1
|
Basu R, Boguszewski CL, Kopchick JJ. Growth Hormone Action as a Target in Cancer: Significance, Mechanisms, and Possible Therapies. Endocr Rev 2025; 46:224-280. [PMID: 39657053 DOI: 10.1210/endrev/bnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and systemically. This pleiotropy of GH's effects is puzzling, but the association with cancer risk automatically raises a concern for patients with acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical data. Along this discourse, we critically weigh the targetability of GH action in cancer-first by detailing the molecular mechanisms which posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable subset of current cancer prognoses.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
| | - Cesar L Boguszewski
- SEMPR, Endocrine Division, Department of Internal Medicine, Federal University of Parana, Curitiba 80060-900, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
2
|
Jain L, Vickers MH, Jacob B, Middleditch MJ, Chudakova DA, Ganley ARD, O'Sullivan JM, Perry JK. The growth hormone receptor interacts with transcriptional regulator HMGN1 upon GH-induced nuclear translocation. J Cell Commun Signal 2023; 17:925-937. [PMID: 37043098 PMCID: PMC10409943 DOI: 10.1007/s12079-023-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
Growth hormone (GH) actions are mediated through binding to its cell-surface receptor, the GH receptor (GHR), with consequent activation of downstream signalling. However, nuclear GHR localisation has also been observed and is associated with increased cancer cell proliferation. Here we investigated the functional implications of nuclear translocation of the GHR in the human endometrial cancer cell-line, RL95-2, and human mammary epithelial cell-line, MCF-10A. We found that following GH treatment, the GHR rapidly translocates to the nucleus, with maximal localisation at 5-10 min. Combined immunoprecipitation-mass spectrometry analysis of RL95-2 whole cell lysates identified 40 novel GHR binding partners, including the transcriptional regulator, HMGN1. Moreover, microarray analysis demonstrated that the gene targets of HMGN1 were differentially expressed following GH treatment, and co-immunoprecipitation showed that HMGN1 associates with the GHR in the nucleus. Therefore, our results suggest that GHR nuclear translocation might mediate GH actions via interaction with chromatin factors that then drive changes in specific downstream transcriptional programs.
Collapse
Affiliation(s)
- Lekha Jain
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mark H Vickers
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Bincy Jacob
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | - Daria A Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Jo K Perry
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
3
|
Wu D, Zhang Y, Zhao Q, Wu M, Li S, Zheng X, Lan H. The effect of growth hormone-induced cellular behavior and signaling properties on induced cellular senescence in human mesenchymal stem cells. Tissue Cell 2022; 79:101963. [DOI: 10.1016/j.tice.2022.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
|
4
|
Zheng WV, Li Y, Xu Y, Lu D, Zhou T, Li D, Cheng X, Xiong Y, Wang S, Chen Z. Different isoforms of growth hormone (20 kD-GH and 22 kD-GH) shows different biological activities in mesenchymal stem cell (MSC). Cell Cycle 2022; 21:934-947. [PMID: 35188065 PMCID: PMC9037433 DOI: 10.1080/15384101.2022.2035491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
There are two main types of growth hormone (GH) in the circulatory system. One is 22 kD-GH, which is the predominant isoform in the circulating system, 90% GH is present as a 22 kD protein, and 10% of GH is present as a 20 kD protein. Amino acid sequences are identical between 20 kD-GH and 22 kD-GH protein, except that 20 kD-GH lacks 15 amino acid residues 32 to 46. Studies have shown that GH has many important biological effects on mesenchymal stem cells (MSCs). However, so far, the cellular characteristics of the two types of GH have not been studied in BM-MSCs. Furthermore, the biological activity of 20 kD-GH has not been explored in BM-MSCs. For this, in the current work, BM-MSCs were used as in vitro cell model. We have carried out the current research using a series of experimental techniques (such as Western-blot and indirect immunofluorescence). Firstly, we explored the cell behavior of two types of GH in the Bm-MSC model and found that they showed different biological characteristics; Secondly, we investigated the biological characteristics of 20 kD-GH and 22 kD-GH, and results showed that 22 kD-GH and 20 kD-GH exhibited different signaling profiles; Thirdly, we found that the 20 kD-GH and 22 kD-GH Gexhibited different regulatory effects on the osteogenic differentiation of BM-MSCs. The current research lays a solid foundation for further studies on the regulatory effects of GH on MSCs.
