1
|
Rafique A, Hichiwa G, Jatnika MF, Ito Y. A Novel Strategy for Screening Tumor-Specific Variable Domain of Heavy-Chain Antibodies. Int J Mol Sci 2023; 24:10804. [PMID: 37445977 DOI: 10.3390/ijms241310804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The properties of the variable domain of heavy-chain (VHH) antibodies are particularly relevant in cancer therapy. To isolate tumor cell-specific VHH antibodies, VHH phage libraries were constructed from multiple tumor cells. After enriching the libraries against particular tumor cell lines, a next-generation sequencer was used to screen the pooled phages of each library for potential antibody candidates. Based on high amplification folds, 50 sequences from each library were used to construct phylogenetic trees. Several clusters with identical CDR3 were observed. Groups X, Y, and Z were assigned as common sequences among the different trees. These identical groups over the trees were considered to be cross-reactive antibodies. To obtain monoclonal antibodies, we assembled 200 sequences (top 50 sequences from each library) and rebuilt a combined molecular phylogenetic tree. Groups were categorized as A-G. For each group, we constructed a phagemid and determined its binding specificity with tumor cells. The phage-binding results were consistent with the phylogenetic tree-generated groups, which indicated particular tumor-specific clusters; identical groups showed cross-reactivity. The strategy used in the current study is effective for screening and isolating monoclonal antibodies. Specific antibodies can be identified, even when the target markers of cancer cells are unknown.
Collapse
Affiliation(s)
- Abdur Rafique
- Graduate School of Science and Engineering, University of Kagoshima, Kagoshima 890-0065, Japan
| | - Genki Hichiwa
- Graduate School of Medical Sciences, Tottori University, Tottori 680-8550, Japan
| | - Muhammad Feisal Jatnika
- Graduate School of Science and Engineering, University of Kagoshima, Kagoshima 890-0065, Japan
| | - Yuji Ito
- Graduate School of Science and Engineering, University of Kagoshima, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Wang H, Wu ZC, Hu P, Ren HL, Li YS, Zheng Y, Wang C, Zeng-Shan Liu, Lu SY. Identification of chicken-derived scFv against N-glycolylneuraminic acid retrieved from an immune library by phage display. Protein Expr Purif 2021; 182:105841. [PMID: 33582290 DOI: 10.1016/j.pep.2021.105841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 11/24/2022]
Abstract
N- glycolylneuraminic acid (Neu5Gc) is a type of sialic acid, it can be synthesized by a range of mammals except chickens and healthy human. After entering human body, Neu5Gc in foods such as red meat and milk can cause chronic inflammation, thus promoting the development of cancer and related diseases. In this study, we identified a gene sequence of Neu5Gc-specific single-chain variable fragment (ScFv) by phage display from a primary chicken antibodies library. Then the gene sequence was used to express a 29 kDa anti-Neu5Gc ScFv protein as detection probe in competitive inhibition ELISA (IC-ELISA). The linear regression equation of the IC-ELISA was y = 23.12x+33.19 (R = 0.980), and the half-maximal inhibitory concentration (IC50) and the limit of detection (LOD) was 5.333 and 0.66 μg/mL. The mean recovery of the spiked samples was 83.04%, and the intra-assay and inter-assay coefficients of variation (CVs) were both 5.59%. The results suggested that the specific anti-Neu5Gc ScFv is a promising probe for the development of IC-ELISA and test strip in order to detect the presence of Neu5Gc in red meat, milk, and tumor tissues.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Zong-Cheng Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China; Safety Evaluation Center of Shenyang Research Institute of Chemical Industry Ltd. (National Safety Evaluation Research Centre of New Drug(Shenyang)), Shenyang, 110141, PR China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Yu Zheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Cong Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China.
| |
Collapse
|
3
|
Xu H, Cao B, Li Y, Mao C. Phage nanofibers in nanomedicine: Biopanning for early diagnosis, targeted therapy, and proteomics analysis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1623. [PMID: 32147974 DOI: 10.1002/wnan.1623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Display of a peptide or protein of interest on the filamentous phage (also known as bacteriophage), a biological nanofiber, has opened a new route for disease diagnosis and therapy as well as proteomics. Earlier phage display was widely used in protein-protein or antigen-antibody studies. In recent years, its application in nanomedicine is becoming increasingly popular and encouraging. We aim to review the current status in this research direction. For better understanding, we start with a brief introduction of basic biology and structure of the filamentous phage. We present the principle of phage display and library construction method on the basis of the filamentous phage. We summarize the use of the phage displayed peptide library for selecting peptides with high affinity against cells or tissues. We then review the recent applications of the selected cell or tissue targeting peptides in developing new targeting probes and therapeutics to advance the early diagnosis and targeted therapy of different diseases in nanomedicine. We also discuss the integration of antibody phage display and modern proteomics in discovering new biomarkers or target proteins for disease diagnosis and therapy. Finally, we propose an outlook for further advancing the potential impact of phage display on future nanomedicine. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Hong Xu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
4
|
A fully automated three-step protein purification procedure for up to five samples using the NGC chromatography system. Protein Expr Purif 2019; 153:1-6. [DOI: 10.1016/j.pep.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 01/15/2023]
|
5
|
Single cell screening approaches for antibody discovery. Methods 2017; 116:34-42. [DOI: 10.1016/j.ymeth.2016.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022] Open
|
6
|
Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy. Sci Rep 2017; 7:42230. [PMID: 28186116 PMCID: PMC5301479 DOI: 10.1038/srep42230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.
