1
|
Duong MQ, Gadet R, Treilleux I, Borel S, Nougarède A, Marcillat O, Gonzalo P, Mikaelian I, Popgeorgiev N, Rimokh R, Gillet G. Nrh L11R single nucleotide polymorphism, a new prediction biomarker in breast cancer, impacts endoplasmic reticulum-dependent Ca 2+ traffic and response to neoadjuvant chemotherapy. Cell Death Dis 2023; 14:392. [PMID: 37391438 PMCID: PMC10313725 DOI: 10.1038/s41419-023-05917-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Overexpression of Bcl-2 proteins such as Bcl2L10, also referred to as Nrh, is associated with resistance to therapy and poor survival in various cancers, including breast cancer, lung cancer, and leukemia. The single nucleotide polymorphism (SNP) of BCL2L10 in its BH4 domain at position 11 (BCL2L10 Leu11Arg, rs2231292), corresponding to position 11 in the Nrh open reading frame, is reported to lower resistance towards chemotherapy, with patients showing better survival in the context of acute leukemia and colorectal cancer. Using cellular models and clinical data, we aimed to extend this knowledge to breast cancer. We report that the homozygous status of the Nrh Leu11Arg isoform (Nrh-R) is found in 9.7-11% percent of the clinical datasets studied. Furthermore, Nrh-R confers higher sensitivity towards Thapsigargin-induced cell death compared to the Nrh-L isoform, due to altered interactions with IP3R1 Ca2+ channels in the former case. Collectively, our data show that cells expressing the Nrh-R isoform are more prone to death triggered by Ca2+ stress inducers, compared to Nrh-L expressing cells. Analysis of breast cancer cohorts revealed that patients genotyped as Nrh-R/Nrh-R may have a better outcome. Overall, this study supports the notion that the rs2231292 Nrh SNP could be used as a predictive tool regarding chemoresistance, improving therapeutic decision-making processes. Moreover, it sheds new light on the contribution of the BH4 domain to the anti-apoptotic function of Nrh and identifies the IP3R1/Nrh complex as a potential therapeutic target in the context of breast cancer.
Collapse
Affiliation(s)
- Minh Quang Duong
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Rudy Gadet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | | | - Stéphane Borel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Adrien Nougarède
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Division for Biology and Healthcare Technologies, CEA-LETI, MINATEC Campus, F-38054, Grenoble, France
| | - Olivier Marcillat
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Philippe Gonzalo
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Laboratoire de Biochimie, CHU de Saint-Etienne, Université de Lyon, Lyon, France
| | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Nikolay Popgeorgiev
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Ruth Rimokh
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.
| | - Germain Gillet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.
- Hospices civils de Lyon, Centre de Biologie Sud, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, 69495, Pierre Bénite, France.
| |
Collapse
|
2
|
Lin Y, Zhao Y, Chen M, Li Z, Liu Q, Chen J, Ding Y, Ding C, Ding Y, Qi C, Zheng L, Li J, Zhang R, Zhou J, Wang L, Zhang QQ. CYD0281, a Bcl-2 BH4 domain antagonist, inhibits tumor angiogenesis and breast cancer tumor growth. BMC Cancer 2023; 23:479. [PMID: 37237269 DOI: 10.1186/s12885-023-10974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND B-cell lymphoma 2 (Bcl-2) family proteins are key regulators of apoptosis, which possess four conserved Bcl-2 homologies (BH) domains. Among the BH domains, the BH3 domain is considered as a potent 'death domain' while the BH4 domain is required for anti-apoptotic activity. Bcl-2 can be converted to a pro-apoptotic molecule through the removal or mutation of the BH4 domain. Bcl-2 is considered as an inducer of angiogenesis, which can promote tumor vascular network formation and further afford nutrients and oxygen to promote tumor progression. However, whether disrupting the function of the BH4 domain to convert Bcl-2 into a pro-apoptotic molecule could make Bcl-2 possess the potential for anti-angiogenic therapy remains to be defined. METHODS CYD0281 was designed and synthesized according to the lead structure of BDA-366, and its function on inducing a conformational change of Bcl-2 was further evaluated via immunoprecipitation (IP) and immunofluorescence (IF) assays. Moreover, the function of CYD0281 on apoptosis of endothelial cells was analyzed via cell viability, flow cytometry, and western blotting assays. Additionally, the