1
|
Troisi M, Caruso C, D’Andrea L, Rinaldi M, Piscopo R, Troisi S, Costagliola C. Compatibility of a New Ocular Surface Dye with Disposable and Bi-Weekly Soft Contact Lenses: An Experimental Study. Life (Basel) 2024; 14:653. [PMID: 38929636 PMCID: PMC11204805 DOI: 10.3390/life14060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Ocular surface staining for assessing corneal and conjunctival epithelium integrity is typically conducted using fluorescein, lissamine green, or rose Bengal dyes. Recently, a novel vital dye, REmark®, based on riboflavin, has been proposed for ocular surface examination. In the management of corneal and ocular surface diseases (OSD), the use of contact lenses is integral to therapeutic strategies. This study explores the compatibility of REmark® with four different types of disposable or bi-weekly soft contact lenses. Morphological variations observed under stereomicroscopy and ultraviolet (UV) ray transmittance in the visible spectrum (VIS) were evaluated at 2 and 4 h post-immersion of the contact lenses in both the original fluid and the new dye. The findings indicate no significant differences between the group treated with the original liquid and those immersed in REmark®, except for a yellow hue observed in the latter group, which dissipates after 8 h in physiological solution. This study highlights the potential of utilizing the new vital dye for ophthalmologic examinations even in the presence of applied soft contact lenses, offering a promising avenue for improved diagnostic practices and patient comfort.
Collapse
Affiliation(s)
- Mario Troisi
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy; (M.T.); (M.R.); (R.P.); (C.C.)
| | - Ciro Caruso
- Corneal Transplant Center, Pellegrini Hospital, Via Portamedina alla Pignasecca, 41, 80127 Napoli, Italy;
| | - Luca D’Andrea
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy; (M.T.); (M.R.); (R.P.); (C.C.)
- Public Health Department, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy
| | - Michele Rinaldi
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy; (M.T.); (M.R.); (R.P.); (C.C.)
| | - Raffaele Piscopo
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy; (M.T.); (M.R.); (R.P.); (C.C.)
| | - Salvatore Troisi
- Ophthalmologic Unit, Salerno Hospital University, 84100 Salerno, Italy;
| | - Ciro Costagliola
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy; (M.T.); (M.R.); (R.P.); (C.C.)
| |
Collapse
|
2
|
Konieczkowska J, Neugebauer D, Kozanecka-Szmigiel A, Mazur A, Kotowicz S, Schab-Balcerzak E. Photoresponse of new azo pyridine functionalized poly(2-hydroxyethyl methacrylate-co-methyl methacrylate). Sci Rep 2024; 14:9078. [PMID: 38643277 PMCID: PMC11032328 DOI: 10.1038/s41598-024-59704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
A new azo polymer containing photoisomerizable azo pyridine functionalities was synthesized via Mitsunobu reaction of 4-(4-hydroxyphenylazo)pyridine with poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (p(HEMA-co-MMA)) for creating new photochromic materials. The resulting polymer with azo pyridine side groups was characterized for structural, thermal, and optical properties. UV-vis, 1H NMR and IR spectroscopies confirmed that all hydroxyl groups in p(HEMA-co-MMA) were substituted with azo dye. The obtained azo copolymer exhibited high thermal stability (around 240 °C) and a glass transition temperature (113 °C), promising for applications. The trans-to-cis isomerization upon UV irradiation and the thermal back reaction of the azo chromophore in the copolymer in the solid state was studied. A photostationary state with 50% content of cis-isomers upon 6 min of UV irradiation was reached, and during 48 h dark relaxation at ambient temperature, all cis-isomers converted to the trans form. Additionally, the possibility of efficient photogeneration of surface relief gratings with high amplitude of azo copolymer surface modulation was demonstrated.
Collapse
Affiliation(s)
- Jolanta Konieczkowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland.
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Ks. Marcina Strzody 9, 44-100, Gliwice, Poland
| | - Anna Kozanecka-Szmigiel
- Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662, Warsaw, Poland
| | - Aleksy Mazur
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Ks. Marcina Strzody 9, 44-100, Gliwice, Poland
| | - Sonia Kotowicz
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006, Katowice, Poland
| | - Ewa Schab-Balcerzak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland.