Collapse
|
7
|
Abstract
Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.
Collapse
|
8
|
Becker M, Felsberger A, Frenzel A, Shattuck WMC, Dyer M, Kügler J, Zantow J, Mather TN, Hust M. Application of M13 phage display for identifying immunogenic proteins from tick (Ixodes scapularis) saliva. BMC Biotechnol 2015; 15:43. [PMID: 26024663 PMCID: PMC4449557 DOI: 10.1186/s12896-015-0167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
Background Ticks act as vectors for a large number of different pathogens, perhaps most notably Borrelia burgdorferi, the causative agent of Lyme disease. The most prominent tick vector in the United States is the blacklegged tick, Ixodes scapularis. Tick bites are of special public health concern since there are no vaccines available against most tick-transmitted pathogens. Based on the observation that certain non-natural host animals such as guinea pigs or humans can develop adaptive immune responses to tick bites, anti-tick vaccination is a potential approach to tackle health risks associated with tick bites. Results The aim of this study was to use an oligopeptide phage display strategy to identify immunogenic salivary gland proteins from I. scapularis that are recognized by human immune sera. Oligopeptide libraries were generated from salivary gland mRNA of 18 h fed nymphal I. scapularis. Eight immunogenic oligopeptides were selected using human immune sera. Three selected immunogenic oligopeptides were cloned and produced as recombinant proteins. The immunogenic character of an identified metalloprotease (MP1) was validated with human sera. This enzyme has been described previously and was hypothesized as immunogenic which was confirmed in this study. Interestingly, it also has close homologs in other Ixodes species. Conclusion An immunogenic protein of I. scapularis was identified by oligopeptide phage display. MP1 is a potential candidate for vaccine development.
Collapse
Affiliation(s)
- Martin Becker
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany. .,University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA. .,Present Address: Max-Planck-Institute for Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany.
| | - André Felsberger
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany. .,Present Address: YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany.
| | - André Frenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Wendy M C Shattuck
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Megan Dyer
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Jonas Kügler
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Jonas Zantow
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Thomas N Mather
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| |
Collapse
|
9
|
Kumada Y. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1960-1969. [PMID: 25119345 DOI: 10.1016/j.bbapap.2014.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 12/26/2022]
Abstract
The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
10
|
Miethe S, Meyer T, Wöhl-Bruhn S, Frenzel A, Schirrmann T, Dübel S, Hust M. Production of single chain fragment variable (scFv) antibodies in Escherichia coli using the LEX™ bioreactor. J Biotechnol 2012; 163:105-11. [PMID: 22902410 DOI: 10.1016/j.jbiotec.2012.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022]
Abstract
For proteome research, antibodies against a growing number of antigens must be generated and characterized. The high throughput generation of antibody fragments, using in vitro selection, requires bacterial expression of antibody fragments. This created a need to establish an expression method to improve the parallel production of many antibody fragments. In this study, we describe the development of a high throughput bacterial production method for single chain fragment variables (scFvs) using shaking flasks or the LEX™ bioreactor. We compared the influence of a set of production parameters on Escherichia coli production of four different scFv. The results led to an optimized protocol for the parallel production of multiple antibody fragments.
Collapse
Affiliation(s)
- Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Hust M, Frenzel A, Meyer T, Schirrmann T, Dübel S. Construction of human naive antibody gene libraries. Methods Mol Biol 2012; 907:85-107. [PMID: 22907347 DOI: 10.1007/978-1-61779-974-7_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human antibodies are valuable tools for proteome research and diagnostics. Furthermore, antibodies are a rapidly growing class of therapeutic agents, mainly for inflammation and cancer therapy. The first therapeutic antibodies are of murine origin and were chimerized or humanized. The later-developed antibodies are fully human antibodies. Here, two technologies are competing the hybridoma technology using transgenic mice with human antibody gene loci and antibody phage display. The starting point for the selection of human antibodies against any target is the construction of an antibody phage display gene library.In this review we describe the construction of human naive and immune antibody gene libraries for antibody phage display.