role of CYD0281 on angiogenesis in vitro was determined via endothelial cell migration and tube formation assays and rat aortic ring assay. Chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, breast cancer cell xenograft tumor on CAM and in mouse models as well as the Matrigel plug angiogenesis assay were used to explore the effects of CYD0281 on angiogenesis in vivo. RESULTS We identified a novel potent small-molecule Bcl-2-BH4 domain antagonist, CYD0281, which exhibited significant anti-angiogenic effects both in vitro and in vivo, and further inhibited breast cancer tumor growth. CYD0281 was found to induce conformational changes in Bcl-2 through the exposure of the BH3 domain and convert Bcl-2 from an anti-apoptotic molecule into a cell death inducer, thereby resulting in the apoptosis of vascular endothelial cells. CONCLUSIONS This study has revealed CYD0281 as a novel Bcl-2-BH4 antagonist that induces conformational changes of Bcl-2 to convert to a pro-apoptotic molecule. Our findings indicate that CYD0281 plays a crucial role in anti-angiogenesis and may be further developed as a potential anti-tumor drug candidate for breast cancer. This work also provides a potential anti-angiogenic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Yihua Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiling Zhao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Minggui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zishuo Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiao Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jian Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Ding
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chunyong Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ye Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qian-Qian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Princilly J, Veerabhadrappa B, Rao NN, Dyavaiah M. Cellular senescence in aging: Molecular basis, implications and therapeutic interventions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:1-33. [PMID: 37437975 DOI: 10.1016/bs.apcsb.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cellular senescence is an irreversible proliferation arrest in response to cellular damage and stress. Although cellular senescence is a highly stable cell cycle arrest, it can influence many physiological, pathological, and aging processes. Cellular senescence can be triggered by various intrinsic and extrinsic stimuli such as oxidative stress, mitochondrial dysfunction, genotoxic stress, oncogenic activation, irradiation and chemotherapeutic agents. Senescence is associated with several molecular and phenotypic alterations, such as senescence-associated secretory phenotype (SASP), cell cycle arrest, DNA damage response (DDR), senescence-associated β-galactosidase, morphogenesis, and chromatin remodeling. Cellular senescence is a regular physiological event involved in tissue homeostasis, embryonic development, tissue remodeling, wound healing, and inhibition of tumor progression. Mitochondria are one of the organelles that undergo significant morphological and metabolic changes associated with senescence. Recent evidence unraveled that inter-organelle communication regulates cellular senescence, where mitochondria form a highly complex and dynamic network throughout the cytoplasm with other organelles, like the endoplasmic reticulum. An imbalance in organelle interactions may result in faulty cellular homeostasis, which contributes to cellular senescence and is associated with organ aging. Since mitochondrial dysfunction is a common characteristic of cellular senescence and age-related diseases, mitochondria-targeted senolytic or redox modulator senomorphic strategies help solve the complex problems with the detrimental consequences of cellular senescence. Understanding the regulation of mitochondrial metabolism would provide knowledge on effective therapeutic interventions for aging and age-related pathologies. This chapter focuses on the biochemical and molecular mechanisms of senescence and targeting senescence as a potential strategy to alleviate age-related pathologies and support healthy aging.
Collapse
Affiliation(s)
- Jemima Princilly
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Bhavana Veerabhadrappa
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India; Department of Biotechnology, R V College of Engineering (RVCE), Bangalore, Karnataka, India
| | - Nagashree N Rao
- Department of Biotechnology, R V College of Engineering (RVCE), Bangalore, Karnataka, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India.