| |
Collapse
|
3
|
Baghban R, Talebnejad MR, Meshksar A, Heydari M, Khalili MR. Recent advancements in nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma, review and update. J Nanobiotechnology 2023; 21:402. [PMID: 37919748 PMCID: PMC10621182 DOI: 10.1186/s12951-023-02166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Despite the existence of numerous eye drops in the market, most of them are not sufficiently effective because of quick clearance and the barriers within the eye. To increase the delivery of the drugs to the eye, various new formulations have been explored in recent decades. These formulations aim to enhance drug retention and penetration, while enabling sustained drug release over extended periods. One such innovative approach is the utilization of contact lenses, which were originally designed for cosmetic purposes and vision correction. Contact lenses have appeared as a promising formulation for ocular drug delivery, as they can increase the bioavailability of drugs in the eye and diminish unwanted side effects. They are specifically appropriate for treating chronic eye conditions, making them an area of interest for researchers in the field of ophthalmology. This review outlines the promising potential of nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma. It classifies therapeutic approaches based on nanomaterial type, summarizes diagnostic advances, discusses improvement of contact lenses properties, covers marketing perspectives, and acknowledges the challenges of these innovative contact lenses for glaucoma management.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Talebnejad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aidin Meshksar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Zembala J, Forma A, Zembala R, Januszewski J, Zembala P, Adamowicz D, Teresiński G, Buszewicz G, Flieger J, Baj J. Technological Advances in a Therapy of Primary Open-Angle Glaucoma: Insights into Current Nanotechnologies. J Clin Med 2023; 12:5798. [PMID: 37762739 PMCID: PMC10531576 DOI: 10.3390/jcm12185798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness and is characterized by increased intraocular pressure (IOP) and progressive optic nerve damage. The current therapeutic approaches for glaucoma management, such as eye drops and oral medications, face challenges including poor bioavailability, low patient compliance, and limited efficacy. In recent years, nanotechnology has emerged as a promising approach to overcome these limitations and revolutionize glaucoma treatment. In this narrative review, we present an overview of the novel nanotechnologies employed in the treatment of primary open-angle glaucoma. Various nanosystems, including liposomes, niosomes, nanoparticles, and other nanostructured carriers, have been developed to enhance the delivery and bioavailability of antiglaucoma drugs. They offer advantages such as a high drug loading capacity, sustained release, improved corneal permeability, and targeted drug delivery to the ocular tissues. The application of nanotechnologies in glaucoma treatment represents a transformative approach that addresses the limitations of conventional therapies. However, further research is needed to optimize the formulations, evaluate long-term safety, and implement these nanotechnologies into clinical practice. With continued advancements in nanotechnology, the future holds great potential for improving the management and outcomes of glaucoma, ultimately preserving vision and improving the lives of millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Dominik Adamowicz
- University Clinical Center, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| |
Collapse
|
5
|
Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug delivery to the retina: current status and implications for gene therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1477-1507. [PMID: 36107200 PMCID: PMC9630211 DOI: 10.1007/s00210-022-02287-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Blindness affects more than 60 million people worldwide. Retinal disorders, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are the leading causes of blindness. Finding means to optimize local and sustained delivery of drugs or genes to the eye and retina is one goal to advance the development of new therapeutics. Despite the ease of accessibility of delivering drugs via the ocular surface, the delivery of drugs to the retina is still challenging due to anatomic and physiologic barriers. Designing a suitable delivery platform to overcome these barriers should enhance drug bioavailability and provide a safe, controlled, and sustained release. Current inventions for posterior segment treatments include intravitreal implants and subretinal viral gene delivery that satisfy these criteria. Several other novel drug delivery technologies, including nanoparticles, micelles, dendrimers, microneedles, liposomes, and nanowires, are now being widely studied for posterior segment drug delivery, and extensive research on gene delivery using siRNA, mRNA, or aptamers is also on the rise. This review discusses the current state of retinal drug/gene delivery and highlights future therapeutic opportunities.
Collapse
Affiliation(s)
- Mohamed Tawfik
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Fang Chen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
6
|
Mohammed Y, Holmes A, Kwok PCL, Kumeria T, Namjoshi S, Imran M, Matteucci L, Ali M, Tai W, Benson HA, Roberts MS. Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev 2022; 186:114293. [PMID: 35483435 DOI: 10.1016/j.addr.2022.114293] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Epithelial surfaces protect exposed tissues in the body against intrusion of foreign materials, including xenobiotics, pollen and microbiota. The relative permeability of the various epithelia reflects their extent of exposure to the external environment and is in the ranking: intestinal≈ nasal ≥ bronchial ≥ tracheal > vaginal ≥ rectal > blood-perilymph barrier (otic), corneal > buccal > skin. Each epithelium also varies in their morphology, biochemistry, physiology, immunology and external fluid in line with their function. Each epithelium is also used as drug delivery sites to treat local conditions and, in some cases, for systemic delivery. The associated delivery systems have had to evolve to enable the delivery of larger drugs and biologicals, such as peptides, proteins, antibodies and biologicals and now include a range of physical, chemical, electrical, light, sound and other enhancement technologies. In addition, the quality-by-design approach to product regulation and the growth of generic products have also fostered advancement in epithelial drug delivery systems.
Collapse
|
7
|
Akhter MH, Ahmad I, Alshahrani MY, Al-Harbi AI, Khalilullah H, Afzal O, Altamimi ASA, Najib Ullah SNM, Ojha A, Karim S. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 2022; 8:82. [PMID: 35200463 PMCID: PMC8871777 DOI: 10.3390/gels8020082] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Drug instillation via a topical route is preferred since it is desirable and convenient due to the noninvasive and easy drug access to different segments of the eye for the treatment of ocular ailments. The low dose, rapid onset of action, low or no toxicity to the local tissues, and constrained systemic outreach are more prevalent in this route. The majority of ophthalmic preparations in the market are available as conventional eye drops, which rendered <5% of a drug instilled in the eye. The poor drug availability in ocular tissue may be attributed to the physiological barriers associated with the cornea, conjunctiva, lachrymal drainage, tear turnover, blood-retinal barrier, enzymatic drug degradation, and reflex action, thus impeding deeper drug penetration in the ocular cavity, including the posterior segment. The static barriers in the eye are composed of the sclera, cornea, retina, and blood-retinal barrier, whereas the dynamic barriers, referred to as the conjunctival and choroidal blood flow, tear dilution, and lymphatic clearance, critically impact the bioavailability of drugs. To circumvent such barriers, the rational design of the ocular therapeutic system indeed required enriching the drug holding time and the deeper permeation of the drug, which overall improve the bioavailability of the drug in the ocular tissue. This review provides a brief insight into the structural components of the eye as well as the therapeutic challenges and current developments in the arena of the ocular therapeutic system, based on novel drug delivery systems such as nanomicelles, nanoparticles (NPs), nanosuspensions, liposomes, in situ gel, dendrimers, contact lenses, implants, and microneedles. These nanotechnology platforms generously evolved to overwhelm the troubles associated with the physiological barriers in the ocular route. The controlled-drug-formulation-based strategic approach has considerable potential to enrich drug concentration in a specific area of the eye.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46477, Saudi Arabia;
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | | | - Abhijeet Ojha
- Six Sigma Institute of Technology and Science, College of Pharmacy, Rudrapur 263153, India;
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
8
|
Kagkelaris K, Panayiotakopoulos G, Georgakopoulos CD. Nanotechnology-based formulations to amplify intraocular bioavailability. Ther Adv Ophthalmol 2022; 14:25158414221112356. [PMID: 35873277 PMCID: PMC9301101 DOI: 10.1177/25158414221112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Conventional drug delivery formulations, such as eye drops and ointments, are
mainly administered by topical instillation. The topical delivery of ophthalmic
drugs is a challenging endeavor despite the eye is easily accessible. Unique and
complex barriers, serving as protection against extrinsic harmful factors,
hamper therapeutic intraocular drug concentrations. Bioavailability for deeper
ocular tissues of the anterior segment of the eye is exceptionally low. As the
bioavailability of the active substance is the major hurdle to overcome, dosing
is increased, so the side effects do. Both provoke patient poor compliance,
confining the desired therapeutic outcome. The incidence and severity of adverse
reactions amplify evenly in the case of chronic treatments. Current research
focuses on the development of innovative delivery strategies to address low
ocular bioavailability and provide safe and convenient dosing schemes. The main
objective of this review is to explore and present the latest developments in
ocular drug delivery formulations for the treatment of the pathology of the
anterior segment of the eye. Nanotechnology-based formulations, that is, organic
nanoparticles (liposomes, niosomes/discosomes, dendrimers, nanoemulsions,
nanosuspensions, nanoparticles/nanospheres) and inorganic nanoparticles,
nanoparticle-laden therapeutic contact lenses, in situ gelling
systems, and ocular inserts, are summarized and presented accordingly.
