1
|
Benoni R, Krafcikova P, Baranowski MR, Kowalska J, Boura E, Cahová H. Substrate Specificity of SARS-CoV-2 Nsp10-Nsp16 Methyltransferase. Viruses 2021; 13:v13091722. [PMID: 34578302 PMCID: PMC8472550 DOI: 10.3390/v13091722] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 01/18/2023] Open
Abstract
The ongoing COVID-19 pandemic exemplifies the general need to better understand viral infections. The positive single-strand RNA genome of its causative agent, the SARS coronavirus 2 (SARS-CoV-2), encodes all viral enzymes. In this work, we focused on one particular methyltransferase (MTase), nsp16, which, in complex with nsp10, is capable of methylating the first nucleotide of a capped RNA strand at the 2′-O position. This process is part of a viral capping system and is crucial for viral evasion of the innate immune reaction. In light of recently discovered non-canonical RNA caps, we tested various dinucleoside polyphosphate-capped RNAs as substrates for nsp10-nsp16 MTase. We developed an LC-MS-based method and discovered four types of capped RNA (m7Gp3A(G)- and Gp3A(G)-RNA) that are substrates of the nsp10-nsp16 MTase. Our technique is an alternative to the classical isotope labelling approach for the measurement of 2′-O-MTase activity. Further, we determined the IC50 value of sinefungin to illustrate the use of our approach for inhibitor screening. In the future, this approach may be an alternative technique to the radioactive labelling method for screening inhibitors of any type of 2′-O-MTase.
Collapse
Affiliation(s)
- Roberto Benoni
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; (R.B.); (P.K.)
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; (R.B.); (P.K.)
| | - Marek R. Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland; (M.R.B.); (J.K.)
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland; (M.R.B.); (J.K.)
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; (R.B.); (P.K.)
- Correspondence: (E.B.); (H.C.)
| | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; (R.B.); (P.K.)
- Correspondence: (E.B.); (H.C.)
| |
Collapse
|
2
|
Lubin A, De Vries R, Cabooter D, Augustijns P, Cuyckens F. An atmospheric pressure ionization source using a high voltage target compared to electrospray ionization for the LC/MS analysis of pharmaceutical compounds. J Pharm Biomed Anal 2017; 142:225-231. [DOI: 10.1016/j.jpba.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
|
3
|
Burkard L, Scheuermann A, Simithy J, Calderón AI. Development of a functional assay to detect inhibitors of Plasmodium falciparum glutathione reductase utilizing liquid chromatography-mass spectrometry. Biomed Chromatogr 2015; 30:543-7. [PMID: 26257195 DOI: 10.1002/bmc.3580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022]
Abstract
Plasmodium falciparum (Pf) like most other organisms, has a sophisticated antioxidant system, part of which includes glutathione reductase (GR). GR works by recycling toxic glutathione disulfide to glutathione, thereby reducing reactive oxygen species and making a form of glutathione (GSH) the parasite can use. Inhibition of this enzyme in Pf impedes parasite growth. In addition, it has been confirmed that PfGR is not identical to human GR. Thus, PfGR is an excellent target for antimalarial drug development. A functional assay utilizing liquid chromatography-mass spectrometry was developed to specifically identify and evaluate inhibitors of PfGR. Using recombinant PfGR enzyme and 1,4-naphthoquinone (1) as a reference compound and 4-nitrobenzothiadiazole (2) and methylene blue (3) as additional compounds, we quantified the concentration of GSH produced compared with a control to determine the inhibitory effect of these compounds. Our results coincide with that presented in literature: compounds 1-3 inhibit PfGR with IC50 values of 2.71, 8.38, and 19.23 µm, respectively. Good precision for this assay was exhibited by low values of intraday and interday coefficient of variation (3.1 and 2.4%, respectively). Thus, this assay can be used to screen for other potential inhibitors of PfGR quickly and accurately.