| |
Collapse
|
4
|
Khalil R, Diab-Assaf M, Lemaitre JM. Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells 2023; 12:915. [PMID: 36980256 PMCID: PMC10047596 DOI: 10.3390/cells12060915] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Life expectancy has drastically increased over the last few decades worldwide, with important social and medical burdens and costs. To stay healthy longer and to avoid chronic disease have become essential issues. Organismal aging is a complex process that involves progressive destruction of tissue functionality and loss of regenerative capacity. One of the most important aging hallmarks is cellular senescence, which is a stable state of cell cycle arrest that occurs in response to cumulated cell stresses and damages. Cellular senescence is a physiological mechanism that has both beneficial and detrimental consequences. Senescence limits tumorigenesis, lifelong tissue damage, and is involved in different biological processes, such as morphogenesis, regeneration, and wound healing. However, in the elderly, senescent cells increasingly accumulate in several organs and secrete a combination of senescence associated factors, contributing to the development of various age-related diseases, including cancer. Several studies have revealed major molecular pathways controlling the senescent phenotype, as well as the ones regulating its interactions with the immune system. Attenuating the senescence-associated secretory phenotype (SASP) or eliminating senescent cells have emerged as attractive strategies aiming to reverse or delay the onset of aging diseases. Here, we review current senotherapies designed to suppress the deleterious effect of SASP by senomorphics or to selectively kill senescent cells by "senolytics" or by immune system-based approaches. These recent investigations are promising as radical new controls of aging pathologies and associated multimorbidities.
Collapse
Affiliation(s)
- Roula Khalil
- IRMB, University Montpellier, INSERM, 34090 Montpellier, France;
| | - Mona Diab-Assaf
- Fanar Faculty of Sciences II, Lebanese University, Beirut P.O. Box 90656, Lebanon;
| | | |
Collapse
|
5
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Zhou JY, Yang RR, Chang J, Song J, Fan ZS, Zhang YH, Lu CH, Jiang HL, Zheng MY, Zhang SL. Discovery and identification of a novel small molecule BCL-2 inhibitor that binds to the BH4 domain. Acta Pharmacol Sin 2023; 44:475-485. [PMID: 35918411 PMCID: PMC9889308 DOI: 10.1038/s41401-022-00936-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The B-cell lymphoma 2 (BCL-2) protein family plays a pivotal role in regulating the apoptosis process. BCL-2, as an antiapoptotic protein in this family, mediates apoptosis resistance and is an ideal target for cell death strategies in cancer therapy. Traditional treatment modalities target BCL-2 by occupying the hydrophobic pocket formed by BCL-2 homology (BH) domains 1-3, while in recent years, the BH4 domain of BCL-2 has also been considered an attractive novel target. Herein, we describe the discovery and identification of DC-B01, a novel BCL-2 inhibitor targeting the BH4 domain, through virtual screening combined with biophysical and biochemical methods. Our results from surface plasmon resonance and cellular thermal shift assay confirmed that the BH4 domain is responsible for the interaction between BCL-2 and DC-B01. As evidenced by further cell-based experiments, DC-B01 induced cell killing in a BCL-2-dependent manner and triggered apoptosis via the mitochondria-mediated pathway. DC-B01 disrupted the BCL-2/c-Myc interaction and consequently suppressed the transcriptional activity of c-Myc. Moreover, DC-B01 inhibited tumor growth in vivo in a BCL‑2‑dependent manner. Collectively, these results indicate that DC-B01 is a promising BCL-2 BH4 domain inhibitor with the potential for further development.
Collapse
Affiliation(s)
- Jing-Yi Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Rui-Rui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai, 200031, China
| | - Jie Chang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jia Song
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zi-Sheng Fan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Ying-Hui Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Cheng-Hao Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hua-Liang Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China.
| | - Ming-Yue Zheng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China.
| | - Su-Lin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
7
|
Shi G, Long Z, De la Vega RE, Behfar A, Moran SL, Evans C, Zhao C. Purified exosome product enhances chondrocyte survival and regeneration by modulating inflammation and promoting chondrogenesis. Regen Med 2023; 18:55-71. [PMID: 36255073 PMCID: PMC9732920 DOI: 10.2217/rme-2022-0132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022] Open
Abstract
Aim: This study was to detect the effects of purified exosome product (PEP) on C28/I2 cells and chondrocytes derived from osteoarthritis patients. Materials & methods: Cell viability and apoptosis assays were used to detect the effect of PEP on cells. qRT-PCR and cell fluorescence assays were used to investigate the potential mechanism of PEP on cell chondrogenesis. Results: PEP was internalized by cells at a fast rate and enhanced cellular proliferation and migration while attenuating apoptosis. These findings reflect the fact that PEP can increase the expression of PCNA and reduce the expression of CASP3/7/9 and BAX. Conclusion: This study suggests an innovative strategy for chondrogenesis that could be applied to osteoarthritis repair in the future.