Collapse
Affiliation(s)
- Konstantinos Kagkelaris
- Department of Ophthalmology, School of Medicine, University of Patras, 26500 Patras, Greece
- Department of General Pharmacology, School of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
9
|
Dang H, Dong C, Zhang L. Sustained latanoprost release from PEGylated solid lipid nanoparticle-laden soft contact lens to treat glaucoma. Pharm Dev Technol 2021; 27:127-133. [PMID: 34704874 DOI: 10.1080/10837450.2021.1999471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Contact lens have been proposed as a mean of ocular drug delivery, but the conventional soaking method to load hydrophobic drugs, such as latanoprost shows low drug loading and high burst release with alteration in the critical lens properties. In this paper, a novel latanoprost-loaded PEGylated solid lipid nanoparticles (LP-pSLNs) were developed to increase the latanoprost loading capacity of contact lenses (LP-pSLN-L), while also sustaining ocular drug delivery. The pSLNs were spherical in shape with an average size of 105‒132 nm (nanometer) and a zeta potential ranging from ‒29.1 to ‒26.7 mV (millivolt). The LP-pSLNs led to improved swelling, transmittance, and protein adherence of the lens compared to the non-pegylated SLNs congeners (LP-SLN-L) and conventional soaked lens (LP-SM-L). The LP-SM-L lens showed low drug loading, high burst release, and a short release duration of 24 h. The LP-SLN-L and LP-pSLN-L lenses showed high drug uptake and sustained drug release up to 120 h and 96 h, respectively. The pegylation reduced the size of nanoparticles and improved the drug loading capacity, while the release rate was high in the initial hours. The LP-pSLN-L lens was found to be safe based in histopathological studies. In animal studies, the LP-pSLN-10-L batch showed high drug concentration at all-time points up to 96 h compared to the LP-SM-L and eye drop solution. In conclusion, pSLNs improved the latanoprost loading in the contact lens and showed sustained drug release, and thus can be used as a substitute to eye drop therapy.
Collapse
Affiliation(s)
- Hui Dang
- Department of Ophthalmology, Jinan Second People's Hospital, No. 148 Jingyi Road, Jinan 250001, PR China
| | - Chunyun Dong
- Department of Pharmacy, Rizhao People's Hospital, Rizhao 276800, PR China
| | - Li Zhang
- Department of Pharmacy, Jinan Second People's Hospital, No. 148 Jingyi Road, Jinan 250001, PR China
| |
Collapse
|
10
|
Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, Sun Y, Manche EE, Ta CN, Flowers CW. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int J Pharm 2021; 607:120924. [PMID: 34324989 PMCID: PMC8579814 DOI: 10.1016/j.ijpharm.2021.120924] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023]
Abstract
Research in the development of ophthalmic drug formulations and innovative technologies over the past few decades has been directed at improving the penetration of medications delivered to the eye. Currently, approximately 90% of all ophthalmic drug formulations (e.g. liposomes, micelles) are applied as eye drops. The major challenge of topical eye drops is low bioavailability, need for frequent instillation due to the short half-life, poor drug solubility, and potential side effects. Recent research has been focused on improving topical drug delivery devices by increasing ocular residence time, overcoming physiological and anatomical barriers, and developing medical devices and drug formulations to increase the duration of action of the active drugs. Researchers have developed innovative technologies and formulations ranging from sub-micron to macroscopic size such as prodrugs, enhancers, mucus-penetrating particles (MPPs), therapeutic contact lenses, and collagen corneal shields. Another approach towards the development of effective topical drug delivery is embedding therapeutic formulations in microdevices designed for sustained release of the active drugs. The goal is to optimize the delivery of ophthalmic medications by achieving high drug concentration with prolonged duration of action that is convenient for patients to administer.
