1
|
Tan MH, Xu XH, Yuan TJ, Hou X, Wang J, Jiang ZH, Peng LH. Self-powered smart patch promotes skin nerve regeneration and sensation restoration by delivering biological-electrical signals in program. Biomaterials 2022; 283:121413. [DOI: 10.1016/j.biomaterials.2022.121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/02/2022]
|
2
|
Fu H, Wu Y, Yang X, Huang S, Yu F, Deng H, Zhang S, Xiang Q. Stem cell and its derivatives as drug delivery vehicles: an effective new strategy of drug delivery system. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1967202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hongwei Fu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yinan Wu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xiaobin Yang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shiyi Huang
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Fenglin Yu
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Hong Deng
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shu Zhang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Qi Xiang
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Hair follicle bulge-derived stem cells promote tissue regeneration during skin expansion. Biomed Pharmacother 2020; 132:110805. [PMID: 33045614 DOI: 10.1016/j.biopha.2020.110805] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Skin expansion is widely used in reconstructive surgery to obtain supplemental and optimal skin. Enhancing the regenerative capacity of expanded skin is therefore of great interest. Hair follicle bulge-derived stem cells (HFBSCs) located in hair follicle bulges are closely associated with skin; HFBSC transplantation could promote cutaneous wound repair. However, the effects of transplanted HFBSCs on skin regeneration during expansion remain unclear. The aim of the study was to reveal the potential effects of transplanted HFBSCs in the expanded skin and explore its mechanism. Our results showed higher skin area, tissue weight, epidermal thickness, dermal thickness, proliferating cell count, collagen content, microcirculatory blood flow, blood vessels, and lower retraction ratios were observed in HFBSC-injected rats compared to uninjected controls. Moreover, the transplanted HFBSCs directly contributed to tissue regeneration by differentiating into vascular endothelial cells, epidermal cells, and the outer root sheath cells of hair follicle. Higher expression of EGF, VEGF, bFGF, and TGF-β were observed in HFBSC-injected rats. Our research demonstrated the transplanted HFBSCs could promote skin regeneration by differentiating into various types of skin related cells and by up-regulating the expression of growth factors. Our results could form a basis for the development of novel strategies to enhance regeneration in expanded skin by using HFBSCs.
Collapse
|
4
|
Xu XH, Yuan TJ, Ye PW, Wang MZ, Ma HJ, Jiang ZH, Zhang YP, Peng LH. Construction of a biomimetic chemokine reservoir stimulates rapid in situ wound repair and regeneration. Int J Pharm 2019; 570:118648. [PMID: 31465833 DOI: 10.1016/j.ijpharm.2019.118648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/07/2019] [Accepted: 08/25/2019] [Indexed: 12/17/2022]
Abstract
Skin is the first protection of human body. It is always challenged by a range of external factors, resulting in the wounds of skin. Hydrogel, as a dressing with multiple advantages, causes increasing interests or the applications in wound treatment. However, the function and importance of micro-environment of wound region are frequently neglected. In this study, we successfully developed a chemokine loaded biomimetic hydrogel as a functional reservoir to stimulate the rapid in situ recruitment of BMSCs for fast wound repair and regeneration. The biomimetic hydrogel was fabricated by using the Polyvinyl alcohol (PVA) combined with chitosan (CS) as the hybrid materials. The fabricated hydrogel possesses many features such as the porous structure, high swelling rate and moisture retention property. More importantly, the incorporated chemokine could be released with a sustained manner from the hydrogel and recruited the bone marrow mesenchymal stem cells (BMSCs) significantly both in vitro & in vivo. Moreover, the hydrogel was demonstrated to be highly biocompatible to the skin tissue without any side effect or irritation observed. Topical delivery of chemokine by the biomimetic PVA/CS hybrid material based hydrogel is demonstrated as a promising carrier to accelerate wound repair and regeneration without inducing scar formation and any other negative complications. The PVA/CS/SDF-1 hydrogel was shown a novel therapeutic system for wound therapy.