Collapse
Affiliation(s)
- Guidong Shi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55901, USA
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zeling Long
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55901, USA
| | - Rodolfo E De la Vega
- Musculoskeletal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55901, USA
- Department cBITE, MERLN Institute, Maastricht University, Maastricht, 6221, The Netherlands
| | - Atta Behfar
- Department of Cardiovascular Diseases, Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55901, USA
| | - Steven L Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55901, USA
| | - Christopher Evans
- Musculoskeletal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55901, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55901, USA
| |
Collapse
|
8
|
Mushtaq AU, Ådén J, Ali K, Gröbner G. Domain-specific insight into the recognition of BH3-death motifs by the pro-survival Bcl-2 protein. Biophys J 2022; 121:4517-4525. [PMID: 36325615 PMCID: PMC9748362 DOI: 10.1016/j.bpj.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Programmed mammalian cell death (apoptosis) is an essential mechanism in life that tightly regulates embryogenesis and removal of dysfunctional cells. In its intrinsic (mitochondrial) pathway, opposing members of the Bcl-2 (B cell lymphoma 2) protein family meet at the mitochondrial outer membrane (MOM) to control its integrity. Any imbalance can cause disorders, with upregulation of the cell-guarding antiapoptotic Bcl-2 protein itself being common in many, often incurable, cancers. Normally, the Bcl-2 protein itself is embedded in the MOM where it sequesters cell-killing apoptotic proteins such as Bax (Bcl-2-associated X protein) that would otherwise perforate the MOM and subsequently cause cell death. However, the molecular basis of Bcl-2's ability to recognize those apoptotic proteins via their common BH3 death motifs remains elusive due to the lack of structural insight. By employing nuclear magnetic resonance on fully functional human Bcl-2 protein in membrane-mimicking micelles, we identified glycine residues across all functional domains of the Bcl-2 protein and could monitor their residue-specific individual response upon the presence of a Bax-derived 36aa long BH3 domain. The observed chemical shift perturbations allowed us to determine the response and individual affinity of each glycine residue and provide an overall picture of the individual roles by which Bcl-2's functional domains engage in recognizing and inhibiting apoptotic proteins via their prominent BH3 motifs. This way, we provide a unique residue- and domain-specific insight into the molecular functioning of Bcl-2 at the membrane level, an insight also opening up for interfering with this cell-protecting mechanism in cancer therapy.
Collapse
Affiliation(s)
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, Umeå, Sweden
| | - Katan Ali
- Department of Chemistry, University of Umeå, Umeå, Sweden
| | | |
Collapse
|
9
|
Kanakaveti V, Ramasamy S, Kanumuri R, Balasubramanian V, Saravanan R, Ezhil I, Pitani R, Venkatraman G, Rayala SK, Gromiha MM. Novel BH4-BCL-2 Domain Antagonists Induce BCL-2-Mediated Apoptosis in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:5241. [PMID: 36358660 PMCID: PMC9657696 DOI: 10.3390/cancers14215241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/31/2025] Open
Abstract
Targeting the challenging tumors lacking explicit markers and predictors for chemosensitivity is one of the major impediments of the current cancer armamentarium. Triple-negative breast cancer (TNBC) is an aggressive and challenging molecular subtype of breast cancer, which needs astute strategies to achieve clinical success. The pro-survival B-cell lymphoma 2 (BCL-2) overexpression reported in TNBC plays a central role in deterring apoptosis and is a promising target. Here, we propose three novel BH4 mimetic small molecules, SM396, a covalent binder, and two non-covalent binders, i.e., SM216 and SM949, which show high binding affinity (nM) and selectivity, designed by remodeling the existing BCL-2 chemical space. Our mechanistic studies validate the selectivity of the compounds towards cancerous cells and not on normal cells. A series of functional assays illustrated BCL-2-mediated apoptosis in the tumor cells as a potent anti-cancerous mechanism. Moreover, the compounds exhibited efficacious in vivo activity as single agents in the MDA-MB-231 xenograft model (at nanomolar dosage). Overall, these findings depict SM216, SM396, and SM949 as promising leads, pointing to the clinical translation of these compounds in targeting triple-negative breast cancer.