Collapse
Affiliation(s)
| | - Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, CA, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Yang Sun
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Edward E Manche
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Christopher N Ta
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Charles W Flowers
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Wuchte LD, DiPasquale SA, Byrne ME. In vivo drug delivery via contact lenses: The current state of the field from origins to present. J Drug Deliv Sci Technol 2021; 63:102413. [PMID: 34122626 PMCID: PMC8192067 DOI: 10.1016/j.jddst.2021.102413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Over the past half century, contact lenses have been investigated for their potential as drug delivery devices for ocular therapeutics. Hundreds of studies have been published in the pursuit of the most effective and efficient release strategies and methods for contact lens drug delivery. This paper provides a thorough overview of the various contact lens drug delivery strategies, with a specific, comprehensive focus on in vivo studies that have been published since the field began in 1965. Significant accomplishments, current trends, as well as future strategies and directions are highlighted. In vivo study analysis provides a straightforward perspective and assessment of method success and commercialization potential in comparison to benchtop, in vitro studies. Analysis of the majority of published work indicates in vitro and in vivo studies do not correlate with a correlation coefficient of 0.25, with many in vitro studies grossly overestimating drug release duration and not showing appreciable drug release control. However, there has been an increase in activity in the last decade, and some methods have generated promising results exhibiting controlled release with commercialization potential. Clinical translation of drug releasing lenses is on the horizon and has high potential to impact a large number of patients providing efficacious treatment compared to current topical treatments.
Collapse
Affiliation(s)
- Liana D. Wuchte
- Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Stephen A. DiPasquale
- Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
- OcuMedic, Inc, 107 Gilbreth Parkway, Mullica Hill, NJ, 08062, USA
| | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
- OcuMedic, Inc, 107 Gilbreth Parkway, Mullica Hill, NJ, 08062, USA
| |
Collapse
|
12
|
Wu C, Or PW, Chong JIT, Pathirage Don IKK, Lee CHC, Wu K, Yu M, Lam DCC, Yang Y. Extended Delivery of Pirfenidone with Novel, Soft Contact Lenses In Vitro and In Vivo. J Ocul Pharmacol Ther 2020; 37:75-83. [PMID: 33297836 DOI: 10.1089/jop.2020.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: The aim of this study was to fabricate pirfenidone (PFD)-loaded soft contact lenses (SCLs), explore their characteristics, and evaluate their efficiency on extended delivery of PFD in vitro and in vivo. Methods: PFD-loaded SCLs were fabricated by embedding an insert of PFD and polyvinyl alcohol (PVA) into 2 layers of silicone elastomer. The optical transparency, water content, and protein deposition were measured. Transformed human corneal epithelial cells were used to test the cytotoxicity of SCLs. The release rate of PFD by SCLs in vitro was evaluated by an ultraviolet-visible spectrophotometer. Toxicity of SCLs was assessed by inspection of ocular surface irritation in rabbits before and after contact lens wear. The concentrations of PFD in tears and aqueous humor of rabbits' eyes as a function of time were determined by high-performance liquid chromatography for SCLs and 30 μL of 0.5% PFD eye drops. Results: SCLs possessed good light transmittance. Blank SCLs had poor water content (0.548% ± 0.330), and an improved water content was found in PVA film-loaded SCLs (11.022% ± 1.508, P = 0.010). No lysozyme and human serum albumin were found in SCLs. There was no significant toxicity of SCLs in vitro and in vivo. SCLs prolonged the residence time of PFD in tears and aqueous humor of rabbit eyes by 5 times compared with the eye drop instillation while around 1/10 of the eye drop dosage was loaded in SCLs. Conclusions: PFD-loaded SCLs can significantly prolong the residence time of PFD and may be a promising ocular drug delivery system.
Collapse
Affiliation(s)
- Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ping Wai Or
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jones Iok Tong Chong
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Isuru K K Pathirage Don
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ching Hymn Christopher Lee
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - David C C Lam
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Marx S, Eckstein J, Sickenberger W. Objective Analysis of Pre-Lens Tear Film Stability of Daily Disposable Contact Lenses Using Ring Mire Projection. CLINICAL OPTOMETRY 2020; 12:203-211. [PMID: 33244285 PMCID: PMC7685356 DOI: 10.2147/opto.s262353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE The primary objective of this study was to evaluate the in vivo pre-lens non-invasive drying-up time of two types of daily disposable contact lenses (DDCLs) after 12 hours of wear. METHODS This prospective, randomized, single-center, cross-over pilot study evaluated 31 subjects aged 18-44 years with normal eyes and good tear film stability who were adapted current soft contact lens wearers. Subjects wore nelfilcon A and stenfilcon A DDCLs for 12 hours each on two different days. Non-invasive video keratography drying-up time (NIK-DUT) videos of each eye were recorded 12 hours after lens insertion for about 25 seconds, with a 5-minute tear film recovery time allowed between video recordings of the right and left eyes to avoid bias. Post-blink time required to reach 15% distortion of the projected rings and the speed of break-up at 15 seconds post-blink were measured at each time point and on-eye wettability was determined by ring mire projection under white light illumination. RESULTS Mean time to reach 15% ring distortion was similar for nelfilcon A (19.25±3.20 sec) and stenfilcon A (20.24±3.02 sec) DDCLs but varied highly among subjects. The mean speed of break-up at 15 sec post-blink was 0.3±0.38% distortion/sec (95% confidence interval [CI] 0.138-0.365% distortion/sec) for nelfilcon A and 0.2±0.23% distortion/sec (95% CI 0.048-0.279% distortion/sec) for stenfilcon A DDCLs. CONCLUSION Multifunctional topography allowed the objective evaluation of in vivo pre-lens tear film stability using ring mire projection. This dynamic method was simple, fast and non-invasive, enabling measurements of NIK-DUT and evaluating wettability over a large area, greater than the optical zone of the contact lens surface, for the entire inter-blink interval.