Collapse
Affiliation(s)
- Lexi Burkard
- Department of Drug Discovery and Development, Harrison School of Pharmacy, 4306 Walker Building, Auburn University, Auburn, AL, 36849, USA
| | - Alexis Scheuermann
- Department of Drug Discovery and Development, Harrison School of Pharmacy, 4306 Walker Building, Auburn University, Auburn, AL, 36849, USA
| | - Johayra Simithy
- Department of Drug Discovery and Development, Harrison School of Pharmacy, 4306 Walker Building, Auburn University, Auburn, AL, 36849, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, 4306 Walker Building, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
4
|
Sun YS, Fei Y, Luo J, Dixon S, Landry JP, Lam KS, Zhu X. Generating Encoded Compound Libraries for Fabricating Microarrays as a High-Throughput Protein Ligand Discovery Platform. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2013.840728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yung-Shin Sun
- a Department of Physics , Fu-Jen Catholic University , New Taipei City , Taiwan
| | - Yiyan Fei
- b Department of Optical Science and Engineering , Fudan University , Shanghai , China
- c Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center , Fudan University , Shanghai , China
| | - Juntao Luo
- d Department of Pharmacology , Upstate Cancer Research Institute, State University of New York Upstate Medical University , Syracuse , New York , USA
| | - Seth Dixon
- e Division of Hematology and Oncology, Department of Internal Medicine , School of Medicine, University of California at Davis , Sacramento , California , USA
| | - James P. Landry
- f Department of Physics , University of California at Davis , Davis , California , USA
| | - Kit S. Lam
- e Division of Hematology and Oncology, Department of Internal Medicine , School of Medicine, University of California at Davis , Sacramento , California , USA
- g Department of Biochemistry and Molecular Medicine , School of Medicine, University of California at Davis , Sacramento , California , USA
| | - Xiangdong Zhu
- f Department of Physics , University of California at Davis , Davis , California , USA
| |
Collapse
|
5
|
Papp R, Andersson U, Cantin LD. Evaluating MISER chromatography for a rapid formulation screen. J Pharm Biomed Anal 2013; 77:94-9. [DOI: 10.1016/j.jpba.2013.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/06/2013] [Accepted: 01/08/2013] [Indexed: 11/25/2022]
|
6
|
Vanzolini KL, Vieira LCC, Corrêa AG, Cardoso CL, Cass QB. Acetylcholinesterase immobilized capillary reactors-tandem mass spectrometry: an on-flow tool for ligand screening. J Med Chem 2013; 56:2038-44. [PMID: 23330848 DOI: 10.1021/jm301732a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The use of immobilized capillary enzyme reactors (ICERs) for online ligand screening has been adopted as a new technique for high-throughput screening (HTS). In this work, the selected target was the enzyme acetylcholinesterase (AChE), and the AChE-ICERs produced were used in a liquid chromatograph-tandem ion-trap mass spectrometer. The activity and kinetic parameters were evaluated by monitoring the choline's precursor ion (M + H)(+)m/z 104.0 and its ion fragment (C2H3OH) - (M + H)(+)m/z 60.0. The assay method was validated using the reference AChE inhibitors tacrine and galanthamine. Two new ligands, out of a library of 17 coumarin derivatives, were identified, and the half-maximal inhibitory concentration (IC50), inhibition constant (K(i)), and the inhibition mechanism were determined. A coumarin derivative with IC50 similar to tacrine was highlighted.
Collapse
Affiliation(s)
- Kenia L Vanzolini
- Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, 13565-905, SP, Brazil
| | | | | | | | | |
Collapse
|
7
|
Toyo’oka T. LC–MS determination of bioactive molecules based upon stable isotope-coded derivatization method. J Pharm Biomed Anal 2012; 69:174-84. [DOI: 10.1016/j.jpba.2012.04.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
|
8
|
Li S, Hao Q, Gounarides J, Wang YK. Full utilization of a mass spectrometer using on-demand sharing with multiple LC units. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1074-1082. [PMID: 22899517 DOI: 10.1002/jms.3061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The applicability of liquid chromatography-mass spectrometry (LC/MS) is often limited by throughput. The sharing of a mass spectrometer with multiple LCs significantly improves throughput; however, the reported systems have not been designed to fully utilize the MS duty cycle, and as a result to achieve maximum throughput. To fully utilize the mass spectrometer, the number of LC units that a MS will need to recruit is application dependent and could be significantly larger than the current commercial or published implementations. For the example of a single analyte, the number may approach the peak capacity to a first degree approximation. Here, the construction of a MS system that flexibly recruits any number of LC units demanded by the application is discussed, followed by the method to port a previously developed LC/MS method to the system to fully utilize a mass spectrometer. To demonstrate the performance and operation, a prototypical MS system of eight LC units was constructed. When 1-min chromatographic separations were performed in parallel on the eight LCs of the system, the average LC/MS analysis time per sample was 10.5 s when applied to the analysis of samples in 384-well plate format. This system has been successfully used to conduct large-volume biochemical assays with the analysis of a variety of molecular entities in support of drug discovery efforts. Allowing the recruitment of the number of LC units appropriate for a given application, this system has the potential to be a plug-and-play system to fully utilize a mass spectrometer.
