159 DOI: 10.1016/j.ygcen.2016.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/21/2023]
Abstract
The role of growth factors in the modulation of ovarian function is an interesting area of research in reproductive biology. Recently, we have shown the expression and role of IGF, EGF, VEGF and FGF in the follicle and CL. Here, we report the presence of Bone Morphogenetic Proteins (BMPs) and their functional receptors in the corpus luteum (CL) of buffalo. The bubaline CL was classified into four stages according to the morphology and progesterone (P4) concentration. The qPCR, immunoblot and immunohistochemistry studies revealed that BMP2 and BMP Receptors (BMPR1A, BMPR1B and BMPR2) were significantly upregulated during the mid stage whereas BMP4 and BMP7 were upregulated during the early stage of CL (P<0.05). Studies on primary luteal cell culture (LCC) using mid CL showed a significant time and concentration dependent effect of BMP4 and BMP7 (P<0.05). At 100ngml-1, the BMPs maximally stimulated the transcripts of StAR, CYP11A1 and 3βHSD that paralleled with P4 accretion in the media (P<0.05). Further, the BMP4 as well as BMP7 upregulated the transcripts of PCNA and downregulated CASPASE3 in the LCC at the same concentration (P<0.05). Though the combined effect of BMP4 and 7 was significantly higher (P<0.05) than that of individual one, it was not additive. In conclusion, the expression of BMPs and their receptors were dependent on the stages of CL in the buffalo. Treatment of LCC with BMPs in vitro confirmed the presence of functional receptors that stimulated the P4 production and luteal cell survival. Moreover, the results support the concept that the upregulation of P4 and its biosynthetic pathway enzymes such as CYP11A1, StAR and 3βHSD in the CL is likely due to the autocrine and /or paracrine effects of BMP4 and BMP7 under physiological milieu.
Collapse
Affiliation(s)
- G Rajesh
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Avishek Paul
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - S R Mishra
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Jaya Bharati
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Nipuna Thakur
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Tanmay Mondal
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Sanjhali Soren
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - S Harikumar
- Division of Pharmacology & Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - K Narayanan
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - V S Chouhan
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Sadhan Bag
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - B C Das
- Eastern Regional Station, Indian Veterinary Research Institute, Kolkatta 700037, India
| | - G Singh
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - V P Maurya
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - G Taru Sharma
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India
| | - Mihir Sarkar
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India.
| |
Collapse
|
17
|
Neglia G, Restucci B, Russo M, Vecchio D, Gasparrini B, Prandi A, Di Palo R, D'Occhio MJ, Campanile G. Early development and function of the corpus luteum and relationship to pregnancy in the buffalo. Theriogenology 2015; 83:959-67. [DOI: 10.1016/j.theriogenology.2014.11.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/24/2023]
|
18
|
Gupta M, Dangi SS, Singh G, Sarkar M. Expression and localization of ghrelin and its receptor in ovarian follicles during different stages of development and the modulatory effect of ghrelin on granulosa cells function in buffalo. Gen Comp Endocrinol 2015; 210:87-95. [PMID: 25275756 DOI: 10.1016/j.ygcen.2014.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/01/2014] [Accepted: 09/20/2014] [Indexed: 12/13/2022]
Abstract
Ghrelin, a hormone predominantly found in the stomach, was recently described as a factor that controls female reproductive function. The aim of our study was to investigate the expression and localization of ghrelin and its active receptor, growth hormone secretagogue receptor type 1a (GHS-R1a) in buffalo ovarian follicles of different follicular size and to investigate role of ghrelin on estradiol (E2) secretion, aromatase (CYP19A1), proliferating cell nuclear antigen (PCNA) and apoptosis regulator Bax gene expression on granulosa cell culture. Using real time PCR and western blot, we measured gene and protein expression of examined factors. Localization was done with immunofluorescence method. Expression of ghrelin increased with follicle size with significantly highest in dominant or pre-ovulatory follicle (P<0.05). Expression of GHS-R1a was comparable in medium and large follicle but was higher than small follicles (P<0.05). Both the factors were localized in granulosa and theca cells. Pattern of intensity of immunofluorescence was similar with mRNA and protein expression. In the in vitro study granulosa cells (GCs) were cultured and treated with ghrelin each at 1, 10 and 100ng/ml concentrations for two days after obtaining 75-80 per cent confluence. Ghrelin treatment significantly (P<0.05) inhibited E2 secretion, CYP19A1 expression, apoptosis and promoted cell proliferation. In conclusion, this study provides novel evidence for the presence of ghrelin and receptor GHS-R1a in ovarian follilcles and modulatory role of ghrelin on granulosa cell function in buffalo.
Collapse
Affiliation(s)
- M Gupta
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - S S Dangi
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - G Singh
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - M Sarkar
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar 243122, India.
| |
Collapse
|
19
|
Zendehdel M, Kaboutari J, Ghadimi D, Hassanpour S. The Antiepileptic Effect of Ghrelin During Different Phases of the Estrous Cycle in PTZ-Induced Seizures in Rat. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9418-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|