Collapse
Affiliation(s)
- Sebastian Marx
- JENVIS Research c/o Ernst-Abbe University of Applied Sciences Jena, Jena, Germany
| | - Julia Eckstein
- JENVIS Research c/o Ernst-Abbe University of Applied Sciences Jena, Jena, Germany
| | - Wolfgang Sickenberger
- JENVIS Research c/o Ernst-Abbe University of Applied Sciences Jena, Jena, Germany
- Department of Optometry & Vision Science, Ernst-Abbe University of Applied Sciences Jena, Jena, Germany
| |
Collapse
|
14
|
Torres-Luna C, Fan X, Domszy R, Hu N, Wang NS, Yang A. Hydrogel-based ocular drug delivery systems for hydrophobic drugs. Eur J Pharm Sci 2020; 154:105503. [DOI: 10.1016/j.ejps.2020.105503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 01/07/2023]
|
15
|
Ding X, Ben-Shlomo G, Que L. Soft Contact Lens with Embedded Microtubes for Sustained and Self-Adaptive Drug Delivery for Glaucoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45789-45795. [PMID: 32960561 DOI: 10.1021/acsami.0c12667] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the physiological and anatomical constraints of the eye, ophthalmic drug delivery is challenging. When applied topically, less than 1% of administered ophthalmic drugs reach the aqueous humor. The delivery of a drug within an efficient therapeutic concentration, to the required site of action, for an extended period of time, is complicated. Herein, a novel type of contact lens device, with embedded microtubes as drug containers, is reported. This device can provide a simple, noninvasive, extended drug release up to 45 days with higher bioavailability and lower risk for adverse effects. Another unique feature of the device is the release of drug triggered by stretching of the contact lens, indicating the possibility for achieving a self-adaptive drug release device for treating glaucoma patients.
Collapse
Affiliation(s)
- Xiaoke Ding
- Electrical and Computer Engineering Department, Iowa State University, Ames, Iowa 50011, United States
| | - Gil Ben-Shlomo
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Long Que
- Electrical and Computer Engineering Department, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
16
|
Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran-Rafii A, Djalilian AR. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng Regen Med 2020; 17:567-593. [PMID: 32696417 PMCID: PMC7373337 DOI: 10.1007/s13770-020-00262-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. METHODS In this review, we first discussed the anatomy of the cornea and the required properties for reconstructing layers of the cornea. Regenerative approaches are divided into two main categories; using direct cell/growth factor delivery or using scaffold-based cell delivery. It is expected delivered cells migrate and integrate into the host tissue and restore its structure and function to restore vision. Growth factor delivery also has shown promising results for corneal surface regeneration. Scaffold-based approaches are categorized based on the type of scaffold, since it has a significant impact on the efficiency of regeneration, into the hydrogel and non-hydrogel based scaffolds. Various types of cells, biomaterials, and techniques are well covered. RESULTS The most important characteristics to be considered for biomaterials in corneal regeneration are suitable mechanical properties, biocompatibility, biodegradability, and transparency. Moreover, a curved shape structure and spatial arrangement of the fibrils have been shown to mimic the corneal extracellular matrix for cells and enhance cell differentiation. CONCLUSION Tissue engineering and regenerative medicine approaches showed to have promising outcomes for corneal regeneration. However, besides proper mechanical and optical properties, other factors such as appropriate sterilization method, storage, shelf life and etc. should be taken into account in order to develop an engineered cornea for clinical trials.
Collapse
Affiliation(s)
- S Sharareh Mahdavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran.
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, SBUMS, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1200 W Harrison St, Chicago, IL, 60607, USA
| |
Collapse
|
17
|
Ocular prodrugs: Attributes and challenges. Asian J Pharm Sci 2020; 16:175-191. [PMID: 33995612 PMCID: PMC8105420 DOI: 10.1016/j.ajps.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
Ocular drug delivery is one of the most attention-grabbing and challenging endeavors among the numerous existing drug delivery systems. From a drug delivery point of view, eye is an intricate organ to investigate and explore. In spite of many limitations, advancements have been made with the intention of improving the residence time or permeation of the drug in the ocular region. Poor bioavailability of topically administered drugs is the major issue pertaining to ocular drug delivery. Several efforts have been made towards improving precorneal residence time and corneal penetration, e.g. iontophoresis, prodrugs and ion-pairing, etc. Prodrug approach (chemical approach) has been explored by the formulation scientists to optimize the physicochemical and biochemical properties of drug molecules for improving ocular bioavailability. Formulation of ocular prodrugs is a challenging task as they should exhibit optimum chemical stability as well as enzymatic liability so that they are converted into parent drug after administration at the desired pace. This review will encompass the concept of derivatization and recent academic and industrial advancements in the field of ocular prodrugs. The progression in prodrug designing holds a potential future for ophthalmic drug delivery.
Collapse
|
18
|
Sustained subconjunctival drug delivery systems: current trends and future perspectives. Int Ophthalmol 2020; 40:2385-2401. [DOI: 10.1007/s10792-020-01391-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
|
19
|
Zhang X, Cao X, Qi P. Therapeutic contact lenses for ophthalmic drug delivery: major challenges. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:549-560. [PMID: 31902299 DOI: 10.1080/09205063.2020.1712175] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiuju Zhang
- Department of General Practice, Linyi People’s Hospital, Linyi, Shandong, China
| | - Xiuzhen Cao
- Department of Anus and Intestine Surgery, Taian Central Hospital, Taian, Shandong, China
| | - Ping Qi
- Department of General Practice, Linyi People’s Hospital, Linyi, Shandong, China
| |
Collapse
|
20
|
Mutlu Z, Shams Es‐haghi S, Cakmak M. Recent Trends in Advanced Contact Lenses. Adv Healthc Mater 2019; 8:e1801390. [PMID: 30938941 DOI: 10.1002/adhm.201801390] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/28/2019] [Indexed: 12/28/2022]
Abstract
Exploiting contact lenses for ocular drug delivery is an emerging field in the area of biomedical engineering and advanced healthcare materials. Despite all the research conducted in this area, still, new technologies are in their early stages of the development, and more work must be done in terms of clinical trials to commercialize these technologies. A great challenge in using contact lenses for drug delivery is to achieve a prolonged drug release profile within the therapeutic range for various eye-related problems and diseases. In general, desired release kinetics to avoid the initial burst release is the zero-order kinetics within the therapeutic range. This review highlights the new technologies developed to achieve efficient and extended drug delivery. It also provides an overview of the materials and methods for fabrication of contact lenses and their mechanical and optical properties.