Collapse
Affiliation(s)
- Shu Li
- Analytical Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
9
|
Automated approach for the rapid identification of purification conditions using a unified, walk-up high performance liquid chromatography/supercritical fluid chromatography/mass spectrometry screening system. J Chromatogr A 2012; 1229:260-7. [DOI: 10.1016/j.chroma.2012.01.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/14/2012] [Accepted: 01/17/2012] [Indexed: 11/23/2022]
|
10
|
Espada A, Molina-Martin M. Capillary electrophoresis and small molecule drug discovery: a perfect match? Drug Discov Today 2012; 17:396-404. [PMID: 22387356 DOI: 10.1016/j.drudis.2012.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/19/2011] [Accepted: 02/10/2012] [Indexed: 01/27/2023]
Abstract
Capillary electrophoresis (CE) is an analytical technique based on the separation of the analytes within a capillary owing to their different electrophoretic mobilities. It is widely used in pharmaceutical analyses owing to its versatility and high separation power. However, its penetration into the drug discovery scene has been relatively limited until recent years. Several factors have contributed to this low implementation, including the maturity of liquid chromatography, the scarcity of experienced CE practitioners, and certain limitations intrinsic to the technique. Recently, instrumental improvements and the growing demand for analytical information have lead to a continuously expanding range of routine electrophoretic applications throughout pharmaceutical discovery and development. In this article we review CE fundamentals, review well-established CE methodologies in drug discovery of small molecules and discuss trends that, in our opinion, might emerge in the coming years.
Collapse
Affiliation(s)
- Alfonso Espada
- Analytical Technologies Department, Centro de Investigación Lilly SA, Avda de la Industria 30, 28108-Alcobendas, Madrid, Spain
| | | |
Collapse
|
11
|
Klinkenberg G, Sletta H, Fjærvik E, Zahlsen K, Bruheim P. Two-dimensional LC-MS fractioning and cross-matching of mass spectrometric data for rational identification of bioactive compounds in crude extracts. J Sep Sci 2011; 34:3359-63. [PMID: 22086770 DOI: 10.1002/jssc.201100468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/18/2011] [Accepted: 09/15/2011] [Indexed: 11/08/2022]
Abstract
Bioprospecting aims at the identification of biological compounds with novel properties. Identification of such compounds in crude complex biological extracts is a comprehensive challenge. As a large number of extracts must be screened for successful identification of one potential promising lead, rational screening strategies must be developed. Here we report on a novel two stage rational LC-MS strategy of extracts already pre-screened and proven to contain bioactive compound(s). All extracts are initially fractionated using one and the same LC condition with parallel mass spectrometric detection. Fractions containing bioactive compound(s) are then subjected to a second fractional stage using two different chromatographic conditions. Mass detection is also included at this stage, and a cross-matching algorithm for comparison of processed mass chromatograms from the two dimensions was developed. The algorithm reports only masses present in bioactive fractions in both dimensions and enable therefore an efficient identification of potential masses that causes the bioactivity. This mass list can be used to search in natural compound database(s) for a rapid evaluation if the mass belongs to an already identified compound or if it is a potentially new one. This strategy enables thorough screening of several hundred crude extracts in one week on one single instrument.