Collapse
Affiliation(s)
- Wei V. Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanwei Xu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Donghui Lu
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China,Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yu Xiong
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China,Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shaobin Wang
- Health Management Center of Peking University Shenzhen Hospital, Shenzhen, China
| | - Zaizhong Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China,Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China,CONTACT Zaizhong Chen Department of Minimal Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Zhang Y, Zhao Q, Wu D, Lan H. The effect of heat stress on the cellular behavior, intracellular signaling profile of porcine growth hormone (pGH) in swine testicular cells. Cell Stress Chaperones 2022; 27:285-293. [PMID: 35384615 PMCID: PMC9106782 DOI: 10.1007/s12192-022-01270-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/06/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
At present, heat stress caused by the thermal environment is the main factor that endangers the reproductive function of animals. Growth hormone (GH) is a polypeptide hormone, the biological function of reproductive organs has been reported, and it has many important physiological functions in the body. However, so far, the behavior and signal transduction of GH in testicular cells under heat stress are still unclear. To this end, in the current work, we use a swine testicular cell line (ST) as an in vitro model to explore the cell behavior and intracellular signaling profile of porcine growth hormone (pGH) under heat stress; the results showed that when cells were under heat stress, pGH and GHR were basically not internalized, and a large number of them accumulated on the cell membrane. In addition, we also studied the effect of pGH on the JAK2-STATs signaling pathway and IGF-1 expression under heat stress, we found that the ability of pGH to activate the JAK-STATs signaling pathway and IGF-1 under heat stress was greatly reduced (p < 0.05). In conclusion, our research shows that when cells undergo heat stress, the internalization of pGH and GHR were inhibited, and the activation of the JAK2-STATs signaling pathway and IGF-1 expression were reduced; this lays a solid foundation for further research on the effect of pGH on swine testicular tissue under thermal environment.
Collapse
Affiliation(s)
- Yan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Qingrong Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
6
|
Li N, Cui J, Wen C, Huang K. Different cellular properties and loss of nuclear signalling of porcine epidermal growth factor receptor with aging. Gen Comp Endocrinol 2020; 290:113415. [PMID: 32001323 DOI: 10.1016/j.ygcen.2020.113415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/19/2020] [Accepted: 01/25/2020] [Indexed: 11/16/2022]
Abstract
Epidermal growth factor (EGF) has important physiological functions that are mediated by the epidermal growth factor receptor (EGFR); however, to date, the changes in cellular behaviours and signalling properties of EGF/EGFR with aging remain unclear in the pig tissue models. Hence, the present study used porcine hepatocytes as a model to explore this issue. The study revealed the following results: 1) EGF could activate the intra-cellular signalling pathways in a time- and dose-dependent manner both in the young- and aged-pig hepatocytes, EGF induced tyrosine phosphorylation of EGFR, signal transducers and activators of transcription 3 (STAT3), protein kinase B (AKT) and extra-cellular signal-regulated kinase 1/2 (ERK1/2). Nevertheless, the EGF's signalling ability in the aged-pig hepatocytes was significantly reduced compared with that of the young-pig hepatocytes; 2) although EGF/EGFR can still be internalised into cells in a time-dependent manner with aging, the endocytic pathway differs between the young- and aged-pig hepatocytes. Furthermore, the results of the present study indicated that caveolin may play a pivotal role in the endocytosis of EGF/EGFR in the aged-pig hepatocytes, which is different from that of EGF/EGFR's endocytosis in young-pig hepatocytes; 3) It is well-known that EGFR carried out its biological effects via two signalling pathways, cytoplasmic pathway (traditional) and nuclear pathway; however, we found that the nuclear localisation of EGFR was significantly reduced in the aged-pig hepatocytes, which indicated that EGFR may lose its nuclear pathway with aging. Collectively, the present study lays the foundation for further study regarding the biological functional changes occurring in EGF/EGFR with aging.