Collapse
Affiliation(s)
- Zeynep Mutlu
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
| | - Siamak Shams Es‐haghi
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
| | - Mukerrem Cakmak
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
- School of Mechanical EngineeringPurdue University West Lafayette IN 47907‐2088 USA
| |
Collapse
|
21
|
Erkal Ilhan S, Kürkçüoğlu Ö, Inan T, Güner ÖZ, Dalgakıran D, Okutan B, Torun Köse G, Kırmızı A, Okçu Heper A, Gürses Ö, Güner FS. Preparation and Determination of In Vivo and In Vitro Performance of Doxycycline Imprinted Contact Lenses for Corneal Neovascularization Treatment. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.428846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Yu Y, Feng R, Yu S, Li J, Wang Y, Song Y, Yang X, Pan W, Li S. Nanostructured lipid carrier-based pH and temperature dual-responsive hydrogel composed of carboxymethyl chitosan and poloxamer for drug delivery. Int J Biol Macromol 2018; 114:462-469. [PMID: 29578017 DOI: 10.1016/j.ijbiomac.2018.03.117] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop a novel nanostructured lipid carrier (NLC) based dual-responsive hydrogel for ocular drug delivery of quercetin (QN). NLC loaded with quercetin (QN-NLC) was prepared using melt-emulsification combined with ultra-sonication technique. A three-factor five-level central composite design (CCD) was employed to optimize the formulation of QN-NLC. The optimized QN-NLC presented a particle size of 75.54nm with narrow size distribution and high encapsulation efficiency (97.14%).QN-NLC was characterized by TEM and DSC. In addition, a pH and temperature dual-responsive hydrogel composed of carboxymethyl chitosan (CMCS) and poloxamer 407(F127) was constructed by a cross-linking reaction with a naturally occurring nontoxic crosslinking agent genipin (GP). FT-IR was employed to demonstrate that F127/CMCS hydrogel was successfully synthesized. The results of SEM analysis and swelling experiments indicated that F127/CMCS hydrogel was both temperature-responsive and pH-responsive. From the results of In vitro release studies, dual temperature and pH responsiveness of the hydrogel was demonstrated, and 80.52% of total quercetin was released from the QN-NLC based hydrogel (QN-NLC-Gel) within 3days, revealing QN-NLC-Gel released drug sustainably. Taken together, the developed NLC-based hydrogel is a promising drug delivery system for the ophthalmic application.
Collapse
Affiliation(s)
- Yibin Yu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ruoxi Feng
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Shihui Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinyu Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yuanyuan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yiming Song
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
23
|
A comprehensive review on contact lens for ophthalmic drug delivery. J Control Release 2018; 281:97-118. [PMID: 29782944 DOI: 10.1016/j.jconrel.2018.05.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
With the prevalence of electronic devices and an aging population, the number of people affected with eye disease is increasing year by year. In spite of a large number of eye drops on the market, most of them do not perform sufficiently, due to rapid clearance mechanisms and ocular barriers. To enhance drug delivery to the eye, a number of novel formulations for ocular diseases have been investigated over recent decades, aiming to increase drug retention and permeation while also allowing for sustained drug release over prolonged periods. The contact lens, initially used to correct visual acuity and beautify female eyes, is one such novel formulation with outstanding potential. Recently, contact lenses have been extensively used for ocular drug delivery to enhance ocular bioavailability and reduce side effects, and are particularly suitable for the treatment of chronic diseases, and thus are of interest to ophthalmic scientists. This review summarizes contact lens classification, methods of preparation, strategies for integrating drugs into lenses, in vitro and in vivo studies, and clinical applications. This review also discusses the current state of ocular drug therapy and provides an outlook for future therapeutic opportunities in the field of ocular drug delivery.
Collapse
|
24
|
Bhattacharjee A, Das PJ, Adhikari P, Marbaniang D, Pal P, Ray S, Mazumder B. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur J Ophthalmol 2018; 29:113-126. [PMID: 29756507 DOI: 10.1177/1120672118769776] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Delivery of drugs to eyes is a great challenge to researchers because of a number of barriers in the eye preventing the actual dose from reaching the site. A number of ophthalmic delivery systems have been developed in the past couple of years that are not only new but also safe and reliable and help to overcome all those barriers in the eye which are responsible for the very less bioavailability of drugs. In this review, we tried to focus on current research in ocular delivery of drug substances giving special emphasis to liposomal delivery system. A brief analysis of other novel ocular delivery systems, ocular physiology, and microbial sources of disease are also highlighted herein. We analyzed the various research findings for churning a general idea for novel ocular delivery system and its future use. The novel formulations may overcome the addressed problems of ophthalmic medication and comply with the quality assurance issues. The liposomal delivery is advantageous as they have the ability to entrap both hydrophobic and hydrophilic drugs and are suitable for delivery to both the anterior and posterior segment of the eye. Therefore, the use of this alternative approach is quite a necessity.
Collapse
Affiliation(s)
| | - Pranab J Das
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Piya Adhikari
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Daphisha Marbaniang
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Paulami Pal
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Subhabrata Ray
- 2 Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, India
| | - Bhaskar Mazumder
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
25
|
Souery WN, Bishop CJ. Clinically advancing and promising polymer-based therapeutics. Acta Biomater 2018; 67:1-20. [PMID: 29246651 DOI: 10.1016/j.actbio.2017.11.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
In this review article, we will examine the history of polymers and their evolution from provisional World War II materials to medical therapeutics. To provide a comprehensive look at the current state of polymer-based therapeutics, we will classify technologies according to targeted areas of interest, including central nervous system-based and intraocular-, gastrointestinal-, cardiovascular-, dermal-, reproductive-, skeletal-, and neoplastic-based systems. Within each of these areas, we will consider several examples of novel, clinically available polymer-based therapeutics; in addition, this review will also include a discussion of developing therapies, ranging from the in vivo to clinical trial stage, for each targeted area of treatment. Finally, we will emphasize areas of patient care in need of more effective, accessible, and targeted treatment approaches where polymer-based therapeutics may offer potential solutions.