Collapse
Affiliation(s)
- Geir Klinkenberg
- SINTEF Materials and Chemistry, Department of Biotechnology, Trondheim, Norway
| | | | | | | | | |
Collapse
|
12
|
Xu F, Zou L, Liu Y, Zhang Z, Ong CN. Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications. MASS SPECTROMETRY REVIEWS 2011; 30:1143-1172. [PMID: 21557289 DOI: 10.1002/mas.20316] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/12/2010] [Accepted: 07/12/2010] [Indexed: 05/30/2023]
Abstract
The integration of liquid chromatography-mass spectrometry (LC-MS) with derivatization is a relatively new and unique strategy that could add value and could enhance the capabilities of LC-MS-based technologies. The derivatization process could be carried out in various analytical steps, for example, sampling, storage, sample preparation, HPLC separation, and MS detection. This review presents an overview of derivatization-based LC-MS strategy over the past 10 years and covers both the general principles and applications in the fields of pharmaceutical and biomedical analysis, biomarker and metabolomic research, environmental analysis, and food-safety evaluation. The underlying mechanisms and theories for derivative reagent selection are summarized and highlighted to guide future studies.
Collapse
Affiliation(s)
- Fengguo Xu
- Department of Epidemiology and Public Health, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | | | | | | | | |
Collapse
|
13
|
Yang X, Xie Y, Pu J, Zhao H, Liao J, Yuan Y, Zhu S, Long G, Zhang C, Yuan H, Chen Y, Liao F. Estimation of affinities of ligands in mixtures via magnetic recovery of target-ligand complexes and chromatographic analyses: chemometrics and an experimental model. BMC Biotechnol 2011; 11:44. [PMID: 21545719 PMCID: PMC3096923 DOI: 10.1186/1472-6750-11-44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 05/05/2011] [Indexed: 11/22/2022] Open
Abstract
Abstract Conclusions This new method is robust and effective for each mixture possessing a limited number of candidate ligands whose molar quantities have moderate differences, and its integration with PCS has promise to routinely practice the mixture-based library strategy.
Collapse
Affiliation(s)
- Xiaolan Yang
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Medical Laboratory Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Espada A, Anta C, Bragado A, Rodríguez J, Jiménez C. An approach to speed up the isolation of hydrophilic metabolites from natural sources at semipreparative level by using a hydrophilic-lipophilic balance/mixed-mode strong cation exchange-high-performance liquid chromatography/mass spectrometry system. J Chromatogr A 2011; 1218:1790-4. [PMID: 21329935 DOI: 10.1016/j.chroma.2011.01.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/14/2011] [Accepted: 01/23/2011] [Indexed: 11/28/2022]
Abstract
An approach to speed up the isolation of hydrophilic metabolites in complex natural matrixes by using a HLB/MCX-HPLC/MS system based on the retention properties of hydrophilic-lipophilic and cation exchange polymeric cartridges was developed. This methodology was successfully applied to the re-isolation of small water soluble compounds with completely different structures from two different natural extracts such as a dipeptide (vanchrobactin) from a bacterium culture broth and a pyrrolidine bearing a carboxylic acid moiety (clionapyrrolidine A) from a sponge. This method improved not only the efficiency of the isolation methodology but also the isolation time in relation to the existing methods.
Collapse
Affiliation(s)
- Alfonso Espada
- Analytical Technologies DCR&T Alcobendas, Lilly S.A., Avenida de la Industria 30, Alcobendas/Madrid, Spain.
| | | | | | | | | |
Collapse
|
15
|
Font LM, Fontana A, Galceran MT, Iturrino L, Perez V. Orthogonal analytical screening for liquid chromatography–mass spectrometry method development and preparative scale-up. J Chromatogr A 2011; 1218:74-82. [DOI: 10.1016/j.chroma.2010.10.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 10/01/2010] [Accepted: 10/26/2010] [Indexed: 11/25/2022]
Affiliation(s)
- Luis M Font
- Enabling Analytical Technologies, Janssen Research & Development a Division of Janssen-Cilag S.A., c/Jarama 75, 45007 Toledo, Spain.