Collapse
Affiliation(s)
- Vishnupriya Kanakaveti
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sakthivel Ramasamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Rahul Kanumuri
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai 600116, Tamil Nadu, India
| | - Vaishnavi Balasubramanian
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai 600116, Tamil Nadu, India
| | - Roshni Saravanan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai 600116, Tamil Nadu, India
| | - Inemai Ezhil
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Ravishankar Pitani
- Department of Community Medicine, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai 600116, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai 600116, Tamil Nadu, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
10
|
Verzella D, Cornice J, Arboretto P, Vecchiotti D, Di Vito Nolfi M, Capece D, Zazzeroni F, Franzoso G. The NF-κB Pharmacopeia: Novel Strategies to Subdue an Intractable Target. Biomedicines 2022; 10:2233. [PMID: 36140335 PMCID: PMC9496094 DOI: 10.3390/biomedicines10092233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022] Open
Abstract
NF-κB transcription factors are major drivers of tumor initiation and progression. NF-κB signaling is constitutively activated by genetic alterations or environmental signals in many human cancers, where it contributes to almost all hallmarks of malignancy, including sustained proliferation, cell death resistance, tumor-promoting inflammation, metabolic reprogramming, tissue invasion, angiogenesis, and metastasis. As such, the NF-κB pathway is an attractive therapeutic target in a broad range of human cancers, as well as in numerous non-malignant diseases. Currently, however, there is no clinically useful NF-κB inhibitor to treat oncological patients, owing to the preclusive, on-target toxicities of systemic NF-κB blockade. In this review, we discuss the principal and most promising strategies being developed to circumvent the inherent limitations of conventional IκB kinase (IKK)/NF-κB-targeting drugs, focusing on new molecules that target upstream regulators or downstream effectors of oncogenic NF-κB signaling, as well as agents targeting individual NF-κB subunits.
Collapse
Affiliation(s)
- Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| |
Collapse
|
11
|
Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci 2022; 23:ijms23084168. [PMID: 35456986 PMCID: PMC9028163 DOI: 10.3390/ijms23084168] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
- Correspondence: ; Tel.: +42-0-585632082
| |
Collapse
|
12
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
13
|
Zhang Z, Bai L, Hou L, Deng H, Luan S, Liu D, Huang M, Zhao L. Trends in targeting Bcl-2 anti-apoptotic proteins for cancer treatment. Eur J Med Chem 2022; 232:114184. [DOI: 10.1016/j.ejmech.2022.114184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
14
|
Alam M, Ali S, Mohammad T, Hasan GM, Yadav DK, Hassan MI. B Cell Lymphoma 2: A Potential Therapeutic Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms221910442. [PMID: 34638779 PMCID: PMC8509036 DOI: 10.3390/ijms221910442] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Defects in the apoptosis mechanism stimulate cancer cell growth and survival. B cell lymphoma 2 (Bcl-2) is an anti-apoptotic molecule that plays a central role in apoptosis. Bcl-2 is the founding constituent of the Bcl-2 protein family of apoptosis controllers, the primary apoptosis regulators linked with cancer. Bcl-2 has been identified as being over-expressed in several cancers. Bcl-2 is induced by protein kinases and several signaling molecules which stimulate cancer development. Identifying the important function played by Bcl-2 in cancer progression and development, and treatment made it a target related to therapy for multiple cancers. Among the various strategies that have been proposed to block Bcl-2, BH3-mimetics have appeared as a novel group of compounds thanks to their favorable effects on many cancers within several clinical settings. Because of the fundamental function of Bcl-2 in the regulation of apoptosis, the Bcl-2 protein is a potent target for the development of novel anti-tumor treatments. Bcl-2 inhibitors have been used against several cancers and provide a pre-clinical platform for testing novel therapeutic drugs. Clinical trials of multiple investigational agents targeting Bcl-2 are ongoing. This review discusses the role of Bcl-2 in cancer development; it could be exploited as a potential target for developing novel therapeutic strategies to combat various types of cancers. We further highlight the therapeutic activity of Bcl-2 inhibitors and their implications for the therapeutic management of cancer.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
15
|