Collapse
Affiliation(s)
- Nannan Li
- School of Stomatology, Jilin University, Changchun 130021, People's Republic of China
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medicine, Jilin University, Changchun 130021, People's Republic of China
| | - Chunyan Wen
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Kexin Huang
- Department of Histology and Embryology, College of Basic Medicine, Jilin University, Changchun 130021, People's Republic of China.
| |
Collapse
|
7
|
Yu-Jiang Y, Xin Z, Hai-Nan L. JAK2-STAT5 signaling is insensitive to porcine growth hormone (pGH) in hepatocytes of neonatal pig. Anim Cells Syst (Seoul) 2020; 24:69-78. [PMID: 32489685 PMCID: PMC7241498 DOI: 10.1080/19768354.2020.1735518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/17/2019] [Accepted: 02/10/2020] [Indexed: 10/24/2022] Open
Abstract
Porcine growth hormone (pGH) is most important hormone which is involved in the growth and development of pig. However, a series of studies have indicated that neonatal pig is insensitive to pGH; the reason for this phenomenon is still not fully understood. In this work, we try to investigate this issue from the angle of intracellular signaling induced by pGH. In the present study, porcine hepatocytes from neonatal pig were used as a model, and confocal laser scanning microscopy (CLSM), Western blot, co-immunoprecipitation and colocalization assay were used to study pGH's signaling properties in hepatocytes of neonatal pig and explore the possible mechanism(s) for why intracellular signaling is insensitive to pGH. The results indicated that Janus kinase 2 and signal transducers and activators of transcription 5/3/1 (JAK2-STATs) signaling are not activated. We further investigated the possible mechanism(s) by which JAK2-STATs' signaling is not activated by pGH and growth hormone receptor (GHR) and found that the negative regulatory molecules of JAK2-STATs signaling may be associated with this phenomenon in the hepatocytes of neonatal pig. In addition, we also explored pGH's biology in hepatocytes from neonatal pig, it can be found that pGH/GHR could translocate into the cell nucleus, which implies that pGH/GHR may exhibit physiological roles based on their nuclear localization. We found that pGH could not trigger intracellular signaling in the hepatocytes of neonatal pigs, but not young pigs, which provides an important explanation for why the growth of neonatal pig is GH independent.
Collapse
Affiliation(s)
- Yang Yu-Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| | - Zheng Xin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| | - Lan Hai-Nan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People's Republic of China
| |
Collapse
|
8
|
Li S, Shi B, Huang K, Wang Y. Different intracellular signalling sensitivity and cell behaviour of porcine insulin with aging. Peptides 2020; 127:170278. [PMID: 32109654 DOI: 10.1016/j.peptides.2020.170278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 01/30/2023]
Abstract
Insulin has many important biological functions. Insulin interacts with the insulin receptor (IR) to play its physiological role and execute its functions. Here, we isolated porcine hepatocytes from young and aged pigs, which endogenously express the IR, as a model to study the intracellular signalling properties and cellular behaviour of insulin with aging. Firstly, we analysed the intracellular signal transduction that is triggered by insulin in porcine hepatocytes that were isolated from young and aged pigs and found that insulin can strongly activate insulin receptor subunit (IRS), protein kinase B (AKT), and GSK in a time- and dose-dependent manner in hepatocytes from young pigs. On the contrary, the signalling response to insulin in hepatocytes from aged pigs was significantly reduced compared to that of the young pig. Secondly, the different subcellular locations of insulin/insulin receptor (IR) may result in different biological activities, although nuclear-localized insulin/IR still could exhibit important functions and roles. We found that insulin can translocate into cell nuclei in the hepatocytes of the young pigs; however, insulin/insulin receptor fails to transports into the cell nucleus in hepatocytes from aged pigs, although insulin/insulin receptor could internalize into cell cytoplasm. In summary, in the current study, we explored and compared for the first time insulin's behaviour and signalling properties in the cells of young pig hepatocytes and aged pig hepatocytes. Furthermore, we found that the insulin signalling response in hepatocytes was significantly reduced with age; more importantly, we found that the cell behaviour of insulin was changed significantly in the hepatocytes from aged pigs compared to young pigs, and it is noteworthy that insulin/IR cannot translocate into the cell nuclei in the hepatocytes from the aged pig. This may be a potential new reason contributing to insulin resistance with aging, suggesting that we need to study the reason for insulin resistance from a new point of view.