Collapse
Affiliation(s)
- Whitney N Souery
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 101 Bizzell St., College Station, TX 77843, USA
| | - Corey J Bishop
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 101 Bizzell St., College Station, TX 77843, USA.
| |
Collapse
|
26
|
Bouledjouidja A, Masmoudi Y, Li Y, He W, Badens E. Supercritical impregnation and optical characterization of loaded foldable intraocular lenses using supercritical fluids. J Cataract Refract Surg 2017; 43:1343-1349. [DOI: 10.1016/j.jcrs.2017.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 01/22/2023]
|
27
|
pH triggered controlled drug delivery from contact lenses: Addressing the challenges of drug leaching during sterilization and storage. Colloids Surf B Biointerfaces 2017; 157:72-82. [DOI: 10.1016/j.colsurfb.2017.05.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 12/21/2022]
|
28
|
Sun J, Zhang X, Huang T. A validated stability-indicating HPLC method for determination of brimonidine tartrate in BRI/PHEMA drug delivery systems. Chem Cent J 2017; 11:62. [PMID: 29086854 PMCID: PMC5505891 DOI: 10.1186/s13065-017-0292-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A simple, rapid and accurate stability-indicating reverse phase high performance liquid chromatography (RP-HPLC) was developed and validated for the determination of brimonidine tartrate in brimonidine tartrate/poly(2-hydroxyethyl methacrylate) (BRI/PHEMA) drug delivery contact lenses and pharmaceutical formulations. RESULTS Optimum chromatographic conditions for separating brimonidine tartrate from other impurities in the leaching liquor of BRI/PHEMA drug delivery contact lenses or pharmaceutical formulations have been achieved by using a Diamonsil C18 column (150 mm × 4.6 mm, 5 μm) as a stationary phase and a mixture solution of phosphate buffer (10 mM, pH3.5) containing 0.5% triethlamine and methanol (85:15, v/v) as a mobile phase at a flow rate of 1 mL/min. The theoretical plates for the brimonidine tartrate measurement were calculated to be 8360 when detection was performed at 246 nm using a diode array detector. The proposed method was validated in accordance with ICH guidelines with respect to linearity, accuracy, precision, robustness, specificity, limit of detection and quantitation. Regression analysis showed a good correlation (R2 > 0.999) for brimonidine tartrate in the concentration range of 0.01-50 μg/mL. The peak purity factor is ≥980 for the analyte after all types of stress tests, indicating an excellent separation of brimonidine tartrate peak from other impurities. The measurement course could be completed within 10 min, which was very quick, effective and convenient. CONCLUSIONS Overall, the proposed stability-indicating method was suitable for routine quality control and drug analysis of brimonidine tartrate in BRI/PHEMA drug delivery contact lenses and other pharmaceutical formulations.
Collapse
Affiliation(s)
- Jianguo Sun
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,Key Laboratory of Myopia, NHFPC, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China
| | - Xiuwen Zhang
- Department of Pharmacy, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Taomin Huang
- Department of Pharmacy, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
29
|
Gudnason K, Solodova S, Vilardell A, Masson M, Sigurdsson S, Jonsdottir F. Numerical simulation of Franz diffusion experiment: Application to drug loaded soft contact lenses. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Bouledjouidja A, Masmoudi Y, Sergent M, Trivedi V, Meniai A, Badens E. Drug loading of foldable commercial intraocular lenses using supercritical impregnation. Int J Pharm 2016; 500:85-99. [DOI: 10.1016/j.ijpharm.2016.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 11/24/2022]
|
31
|
Maulvi FA, Lakdawala DH, Shaikh AA, Desai AR, Choksi HH, Vaidya RJ, Ranch KM, Koli AR, Vyas BA, Shah DO. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J Control Release 2016; 226:47-56. [DOI: 10.1016/j.jconrel.2016.02.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/25/2016] [Accepted: 02/05/2016] [Indexed: 12/26/2022]
|
32
|
Carvalho I, Marques C, Oliveira R, Coelho P, Costa P, Ferreira D. Sustained drug release by contact lenses for glaucoma treatment—A review. J Control Release 2015; 202:76-82. [DOI: 10.1016/j.jconrel.2015.01.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 01/11/2023]
|
33
|
Chen YS, Green CR, Danesh-Meyer HV, Rupenthal ID. Neuroprotection in the treatment of glaucoma--A focus on connexin43 gap junction channel blockers. Eur J Pharm Biopharm 2015; 95:182-93. [PMID: 25676338 DOI: 10.1016/j.ejpb.2015.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/23/2014] [Accepted: 01/07/2015] [Indexed: 01/01/2023]
Abstract
Glaucoma is a form of optic neuropathy and a common cause of blindness, affecting over 60 million people worldwide with an expected rise to 80 million by 2020. Successful treatment is challenging due to the various causes of glaucoma, undetectable symptoms at an early stage and inefficient delivery of drugs to the back of the eye. Conventional glaucoma treatments focus on the reduction of elevated intraocular pressure (IOP) using topical eye drops. However, their efficacy is limited to patients who suffer from high IOP glaucoma and do not address the underlying susceptibility of retinal ganglion cells (RGC) to degeneration. Glaucoma is known as a neurodegenerative disease which starts with RGC death and eventually results in damage of the optic nerve. Neuroprotective strategies therefore offer a novel treatment option for glaucoma by not only preventing neuronal loss but also disease progression. This review firstly gives an overview of the pathophysiology of glaucoma as well as current treatment options including conventional and novel delivery strategies. It then summarizes the rational for neuroprotection as a novel therapy for glaucomatous neuropathies and reviews current potential neuroprotective strategies to preserve RGC, with a focus on connexin43 (Cx43) gap junction channel blockers.
