Schneider H, Krizanac AM, Falker-Gieske C, Heise J, Tetens J, Thaller G, Bennewitz J. Genomic dissection of the correlation between milk yield and various health traits using functional and evolutionary information about imputed sequence variants of 34,497 German Holstein cows.
BMC Genomics 2024;
25:265. [PMID:
38461236 PMCID:
PMC11385139 DOI:
10.1186/s12864-024-10115-6]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/13/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND
Over the last decades, it was subject of many studies to investigate the genomic connection of milk production and health traits in dairy cattle. Thereby, incorporating functional information in genomic analyses has been shown to improve the understanding of biological and molecular mechanisms shaping complex traits and the accuracies of genomic prediction, especially in small populations and across-breed settings. Still, little is known about the contribution of different functional and evolutionary genome partitioning subsets to milk production and dairy health. Thus, we performed a uni- and a bivariate analysis of milk yield (MY) and eight health traits using a set of ~34,497 German Holstein cows with 50K chip genotypes and ~17 million imputed sequence variants divided into 27 subsets depending on their functional and evolutionary annotation. In the bivariate analysis, eight trait-combinations were observed that contrasted MY with each health trait. Two genomic relationship matrices (GRM) were included, one consisting of the 50K chip variants and one consisting of each set of subset variants, to obtain subset heritabilities and genetic correlations. In addition, 50K chip heritabilities and genetic correlations were estimated applying merely the 50K GRM.
RESULTS
In general, 50K chip heritabilities were larger than the subset heritabilities. The largest heritabilities were found for MY, which was 0.4358 for the 50K and 0.2757 for the subset heritabilities. Whereas all 50K genetic correlations were negative, subset genetic correlations were both, positive and negative (ranging from -0.9324 between MY and mastitis to 0.6662 between MY and digital dermatitis). The subsets containing variants which were annotated as noncoding related, splice sites, untranslated regions, metabolic quantitative trait loci, and young variants ranked highest in terms of their contribution to the traits` genetic variance. We were able to show that linkage disequilibrium between subset variants and adjacent variants did not cause these subsets` high effect.
CONCLUSION
Our results confirm the connection of milk production and health traits in dairy cattle via the animals` metabolic state. In addition, they highlight the potential of including functional information in genomic analyses, which helps to dissect the extent and direction of the observed traits` connection in more detail.
Collapse