Collapse
Affiliation(s)
- Shichun Li
- The Third Operating Room Of The First Hospital of Jilin University, Jilin University, Changchun 130021, People's Republic of China
| | - Bo Shi
- Experimental Center of Biochemistry and Molecular Biology, College of Basic Medicine, Jilin University, Changchun 130021, People's Republic of China
| | - Kexin Huang
- Department of Histology and Embryology, College of Basic Medicine, Jilin University, Changchun 130021, People's Republic of China
| | - Ying Wang
- The First Operating Room of the First Hospital of Jilin University, Jilin University, Changchun 130021, People's Republic of China.
| |
Collapse
|
9
|
Lan H, Li W, Li R, Zheng X, Luo G. Endocytosis and Degradation of Pegvisomant and a Potential New Mechanism That Inhibits the Nuclear Translocation of GHR. J Clin Endocrinol Metab 2019; 104:1887-1899. [PMID: 30602026 DOI: 10.1210/jc.2018-02063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/26/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Pegvisomant, a growth hormone receptor (GHR) antagonist, is a well-known drug that was designed to treat acromegaly. However, recent studies have indicated that the GHR is a "moonlighting" protein that may exhibit dual functions based on its localization in the plasma membrane and nucleus. In light of this finding, we explored whether pegvisomant is a potential "moonlighting" GHR antagonist. In addition, the mechanisms of the endocytosis, postendocytic sorting, and degradation of pegvisomant are not fully understood. OBJECTIVE This study investigated whether pegvisomant is a "moonlighting" antagonist and explored the mechanisms of the endocytosis, postendocytic sorting, and degradation of pegvisomant. METHODS Indirect immunofluorescence and Western blot coupled with pharmacological inhibitors and gene silencing (small interfering RNA) were used to explore the mechanisms of the endocytosis, postendocytic sorting, and degradation of pegvisomant. Western blot, immunohistochemistry, and indirect immunofluorescence coupled with subcellular fractionation analysis were used to determine the effect of pegvisomant on GHR's nuclear localization in vitro and in vivo. RESULTS Here, we show that the endocytosis of pegvisomant is mainly mediated though the clathrin pathway. Further study of the postendocytic sorting of pegvisomant shows that pegvisomant enters into different types of endosomes under GHR mediation. In addition, GHR is slightly downregulated by pegvisomant; further study indicates that proteasomes and lysosomes may cooperate to regulate pegvisomant/GHR degradation. Most importantly, we show that pegvisomant inhibits the nuclear localization of GHR. CONCLUSION Our study showed that pegvisomant is a "moonlighting" antagonist. In addition, we revealed the mechanisms of the endocytosis, postendocytic sorting, and degradation of pegvisomant.
Collapse
Affiliation(s)
- Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ruonan Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Gan Luo
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Hai-Nan L, Hui-Lin L, Zi-Qi Z, Gan L, Xue-Qi F, Xin Z. Cellular internalization and trafficking of 20 KDa human growth hormone. Gen Comp Endocrinol 2019; 270:82-89. [PMID: 30339804 DOI: 10.1016/j.ygcen.2018.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 01/18/2023]
Abstract
Twenty kilodalton human growth hormone (20K-GH) is the second most abundant GH isoform after the twenty-two kilodalton human growth hormone (22 K-GH) isoform. 20K-GH exhibits similar but not identical physiological activities as that of 22K-GH. The cell behaviour of 22K-GH has been extensively studied, but little or no information has been reported regarding 20K-GH. Here, we focussed on the internalization of 20K-GH. We found that the internalization of 20K-GH is rapid and occurs in a time- and dose-dependent manner. 20K-GH internalization is mediated by GHR. It appears that the internalization of 20K-GH and GHR into the cytoplasm is mediated by clathrin and/or caveolin. The current study indicates that 20K-GH can internalize into the cytoplasm and suggests that the internalized 20K-GH may exhibit different functions from those of 22K-GH.