| | | | | | | | | |
Collapse
|
16
|
Chernetsova ES, Koryakova AG. High-performance liquid chromatography coupled to mass spectrometry for studying new pharmaceutical entities. JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1134/s1061934810140029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Aurigemma C, Farrell W. FastTrack to supercritical fluid chromatographic purification: Implementation of a walk-up analytical supercritical fluid chromatography/mass spectrometry screening system in the medicinal chemistry laboratory. J Chromatogr A 2010; 1217:6110-4. [DOI: 10.1016/j.chroma.2010.07.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/20/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
|
18
|
Kosanam H, Ma F, He H, Ramagiri S, Gududuru V, Tigyi GJ, Van Rompay K, Miller DD, Yates CR. Development of an LC-MS/MS assay to determine plasma pharmacokinetics of the radioprotectant octadecenyl thiophosphate (OTP) in monkeys. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2379-83. [PMID: 20719582 DOI: 10.1016/j.jchromb.2010.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/28/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Octadecenyl thiophosphate (OTP), a synthetic analogue of the lysophospholipid growth factor lysophosphatidic acid (LPA), significantly reduces mortality following a lethal dose of LD(80/30) radiation exposure in a mouse model of whole-body irradiation. To facilitate dose scaling between species, we developed a novel liquid chromatography/tandem mass spectrometry (LC-MS/MS) for the preclinical pharmacokinetic characterization of OTP in monkeys. Sample extraction was carried out using a butanol based liquid-liquid extraction method. A partially deuterated OTP analogue was used as internal standard (IS). OTP and IS were separated by reversed-phase liquid chromatography on a C-8 column using 10mM ammonium acetate and acetonitrile. A triple quadrupole mass spectrometer operating in the negative electrospray ionization mode with multiple reaction monitoring was used to detect OTP and IS transitions of m/z 363.1-->95.0 and 403.1-->95.0. The method was applied to determine pharmacokinetic parameters in monkeys receiving a single oral OTP dose (3mg/kg). OTP is readily absorbed with a relatively long half-life which supports further preclinical testing of OTP as a radioprotectant in monkeys.
Collapse
Affiliation(s)
- Hari Kosanam
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Advanced Cancer Detection Center, Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bibliometric study of radiation application on microdose useful for new drug development. Ann Nucl Med 2009; 23:829-41. [DOI: 10.1007/s12149-009-0311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
|
20
|
Jarussophon S, Acoca S, Gao JM, Deprez C, Kiyota T, Draghici C, Purisima E, Konishi Y. Automated molecular formula determination by tandem mass spectrometry (MS/MS). Analyst 2009; 134:690-700. [PMID: 19305917 DOI: 10.1039/b818398h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Automated software was developed to analyze the molecular formula of organic molecules and peptides based on high-resolution MS/MS spectroscopic data. The software was validated with 96 compounds including a few small peptides in the mass range of 138-1569 Da containing the elements carbon, hydrogen, nitrogen and oxygen. A Micromass Waters Q-TOF Ultima Global mass spectrometer was used to measure the molecular masses of precursor and fragment ions. Our software assigned correct molecular formulas for 91 compounds, incorrect molecular formulas for 3 compounds, and no molecular formula for 2 compounds. The obtained 95% success rate indicates high reliability of the software. The mass accuracy of the precursor ion and the fragment ions, which is critical for the success of the analysis, was high, i.e. the accuracy and the precision of 850 data were 0.0012 Da and 0.0016 Da, respectively. For the precursor and fragment ions below 500 Da, 60% and 90% of the data showed accuracy within < or = 0.001 Da and < or = 0.002 Da, respectively. The precursor and fragment ions above 500 Da showed slightly lower accuracy, i.e. 40% and 70% of them showed accuracy within < or = 0.001 Da and < or = 0.002 Da, respectively. The molecular formulas of the precursor and the fragments were further used to analyze possible mass spectrometric fragmentation pathways, which would be a powerful tool in structural analysis and identification of small molecules. The method is valuable in the rapid screening and identification of small molecules such as the dereplication of natural products, characterization of drug metabolites, and identification of small peptide fragments in proteomics. The analysis was also extended to compounds that contain a chlorine or bromine atom.
Collapse
Affiliation(s)
- Suwatchai Jarussophon
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Québec, Canada H4P 2R2
| | | | | | | | | | | | | | | |
Collapse
|