1
|
Santos TDO, Cruz-Filho JD, Costa DM, Silva RPD, Anjos-Santos HCD, Santos JRD, Reis LC, Kettelhut ÍDC, Navegantes LC, Camargo EA, Lauton-Santos S, Badauê-Passos D, Mecawi ADS, Lustrino D. Non-canonical Ca 2+- Akt signaling pathway mediates the antiproteolytic effects induced by oxytocin receptor stimulation in skeletal muscle. Biochem Pharmacol 2023; 217:115850. [PMID: 37832795 DOI: 10.1016/j.bcp.2023.115850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Although it has been previously demonstrated that oxytocin (OXT) receptor stimulation can control skeletal muscle mass in vivo, the intracellular mechanisms that mediate this effect are still poorly understood. Thus, rat oxidative skeletal muscles were isolated and incubated with OXT or WAY-267,464, a non-peptide selective OXT receptor (OXTR) agonist, in the presence or absence of atosiban (ATB), an OXTR antagonist, and overall proteolysis was evaluated. The results indicated that both OXT and WAY-267,464 suppressed muscle proteolysis, and this effect was blocked by the addition of ATB. Furthermore, the WAY-induced anti-catabolic action on protein metabolism did not involve the coupling between OXTR and Gαi since it was insensitive to pertussis toxin (PTX). The decrease in overall proteolysis induced by WAY was probably due to the inhibition of the autophagic/lysosomal system, as estimated by the decrease in LC3 (an autophagic/lysosomal marker), and was accompanied by an increase in the content of Ca2+-dependent protein kinase (PKC)-phosphorylated substrates, pSer473-Akt, and pSer256-FoxO1. Most of these effects were blocked by the inhibition of inositol triphosphate receptors (IP3R), which mediate Ca2+ release from the sarcoplasmic reticulum to the cytoplasm, and triciribine, an Akt inhibitor. Taken together, these findings indicate that the stimulation of OXTR directly induces skeletal muscle protein-sparing effects through a Gαq/IP3R/Ca2+-dependent pathway and crosstalk with Akt/FoxO1 signaling, which consequently decreases the expression of genes related to atrophy, such as LC3, as well as muscle proteolysis.
Collapse
Affiliation(s)
- Tatiane de Oliveira Santos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - João da Cruz-Filho
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Daniely Messias Costa
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Raquel Prado da Silva
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Hevely Catharine Dos Anjos-Santos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - José Ronaldo Dos Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Luís Carlos Reis
- Department of Physiological Sciences, Center for Biological and Health Sciences, Rural Federal University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Ísis do Carmo Kettelhut
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Carlos Navegantes
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Enilton Aparecido Camargo
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Sandra Lauton-Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Daniel Badauê-Passos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - André de Souza Mecawi
- Department of Biophysics, São Paulo Medical School, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Danilo Lustrino
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
2
|
Messmer T, Klevernic I, Furquim C, Ovchinnikova E, Dogan A, Cruz H, Post MJ, Flack JE. A serum-free media formulation for cultured meat production supports bovine satellite cell differentiation in the absence of serum starvation. NATURE FOOD 2022; 3:74-85. [PMID: 37118488 DOI: 10.1038/s43016-021-00419-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/01/2021] [Indexed: 01/08/2023]
Abstract
Cultured meat production requires the robust differentiation of satellite cells into mature muscle fibres without the use of animal-derived components. Current protocols induce myogenic differentiation in vitro through serum starvation, that is, an abrupt reduction in serum concentration. Here we used RNA sequencing to investigate the transcriptomic remodelling of bovine satellite cells during myogenic differentiation induced by serum starvation. We characterized canonical myogenic gene expression, and identified surface receptors upregulated during the early phase of differentiation, including IGF1R, TFRC and LPAR1. Supplementation of ligands to these receptors enabled the formulation of a chemically defined media that induced differentiation in the absence of serum starvation and/or transgene expression. Serum-free myogenic differentiation was of similar extent to that induced by serum starvation, as evaluated by transcriptome analysis, protein expression and the presence of a functional contractile apparatus. Moreover, the serum-free differentiation media supported the fabrication of three-dimensional bioartificial muscle constructs, demonstrating its suitability for cultured beef production.