Collapse
Affiliation(s)
- Michael Hust
- Institut für Biochemie und Biotechnologie, Techische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
12
|
Naimuddin M, Kubo T. Display of disulfide-rich proteins by complementary DNA display and disulfide shuffling assisted by protein disulfide isomerase. Anal Biochem 2011; 419:33-9. [PMID: 21867670 DOI: 10.1016/j.ab.2011.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/07/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery.
Collapse
Affiliation(s)
- Mohammed Naimuddin
- Janusys Corporation, Saitama Industrial Technology Center, Skip City, Kawaguchi, Saitama 333-0844, Japan.
| | | |
Collapse
|
13
|
Schirrmann T, Meyer T, Schütte M, Frenzel A, Hust M. Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 2011; 16:412-26. [PMID: 21221060 PMCID: PMC6259421 DOI: 10.3390/molecules16010412] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/04/2011] [Accepted: 01/07/2011] [Indexed: 12/15/2022] Open
Abstract
Twenty years after its development, antibody phage display using filamentous bacteriophage represents the most successful in vitro antibody selection technology. Initially, its development was encouraged by the unique possibility of directly generating recombinant human antibodies for therapy. Today, antibody phage display has been developed as a robust technology offering great potential for automation. Generation of monospecific binders provides a valuable tool for proteome research, leading to highly enhanced throughput and reduced costs. This review presents the phage display technology, application areas of antibodies in research, diagnostics and therapy and the use of antibody phage display for these applications.
Collapse
Affiliation(s)
| | | | | | | | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry and Biotechnology, Department of Biotechnology, Spielmannstr. 7, 38106 Braunschweig, Germany
| |
Collapse
|
14
|
Kiss MM, Babineau EG, Bonatsakis M, Buhr DL, Maksymiuk GM, Wang D, Alderman D, Gelperin DM, Weiner MP. Phage ESCape: an emulsion-based approach for the selection of recombinant phage display antibodies. J Immunol Methods 2010; 367:17-26. [PMID: 20932970 DOI: 10.1016/j.jim.2010.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/23/2010] [Accepted: 09/23/2010] [Indexed: 11/15/2022]
Abstract
Antibody phage display technology is a well established method for selecting specific antibodies against desired targets. Although phage display is the most widely used method of generating synthetic antibodies, it is laborious to perform multiple selections with different antigens simultaneously using conventional manual methods. We have developed a novel approach to the identification and isolation of cells secreting phage encoding desirable antibodies that utilizes compartmentalization and Fluorescence Activated Cell Sorting (FACS). This method, termed Phage Emulsion, Secretion, and Capture (ESCape), allows us to individually query each phage against the antigen. Here, we demonstrate the ability of Phage ESCape to identify novel scFvs against a phosphopeptide epitope of the Her2 kinase from a phage display library containing approximately 10(8) synthetically diversified antibodies. Clones were analyzed by monoclonal phage ELISA against the Her2 phosphopeptide, and positive binders were identified as those showing a signal greater than 3-fold higher than the background signal against an irrelevant antigen. We isolated antibodies recognizing the phosphopeptide in a single round of selection by Phage ESCape, but the strength and specificity of the hits was substantially improved when the library was pre-enriched by a single round of biopanning. By minimizing the selection rounds required for phage display and using a FACS machine as a 'colony picker' equivalent, Phage ESCape has the potential to dramatically increase the throughput of in vitro screening methods.
Collapse
|
15
|
Shukla GS, Krag DN. Phage-displayed combinatorial peptide libraries in fusion to beta-lactamase as reporter for an accelerated clone screening: Potential uses of selected enzyme-linked affinity reagents in downstream applications. Comb Chem High Throughput Screen 2010; 13:75-87. [PMID: 20214576 DOI: 10.2174/138620710790218258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phage-display selection of combinatorial libraries is a powerful technique for identifying binding ligands against desired targets. Evaluation of target binding capacity of multiple clones recovered from phage display selection to a specific target is laborious, time-consuming, and a rate-limiting step. We constructed phage-display combinatorial peptide libraries in fusion with a beta-lactamase enzyme, which acts as a reporter. Linear dodecapeptide and cysteine-constrained decapeptide libraries were created at the amino-terminus of the Enterobacter cloacae P99 cephalosporinase molecule (P99 beta-lactamase). The overall and positional diversity of amino acids in both libraries was similar to other phage-display systems. The libraries were selected against the extracellular domain of ErbB2 receptor (ErbB2(ECD)). The target-selected clones were already conjugated to an enzyme reporter, therefore, did not require subcloning or any other post-panning modifications. We used beta-lactamase enzyme activity-based assays for sample normalizations and clone binding evaluation. Clones were identified that bound to purified ErbB2(ECD) and ErbB2-overexpressing cell-lines. The peptide sequences of the selected binding clones shared significant motifs with several rationally designed peptide mimetics and phage-display derived peptides that have been reported to bind ErbB2(ECD). beta-Lactamase fusion to peptides saved time and resources otherwise required by the phage-ELISA of a typical phage display screening protocol. The beta-lactamase enzyme assay protocols is a one-step process that does not require secondary proteins, several steps of lengthy incubations, or washings and can be finished in a few minutes instead of hours. The clone screening protocol can be adopted for a high throughput platform. Target-specific beta-lactamase-linked affinity reagents selected by this procedure can be produced in bulk, purified, and used, without any modification, for a variety of downstream applications, including targeted prodrug therapy.