Collapse
Affiliation(s)
- Ying-Shan Chen
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Helen V Danesh-Meyer
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
34
|
Contact lenses as drug reservoirs & delivery systems: the successes & challenges. Ther Deliv 2014; 5:1085-100. [DOI: 10.4155/tde.14.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although conventional eye drops comprise over 90% of the marketed ocular dosage forms, they do have limitations, such as poor ocular drug bioavailability and systemic side effects; contact lenses are amongst the new delivery systems and devices that could overcome some of these problems. The most common approach to load drug molecules into contact lenses includes soaking in a drug solution. This approach had some success, but failed to achieve controlled/sustained drug release to the eye. On the other hand, nanoreservoir systems comprising nanoparticles, cyclodextrins, liposomes or surfactant aggregates being incorporated into the contact lenses could offer a plausible solution. This review highlights the status quo with contact lenses as ocular drug-delivery carriers and identifies possible future directions.
Collapse
|
35
|
Cultivation and characterization of limbal epithelial stem cells on contact lenses with a feeder layer: toward the treatment of limbal stem cell deficiency. Cornea 2014; 33:65-71. [PMID: 24162749 DOI: 10.1097/ico.0000000000000002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Limbal epithelial sheets are used to promote corneal surface reconstruction after the detection of limbal epithelial stem cell deficiency. The aim of this study was to evaluate a novel combination of limbal stem cells (LSCs) maintained on contact lenses (CLs) in the presence of a 3T3 feeder cell layer regarding preservation of stem cell phenotype and the potential use for future in vivo transplantation. METHODS Limbal epithelial cells were isolated from rabbit cornea and cultured with 3T3 cells on CLs. The preservation of LSC phenotype was determined using p63α and ABCG2 immunostaining, whereas epithelial differentiation was evaluated using CK3 and CK19. The colony-forming assay was used to determine the percentage of LSCs in cultures. Finally, CLs seeded with PKH26-labeled LSCs were transferred to rabbit eyes after performing a surgical keratectomy, and the transition and phenotype of labeled cells on the corneal surface were evaluated in whole-mount corneas. RESULTS Proliferation of individual limbal cells was observed on CLs with a 3T3 feeder cell layer, showing holoclone formation and retention of viable stem or progenitor cell phenotype. Finally, a higher transition of cultivated cells after a dual sequential CL transplantation to the ocular surface was observed, showing the preservation of the LSC phenotype in the corneal surface. CONCLUSIONS Limbal cells cultivated on a CL carrier overlaying a 3T3 feeder layer are mitotically active and retain the LSC phenotype. This novel technique of using CLs as a carrier offers an easily manipulable and nonimmunogenic method for transferring LSCs for ocular surface reconstruction in patients with limbal epithelial stem cell deficiency.
Collapse
|
36
|
Abstract
The use of contact lenses as ocular bandages for drug delivery was envisioned nearly 50 years ago by Wichterle and co-workers. Despite the therapeutic advantages that can be obtained, this application has to face up to the poor affinity shown by commercially available contact lenses for most ophthalmic drugs, resulting in small amounts of drug being loaded and short time of therapeutic levels in the eye structures. Novel strategies that appeared in the beginning of 21st century, for example coating lenses with vitamin E, incorporation of drug nanocarriers or application of molecular imprinting technology, are becoming relevant tools for development of true drug/contact lens combination products that may be available for ocular therapy in the foreseeable future.
Collapse
|
37
|
Souza JG, Dias K, Pereira TA, Bernardi DS, Lopez RFV. Topical delivery of ocular therapeutics: carrier systems and physical methods. ACTA ACUST UNITED AC 2013; 66:507-30. [PMID: 24635555 DOI: 10.1111/jphp.12132] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/23/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The basic concepts, major mechanisms, technological developments and advantages of the topical application of lipid-based systems (microemulsions, nanoemulsions, liposomes and solid lipid nanoparticles), polymeric systems (hydrogels, contact lenses, polymeric nanoparticles and dendrimers) and physical methods (iontophoresis and sonophoresis) will be reviewed. KEY FINDINGS Although very convenient for patients, topical administration of conventional drug formulations for the treatment of eye diseases requires high drug doses, frequent administration and rarely provides high drug bioavailability. Thus, strategies to improve the efficacy of topical treatments have been extensively investigated. In general, the majority of the successful delivery systems are present on the ocular surface over an extended period of time, and these systems typically improve drug bioavailability in the anterior chamber whereas the physical methods facilitate drug penetration over a very short period of time through ocular barriers, such as the cornea and sclera. SUMMARY Although in the early stages, the combination of these delivery systems with physical methods would appear to be a promising tool to decrease the dose and frequency of administration; thereby, patient compliance and treatment efficacy will be improved.
Collapse
Affiliation(s)
- Joel G Souza
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
38
|
Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol 2013; 2:47-64. [PMID: 25590022 PMCID: PMC4289909 DOI: 10.5497/wjp.v2.i2.47] [Citation(s) in RCA: 480] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/21/2013] [Accepted: 04/04/2013] [Indexed: 02/06/2023] Open
Abstract
The major challenge faced by today’s pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades, ocular drug delivery research acceleratedly advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of conventional topical formulations such as suspensions, emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand, for posterior ocular delivery, research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreo-retinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topical drops. Also, these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments. Also, recent developments with other ocular drug delivery strategies employing in situ gels, implants, contact lens and microneedles have been discussed.
Collapse
|
39
|
Kaushik A, Arya SK, Vasudev A, Bhansali S. Recent Advances in Detection of Ochratoxin-A. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojab.2013.21001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|