Collapse
Affiliation(s)
- Xue-Han Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Tie-Jun Yuan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Pei-Wu Ye
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Mao-Ze Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Hui-Jian Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China
| | - Yong-Pin Zhang
- Guiyang University of Chinese Medicine, Guiyang, Guizhou, PR China.
| | - Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China.
| |
Collapse
|
5
|
Biomaterial-based delivery systems of nucleic acid for regenerative research and regenerative therapy. Regen Ther 2019; 11:123-130. [PMID: 31338391 PMCID: PMC6626072 DOI: 10.1016/j.reth.2019.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Regenerative medicine is a new and promising medical method aiming at treating patients with defective or dysfunctional tissues by maintaining or enhancing the biological activity of cells. The development of biomaterial-based technologies, such as cell scaffolds and carriers for drug delivery system, are highly required to promote the regenerative research and regenerative therapy. Nucleic acids are one of the most feasible factors to efficiently modify the biological activity of cells. The effective and stable delivery of nucleic acids into cells is highly required to succeed in the modification. Biomaterials-based non-viral carriers or biological carriers, like exosomes, play an important role in the efficient delivery of nucleic acids. This review introduces the examples of regenerative research and regenerative therapy based on the delivery of nucleic acids with biomaterials technologies and emphasizes their importance to accomplish regenerative medicine. Modifying the activity of cells is important for regenerative medicine. Various nucleic acids regulate gene expression to modify the activity of cells. Intracellular delivery system is vital to the nucleic acids-based modification. Biomaterials are useful for the intracellular delivery of nucleic acids.
Collapse
Key Words
- Biomaterials
- CRISPR, clustered regularly interspaced short palindromic repeats
- Cas, CRISPR-associated systems
- Cell scaffold
- DDS, drug delivery system
- Drug delivery system
- ECM, extracellular matrix
- MSC, mesenchymal stem cells
- Nucleic acids
- PEG, polyethylene glycol
- PLGA, poly(d,l-lactic acid-co-glycolic acid)
- RISC, RNA-induced silencing complex
- RNAi, RNA interferince
- Regenerative research
- Regenerative therapy
- TALEN, transcription activator-like effector nuclease
- ZFN, zinc finger nucleases
- lncRNA, long non-coding RNA
- mRNA, messenger RNA
- miRNA, microRNA
- siRNA, small interfering RNA
Collapse
|
6
|
Li LJ, Xu XH, Yuan TJ, Hou J, Yu CL, Peng LH. Periplaneta Americana L. as a novel therapeutics accelerates wound repair and regeneration. Biomed Pharmacother 2019; 114:108858. [DOI: 10.1016/j.biopha.2019.108858] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/28/2022] Open
|
7
|
Pro-angiogenic impact of SDF-1α gene-activated collagen-based scaffolds in stem cell driven angiogenesis. Int J Pharm 2018; 544:372-379. [PMID: 29555441 DOI: 10.1016/j.ijpharm.2018.03.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022]
Abstract
Ensuring an adequate angiogenic response during wound healing is a prevailing clinical challenge in biomaterials science. To address this, we aimed to develop a pro-angiogenic gene-activated scaffold (GAS) that could activate MSCs to produce paracrine factors and influence angiogenesis and wound repair. A non-viral polyethyleneimine (PEI) nanoparticles carrying a gene encoding for stromal derived factor-1 alpha (SDF-1α) was combined with a collagen-chondroitin sulfate scaffold to produce the GAS. The ability of this platform to enhance the angiogenic potential of mesenchymal stem cells (MSCs) was then assessed. We found that the MSCs on GAS exhibited early over-expression of SDF-1α mRNA with the activation of angiogenic markers VEGF and CXCR4. Exposing endothelial cells to conditioned media collected from GAS supported MSCs promoted a 20% increase in viability and 33% increase in tubule formation (p < 0.05). Furthermore, the conditioned media promoted a 50% increase in endothelial cell migration and wound closure (p < 0.005). Gene expression analysis of the endothelial cells revealed that the functional response was associated with up-regulation of angiogenic genes; VEGF, CXCR4, eNOS and SDF-1α. Overall, this study shows collagen-based scaffolds combined with SDF-1α gene therapy can provide enhanced pro-angiogenic response, suggesting a promising approach to overcome poor vasculature during wound healing.