Collapse
|
3
|
The Impact of Polyamine Precursors, Polyamines, and Steroid Hormones on Temporal Messenger RNA Abundance in Bovine Satellite Cells Induced to Differentiate. Animals (Basel) 2021; 11:ani11030764. [PMID: 33801966 PMCID: PMC8001141 DOI: 10.3390/ani11030764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In the U.S., approximately 90% of all cattle on feed receive an anabolic implant at some point during production. Despite the widespread use, how they operate to increase growth of cattle remains unknown. Polyamines are amino acid derivatives, which are potent growth stimulants, produced through the polyamine biosynthetic pathway. Emerging research suggests that the hormones in anabolic implants interact with the polyamine biosynthetic pathway. The purpose of this research was to investigate the effects of steroidal hormones, polyamine precursors, and polyamines on mRNA abundance of bovine satellite cells, muscle precursor cells. The results from this study suggest that polyamine precursors and polyamines alter transcription factors involved in induction of differentiation of bovine satellite cells and the polyamine biosynthetic pathway, while the hormones in anabolic implants alter genes involved in the polyamine biosynthetic pathway. These results mean that polyamines may impact differentiation of bovine satellite cells, ultimately affecting growth of cattle. Abstract Emerging research suggests that hormones found in anabolic implants interact with polyamine biosynthesis. The objective of this study was to determine the effects of steroidal hormones, polyamines and polyamine precursors on bovine satellite cell (BSC) differentiation and polyamine biosynthesis temporally. Primary BSCs were induced to differentiate in 3% horse serum (CON) and treated with 10 nM trenbolone acetate (TBA), 10 nM estradiol (E2), 10 nM TBA and 10 nM E2, 10 mM methionine, 8 mM ornithine, 2 mM putrescine, 1.5 mM spermidine, or 0.5 mM spermine. Total mRNA was isolated 0, 2, 4, 8, 12, 24, and 48 h post-treatment. Abundance of mRNA for genes associated with induction of BSC differentiation: paired box transcription factor 7, myogenic factor 5, and myogenic differentiation factor 1 and genes in the polyamine biosynthesis pathway: ornithine decarboxylase and S-adenosylmethionine—were analyzed. Overall, steroidal hormones did not impact (p > 0.05) mRNA abundance of genes involved in BSC differentiation, but did alter (p = 0.04) abundance of genes involved in polyamine biosynthesis. Polyamine precursors influenced (p < 0.05) mRNA of genes involved in BSC differentiation. These results indicate that polyamine precursors and polyamines impact BSC differentiation and abundance of mRNA involved in polyamine biosynthesis, while steroidal hormones altered the mRNA involved in polyamine biosynthesis.
Collapse
|
4
|
Gonzalez ML, Busse NI, Waits CM, Johnson SE. Satellite cells and their regulation in livestock. J Anim Sci 2020; 98:5807489. [PMID: 32175577 DOI: 10.1093/jas/skaa081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Satellite cells are the myogenic stem and progenitor population found in skeletal muscle. These cells typically reside in a quiescent state until called upon to support repair, regeneration, or muscle growth. The activities of satellite cells are orchestrated by systemic hormones, autocrine and paracrine growth factors, and the composition of the basal lamina of the muscle fiber. Several key intracellular signaling events are initiated in response to changes in the local environment causing exit from quiescence, proliferation, and differentiation. Signals emanating from Notch, wingless-type mouse mammary tumor virus integration site family members, and transforming growth factor-β proteins mediate the reversible exit from growth 0 phase while those initiated by members of the fibroblast growth factor and insulin-like growth factor families direct proliferation and differentiation. Many of these pathways impinge upon the myogenic regulatory factors (MRF), myogenic factor 5, myogenic differentiation factor D, myogenin and MRF4, and the lineage determinate, Paired box 7, to alter transcription and subsequent satellite cell decisions. In the recent past, insight into mouse transgenic models has led to a firm understanding of regulatory events that control satellite cell metabolism and myogenesis. Many of these niche-regulated functions offer subtle differences from their counterparts in livestock pointing to the existence of species-specific controls. The purpose of this review is to examine the mechanisms that mediate large animal satellite cell activity and their relationship to those present in rodents.
Collapse
Affiliation(s)
- Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Nicolas I Busse
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|