Collapse
Affiliation(s)
- Girja S Shukla
- Department of Surgery and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, 05405, USA.
| | | |
Collapse
|
16
|
Automation in the high-throughput selection of random combinatorial libraries--different approaches for select applications. Molecules 2010; 15:2478-90. [PMID: 20428057 PMCID: PMC6257267 DOI: 10.3390/molecules15042478] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 11/30/2022] Open
Abstract
Automation in combination with high throughput screening methods has revolutionised molecular biology in the last two decades. Today, many combinatorial libraries as well as several systems for automation are available. Depending on scope, budget and time, a different combination of library and experimental handling might be most effective. In this review we will discuss several concepts of combinatorial libraries and provide information as what to expect from these depending on the given context.
Collapse
|
17
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
18
|
Tanaka T, Rabbitts TH. Protocol for the selection of single-domain antibody fragments by third generation intracellular antibody capture. Nat Protoc 2009; 5:67-92. [DOI: 10.1038/nprot.2009.199] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Improved microtitre plate production of single chain Fv fragments in Escherichia coli. N Biotechnol 2009; 25:424-8. [PMID: 19552889 DOI: 10.1016/j.nbt.2009.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 03/04/2009] [Accepted: 03/08/2009] [Indexed: 11/22/2022]
Abstract
The new era of functional genomics demands several antibodies as specific detection reagents for proteins, their complexes and post-translational modifications. Only in vitro antibody selection technologies are able to provide the required throughput to generate these large numbers. Phage display is the most widely used technology for in vitro selection of antibodies. The major bottleneck of a phage display selection pipeline is the production of monoclonal antibody fragments for screening and further analysis. In this study, we describe the development of improved protocols for the production of single chain Fv (scFv) antibody fragments in 96-well microtitre plates (MTPs) in Escherichia coli. Four scFvs were expressed using the antibody expression vector pOPE101-XP to analyse the influence of a set of different parameters on their production. Further, six scFvs were expressed using the phage display vector pHAL14 to investigate the effect on the production of functional scFvs using those parameters that improved production from pOPE101-XP. Yield in MTPs was influenced by a variety of conditions and was also strongly dependent on the individual scFv clone. Although it was not possible to deduce a single set of optimal parameters applicable to all the tested scFvs, a combined protocol was developed which improved the expression of scFv fragments over standard methods.
Collapse
|
20
|
Chen W, Zhang J, Zhang T, Li H, Wang W, Xia Z, Wang M. Improved isolation of anti-rhTNF-alpha scFvs from phage display library by bioinformatics. Mol Biotechnol 2009; 43:20-8. [PMID: 19412671 DOI: 10.1007/s12033-009-9172-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/07/2009] [Indexed: 11/30/2022]
Abstract
Phage display technology has been widely used to isolate antibodies with specific properties. The objective of this study was to isolate anti-rhTNF-alpha scFvs from phage display library. However, the inserted genes of eluted phages were either incorrect or truncated. In order to address this issue, bioinformatics was applied to facilitate the screening of the eluted phages. The alignment of the sequencing results was performed with the software ClustalW. The gene of scFv (F6) was assembled by ligating together the identical VH and VL fragments and then analyzed by using program BLASTX. F6 was identified to share 80% sequence identity with a human anti-TNF-alpha scFv. Subsequently, the conformation of F6 binding to hTNF-alpha predicted by docking assay showed that F6 could bind to hTNF-alpha via the six CDRs. Finally, ELISA assay and Western blot analysis indicated that F6 might bind to rhTNF-alpha specifically. Biological assay demonstrated that F6 might neutralize rhTNF-alpha-induced cytotoxicity in L929 cells. In conclusion, F6 could be a candidate for further investigation, based on the experimental data and the prediction by bioinformatics.
Collapse
Affiliation(s)
- Wei Chen
- School of Life Science & Technology, China Pharmaceutical University, 153# Tong Jia Xiang 24, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Hosse RJ, Tay L, Hattarki MK, Pontes-Braz L, Pearce LA, Nuttall SD, Dolezal O. Kinetic screening of antibody–Im7 conjugates by capture on a colicin E7 DNase domain using optical biosensors. Anal Biochem 2009; 385:346-57. [DOI: 10.1016/j.ab.2008.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/07/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
|