Collapse
|
8
|
Li LJ, Gao SQ, Peng LH, Wang XR, Zhang Y, Hu ZJ, Gao JQ. Evaluation of efficacy of aloin in treating acute trauma in vitro and in vivo. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.01.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
9
|
Zhang CZ, Niu J, Chong YS, Huang YF, Chu Y, Xie SY, Jiang ZH, Peng LH. Porous microspheres as promising vehicles for the topical delivery of poorly soluble asiaticoside accelerate wound healing and inhibit scar formation in vitro &in vivo. Eur J Pharm Biopharm 2016; 109:1-13. [PMID: 27614186 DOI: 10.1016/j.ejpb.2016.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
Asiaticoside is a natural compound possessing diverse pharmacological effects with great potential for clinical use. However, the low solubility and oil-water partition coefficient of asiaticoside lead to reduced effect and limited application. This study aims to construct a porous microsphere for the sustained release of asiaticoside to improve its absorption and enhance the therapeutic effects. Parameters of the formulations, including the drug to polymer ratio, solvent amounts of the inner and external phases, the stirring speed for preparation, and the drug entrapment efficiency were investigated and optimized. Particle size, morphology, pores structure, and Fourier transform infrared spectrum of the microsphere were characterized. The release kinetics and cellular uptake profiles of the asiaticoside-microspheres were examined. The therapeutic effects of asiaticoside-microspheres on wound healing and skin appendages regeneration were investigated in vitro & in vivo. Results showed that the optimized asiaticoside-microspheres possess spherical spongy structure with cylindrical holes. Asiaticoside can be loaded in the microsphere with high efficiency and released with sustained manner. The cellular uptake of asiaticoside from the microspheres was increased with 9.1 folds higher than that of free solution. Asiaticoside-microspheres expressed the strong promotion in the proliferation, migration of keratinocytes and wound scratching healing in vitro. More importantly, they significantly accelerated the re-epithelization, collagen synthesis and pro-angiogenesis in the rat full-skin wound healing. Porous microsphere was shown a novel carrier for the sustained delivery of poorly soluble asiaticoside, with absorption and therapeutic effects improved. Asiaticoside-microsphere is a promising topical preparation with excellent regenerative effects for the wound therapy.
Collapse
Affiliation(s)
- Chen-Zhen Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jie Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yee-Song Chong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yan-Fen Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Chu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Sheng-Yang Xie
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Pharmacy Division, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, PR China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
10
|
Im GI. Regeneration of articular cartilage using adipose stem cells. J Biomed Mater Res A 2016; 104:1830-44. [PMID: 26990234 DOI: 10.1002/jbm.a.35705] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
Articular cartilage (AC) has limited potential for self-regeneration and damage to AC eventually leads to the development and progression of osteoarthritis (OA). Cell implantation strategies have emerged as a new treatment modality to regenerate AC. Adipose stem cells/adipose-derived stromal cells (ASCs) have gained attention due to their abundance, excellent proliferative potential, and minimal morbidity during harvest. These advantages lower the cost of cell therapy by circumventing time-consuming procedure of culture expansion. ASCs have drawn attention as a potential source for cartilage regeneration since the feasibility of chondrogenesis from ASCs was first reported. After several groups reported inferior chondrogenesis from ASCs, numerous methods were devised to overcome the intrinsic properties. Most in vivo animal studies have reported good results using predifferentiated or undifferentiated, autologous or allogeneic ASCs to regenerate cartilage in osteochondral defects or surgically-induced OA. In this review, we summarize literature on the isolation and in vitro differentiation processes of ASCs, in vivo studies to regenerate AC in osteochondral defects and OA using ASCs, and clinical applications of ASCs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1830-1844, 2016.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
11
|
MicroRNA delivery for regenerative medicine. Adv Drug Deliv Rev 2015; 88:108-22. [PMID: 26024978 DOI: 10.1016/j.addr.2015.05.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 05/21/2015] [Indexed: 12/26/2022]
Abstract
MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development.
Collapse
|
12
|
Griffin MF, Butler PE, Seifalian AM, Kalaskar DM. Control of stem cell fate by engineering their micro and nanoenvironment. World J Stem Cells 2015; 7:37-50. [PMID: 25621104 PMCID: PMC4300935 DOI: 10.4252/wjsc.v7.i1.37] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/13/2014] [Accepted: 09/19/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cells are capable of long-term self-renewal and differentiation into specialised cell types, making them an ideal candidate for a cell source for regenerative medicine. The control of stem cell fate has become a major area of interest in the field of regenerative medicine and therapeutic intervention. Conventional methods of chemically inducing stem cells into specific lineages is being challenged by the advances in biomaterial technology, with evidence highlighting that material properties are capable of driving stem cell fate. Materials are being designed to mimic the clues stem cells receive in their in vivo stem cell niche including topographical and chemical instructions. Nanotopographical clues that mimic the extracellular matrix (ECM) in vivo have shown to regulate stem cell differentiation. The delivery of ECM components on biomaterials in the form of short peptides sequences has also proved successful in directing stem cell lineage. Growth factors responsible for controlling stem cell fate in vivo have also been delivered via biomaterials to provide clues to determine stem cell differentiation. An alternative approach to guide stem cells fate is to provide genetic clues including delivering DNA plasmids and small interfering RNAs via scaffolds. This review, aims to provide an overview of the topographical, chemical and molecular clues that biomaterials can provide to guide stem cell fate. The promising features and challenges of such approaches will be highlighted, to provide directions for future advancements in this exciting area of stem cell translation for regenerative medicine.