Collapse
Affiliation(s)
- Lan Hai-Nan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China.
| | - Liu Hui-Lin
- College of Life Sciences, Jilin University, Changchun 130118, PR China
| | - Zhang Zi-Qi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| | - Luo Gan
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Fu Xue-Qi
- College of Life Sciences, Jilin University, Changchun 130118, PR China
| | - Zheng Xin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
11
|
Hainan L, Huilin L, Khan MA, Xin Z, YuJiang Y, Hui Z, Naiquan Y. The basic route of the nuclear translocation porcine growth hormone (GH)-growth hormone receptor (GHR) complex (pGH/GHR) in porcine hepatocytes. Gen Comp Endocrinol 2018; 266:101-109. [PMID: 29890130 DOI: 10.1016/j.ygcen.2018.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/04/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
Traditional views suggest that growth hormone and the growth hormone receptor (GH/GHR complex) exert their functions only on the plasma membrane. This paradigm, however, has been challenged by recent new findings that the GH/GHR complex could translocate into cell nuclei where they could still exhibit important physiological functions. We also reported the nuclear localization of porcine GH/GHR and their potential functions in porcine hepatocytes. However, the basic path of pGH/GHR's nuclear translocation remains unclear. Combining previous research results and our current findings, we proposed two basic routes of pGH/GHR's nuclear transportation as follows: 1) after pGH binding to GHR, pGH/GHR enters into the cytoplasm though clathrin- or caveolin-mediated endocytosis, then the pGH/GHR complex enters into early endosomes (Rab5-positive), and the endosome carries the GH/GHR complex to the endoplasmic reticulum (ER). After endosome docking on the ER, the endosome starts fission, and the pGH/GHR complex enters into the ER lumen. Then the pGH/GHR complex transports into the cytoplasm, possibly by the ERAD pathway. Subsequently, the pGH/GHR complex interacts with IMPα/β, which, in turn, mediates GH/GHR nuclear localization; 2) pGH binds with the GHR on the cell membrane and, subsequently, pGH/GHR internalizes into the cell and enters into the endosome (this endosome may belong to a class of endosomes called envelope-associated endosomes (NAE)). Then, the endosome carries the pGH/GHR to the nuclear membrane. After docking on the nuclear membrane, the pGH/GHR complex fuses with the nuclear membrane and then enters into the cell nucleus.
Collapse
Affiliation(s)
- Lan Hainan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China.
| | - Liu Huilin
- College of Life Sciences, Jilin University, Changchun 130118, PR China
| | - Muhammad Akram Khan
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Zheng Xin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| | - Yang YuJiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| | - Zhang Hui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| | - Yao Naiquan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| |
Collapse
|
12
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Lan H, Liu H, Hong P, Li R, Zheng X. Porcine growth hormone induces the nuclear localization of porcine growth hormone receptor in vivo. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:499-504. [PMID: 29059726 PMCID: PMC5838321 DOI: 10.5713/ajas.17.0585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 11/27/2022]
Abstract
Objective Recent studies have challenged the traditional paradigm that growth hormone receptor (GHR) displays physiological functions only in the cell membrane. It has been demonstrated that GHR localizes to the cell nucleus and still exhibits important physiological roles. The phenomenon of nuclear localization of growth hormone (GH)-induced GHR has previously been described in vitro. However, until recently, whether GH could induce nuclear localization of GHR in vivo was unclear. Methods In the present study, we used pig as an animal model, and porcine growth hormone (pGH) or saline was injected into the inferior vena cava. We subsequently observed the localization of porcine growth hormone receptor (pGHR) using multiple techniques, including, immunoprecipitation and Western-blotting, indirect immunofluorescence assay and electronmicroscopy. Results The results showed that pGH could induce nuclear localization of pGHR. Taken together, the results of the present study provided the first demonstration that pGHR was translocated to cell nuclei under pGH stimulation in vivo. Conclusion Nuclear localization of pGHR induced by the in vivo pGH treatment suggests new functions and/or novel roles of nuclear pGHR, which deserve further study.
Collapse
Affiliation(s)
- Hainan Lan
- College of Animal Science and Technology Jilin Agricultural University, Changchun 130118, China
| | - Huilin Liu
- College of life sciences, Jilin University, Changchun 130118, China
| | - Pan Hong
- College of Animal Science and Technology Jilin Agricultural University, Changchun 130118, China
| | - Ruonan Li
- College of Animal Science and Technology Jilin Agricultural University, Changchun 130118, China
| | - Xin Zheng
- College of Animal Science and Technology Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|