Collapse
|
13
|
Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Int J Pharm 2014; 479:291-301. [PMID: 25556053 DOI: 10.1016/j.ijpharm.2014.12.067] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/23/2014] [Accepted: 12/27/2014] [Indexed: 11/20/2022]
Abstract
Functional wound dressing has provided new challenges for researchers who focus on burn to improve skin graft quality, reduce scarring, and develop a pluristratified dermal or epidermal construct of a burn wound. This study aimed to investigate the effect of a silk fibroin/gelatin (SF/GT) electrospun nanofibrous dressing loaded with astragaloside IV (AS) on deep partial-thickness burn wound. AS-loaded SF/GT-blended nanofibrous dressing was prepared by electrospinning nanotechnology. The optimal ratio (25:75) of silk fibroin to gelatin was further optimized by evaluating ATR-FTIR characteristics, mechanical properties, porosity, swelling rate, degradation, and release profile of the AS-loaded SF/GT nanofibrous dressing. In contrast to the blank control, the AS-loaded SF/GT nanofibrous dressing promoted cell adhesion and proliferation with good biocompatibility in vitro (p<0.01). This dressing also accelerated wound healing and inhibited scar formation in vivo by stimulating wound closure (p<0.05), increasing angiogenesis, regulating newly formed types of collagen, and improving collagen organization. These results showed that SF/GT nanofibrous dressing is a promising topical drug delivery system. Furthermore, AS-functionalized SF/GT nanofibrous dressing is an excellent topical therapeutic that could be applied to promote healing and elicit anti-scar effects on partial-thickness burn wound.
Collapse
|
14
|
Muroski ME, Morgan TJ, Levenson CW, Strouse GF. A gold nanoparticle pentapeptide: gene fusion to induce therapeutic gene expression in mesenchymal stem cells. J Am Chem Soc 2014; 136:14763-71. [PMID: 25198921 DOI: 10.1021/ja505190q] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) have been identified as having great potential as autologous cell therapeutics to treat traumatic brain injury and spinal injury as well as neuronal and cardiac ischemic events. All future clinical applications of MSC cell therapies must allow the MSC to be harvested, transfected, and induced to express a desired protein or selection of proteins to have medical benefit. For the full potential of MSC cell therapy to be realized, it is desirable to systematically alter the protein expression of therapeutically beneficial biomolecules in harvested MSC cells with high fidelity in a single transfection event. We have developed a delivery platform on the basis of the use of a solid gold nanoparticle that has been surface modified to produce a fusion containing a zwitterionic, pentapeptide designed from Bax inhibiting peptide (Ku70) to enhance cellular uptake and a linearized expression vector to induce enhanced expression of brain-derived neurotrophic factor (BDNF) in rat-derived MSCs. Ku70 is observed to effect >80% transfection following a single treatment of femur bone marrow isolated rat MSCs with efficiencies for the delivery of a 6.6 kbp gene on either a Au nanoparticle (NP) or CdSe/ZnS quantum dot (QD). Gene expression is observed within 4 d by optical measurements, and secretion is observed within 10 d by Western Blot analysis. The combination of being able to selectively engineer the NP, to colocalize biological agents, and to enhance the stability of those agents has provided the strong impetus to utilize this novel class of materials to engineer primary MSCs.
Collapse
Affiliation(s)
- Megan E Muroski
- Department of Chemistry and Biochemistry, 95 Chieftan Way, Florida State University , Tallahassee, Florida 32306-4390, United States
| | | | | | | |
Collapse
|
15
|
Li S, Li Q. A promising approach to iPSC-based cell therapy for diabetic wound treatment: direct lineage reprogramming. Mol Cell Endocrinol 2014; 393:8-15. [PMID: 24911883 DOI: 10.1016/j.mce.2014.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 01/01/2023]
Abstract
Successful reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has ushered in a new era of regenerative medicine. Several studies on iPSCs have corroborated their immense promise and potential for use in cell therapy and disease modeling. However, several shortcomings need to be overcome before they can be used in clinical therapy. Investigation of iPSC fate and physiology in vivo and ultimately, the feasibility of their application in cell transplantation therapy, requires more in-depth studies in living subjects. One recently established alternative approach to reprogramming involves the direct conversion of a terminally differentiated somatic cell of one type into another, without dedifferentiating into a pluripotent state. This direct lineage reprogramming strategy is significantly faster, has the potential to generate an enriched population of a specific subtype of cells, and hence, has wide implications in regenerative cell therapy. Here, we review recent advances in iPSC technology and summarize the research on the generation of patient-specific induced cell types using direct lineage conversion. Specifically, we focus on the scope of application of this approach in autologous cell replacement therapy for diabetic wound treatment.
Collapse
Affiliation(s)
- Shuang Li
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command, 510010 Guangzhou, China
| | - Qin Li
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command, 510010 Guangzhou, China.
| |
Collapse
|
16
|
Peng LH, Niu J, Zhang CZ, Yu W, Wu JH, Shan YH, Wang XR, Shen YQ, Mao ZW, Liang WQ, Gao JQ. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials 2014; 35:5605-18. [PMID: 24736021 DOI: 10.1016/j.biomaterials.2014.03.062] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/21/2014] [Indexed: 01/30/2023]
Abstract
Most nonviral gene delivery systems are not efficient enough to manipulate the difficult-to-transfect cell types, including non-dividing, primary, neuronal or stem cells, due to a lack of an intrinsic capacity to enter the membrane and nucleus, release its DNA payload, and activate transcription. Noble metal nanoclusters have emerged as a fascinating area of widespread interest in nanomaterials. Herein, we report the synthesis of the TAT peptide conjugated cationic noble metal nanoparticles (metal NPs@PEI-TAT) as highly efficient carriers for gene delivery to stem cells. The metal NPs@PEI-TAT integrate the advantages of metal NPs and peptides: the presence of metal NPs can effectively decrease the cytotoxicity of cationic molecules, making it possible to apply them in biological systems, while the cell penetrating peptides are essential for enhanced cellular and nucleus entry to achieve high transfection efficiency. Our studies provide strong evidence that the metal NPs@PEI-TAT can be engineered as gene delivery agents for stem cells and subsequently enhance their directed differentiation for biomedical application.
Collapse
Affiliation(s)
- Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jie Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chen-Zhen Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Yu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Jia-He Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ying-Hui Shan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xia-Rong Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - You-Qing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, PR China
| | - Zheng-Wei Mao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China.
| | - Wen-Quan Liang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
17
|
Drug Delivery to Wounds, Burns, and Diabetes-Related Ulcers. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Peng LH, Wei W, Qi XT, Shan YH, Zhang FJ, Chen X, Zhu QY, Yu L, Liang WQ, Gao JQ. Epidermal stem cells manipulated by pDNA-VEGF165/CYD-PEI nanoparticles loaded gelatin/β-TCP matrix as a therapeutic agent and gene delivery vehicle for wound healing. Mol Pharm 2013; 10:3090-102. [PMID: 23808658 DOI: 10.1021/mp400162k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The success of gene therapy largely relies on a safe and effective gene delivery system. The objective of this study is to design a highly efficient system for the transfection of epidermal stem cells (ESCs) and investigate the transfected ESCs (TESCs) as a therapeutic agent and gene delivery reservoir for wound treatment. As a nonviral vector, β-cyclodextrin-linked polyethylenimines (CYD-PEI) was synthesized by linking β-cyclodextrin with polyethylenimines (600 Da). Gelatin scaffold incorporating β-tricalcium phosphate (β-TCP) was utilized as a substrate for the culture and transfection of ESCs. With the CYD-PEI/pDNA-VEGF165 polyplexes incorporated gelatin/β-TCP scaffold based 3D transfection system, prolonged VEGF expression with a higher level was obtained at day 7 in ESCs than those in two-dimensional plates. Topical application of the TESCs significantly accelerated the skin re-epithelization, dermal collagen synthesis, and hair follicle regeneration. It also exhibited a potential in scar inhibition by regulating the distribution of different types of collagen. In contrast to ESCs, an additive capacity in stimulating angiogenesis at the wound site was observed in the TESCs. The present study provides a basis for the TESCs as a promising therapeutic agent and gene delivery reservoir for wound therapy.
Collapse
Affiliation(s)
- Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang, 310058, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu L, Cai X, Zhang S, Karperien M, Lin Y. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine. J Cell Physiol 2013; 228:938-44. [PMID: 23042088 DOI: 10.1002/jcp.24255] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 09/27/2012] [Indexed: 01/03/2023]
Abstract
Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation.
Collapse
Affiliation(s)
- Ling Wu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | | | | | | | | |
Collapse
|
20
|
Current world literature. Curr Opin Organ Transplant 2012; 17:688-99. [PMID: 23147911 DOI: 10.1097/mot.0b013e32835af316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|