Erekat NS. Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat 2021; 35:65-78. [PMID: 34558138 DOI: 10.1002/ca.23792] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders are characterized by progressive loss of particular populations of neurons. Apoptosis has been implicated in the pathogenesis of neurodegenerative diseases, including Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. In this review, we focus on the existing notions relevant to comprehending the apoptotic death process, including the morphological features, mediators and regulators of cellular apoptosis. We also highlight the evidence of neuronal apoptotic death in Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. Additionally, we present evidence of potential therapeutic agents that could modify the apoptotic pathway in the aforementioned neurodegenerative diseases and delay disease progression. Finally, we review the clinical trials that were conducted to evaluate the use of anti-apoptotic drugs in the treatment of the aforementioned neurodegenerative diseases, in order to highlight the essential need for early detection and intervention of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
16
|
Choi SJ, Ahn CH, Hong KO, Kim JH, Hong SD, Shin JA, Cho SD. Molecular mechanism underlying the apoptotic modulation by ethanol extract of Pseudolarix kaempferi in mucoepidermoid carcinoma of the salivary glands. Cancer Cell Int 2021; 21:427. [PMID: 34391437 PMCID: PMC8364062 DOI: 10.1186/s12935-021-02134-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 11/11/2022] Open
Abstract
Background Pseudolarix kaempferi is a traditional Chinese natural product that possesses the potential cytotoxic effects against cancer. However, the precise molecular mechanism underlying its cytotoxic effects has not yet been completely elucidated. Here, we clarify the mechanism via which the ethanol extract of P. kaempferi (EEPK) leads to cytotoxicity mediated by apoptosis in mucoepidermoid carcinoma (MEC) originating from the salivary glands. Methods We investigated the mechanism underlying the anticancer efficacy of EEPK in human MEC in vitro by assessing mitochondrial dysfunction, mRNA levels, and morphological changes in apoptotic cell nuclei as well as by using a cytotoxicity assay, flow cytometric analysis, and western blotting. Results EEPK inhibited the growth of two human MEC cells and stimulated the induction of caspase-mediated apoptosis that was accompanied by mitochondrial membrane depolarization. Compared with the vehicle control groups, EEPK decreased myeloid cell leukemia-1 (Mcl-1) expression in both cells whereas it significantly decreased B cell lymphoma-2 (Bcl-2) expression in MC3 cells only. The EEPK-induced altered Mcl-1 expression was caused by translational inhibition and proteasomal degradation. Additionally, EEPK significantly increased p-Bcl-2 (Ser70) expression regardless of its total forms by facilitating the activation of the c-Jun N-terminal kinase (JNK) signaling pathway, which exhibited cell context dependency. Nevertheless, JNK activation following EEPK treatment was, at least in part, required for the proapoptotic efficacy of EEPK in both cells. Conclusions This study revealed that EEPK-induced alterations of Mcl-1 inhibition and JNK/Bcl-2 phosphorylation cause apoptosis and provided basic preclinical data for future clinical trials regarding therapy for patients with MEC. Graphic abstract ![]()
Collapse
Affiliation(s)
- Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea
| | - Chi-Hyun Ahn
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.,51-9, HLB Life Science Co., Ltd., Dongtancheomdansaneop 1-ro, 8f, Gyeonggi-do, 18469, Hwaseong-si, Republic of Korea
| | - Kyoung-Ok Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.,, 412Ho, Healthcare Innovation Park, 172 Dolma-ro, Bundang-gu, Gyeonggi-do, 13605, Seongnam-si, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: a dynamic duo in multiple myeloma. Cell Mol Life Sci 2021; 78:3883-3906. [PMID: 33599798 PMCID: PMC8106603 DOI: 10.1007/s00018-021-03756-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Under physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.
Collapse
Affiliation(s)
- Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| | - Jianbiao Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
18
|
Kim S, Kim C. Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas. Mol Cells 2021; 44:136-145. [PMID: 33795532 PMCID: PMC8019598 DOI: 10.14348/molcells.2021.2239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Senescent cells that gradually accumulate during aging are one of the leading causes of aging. While senolytics can improve aging in humans as well as mice by specifically eliminating senescent cells, the effect of the senolytics varies in different cell types, suggesting variations in senescence. Various factors can induce cellular senescence, and the rate of accumulation of senescent cells differ depending on the organ. In addition, since the heterogeneity is due to the spatiotemporal context of senescent cells, in vivo studies are needed to increase the understanding of senescent cells. Since current methods are often unable to distinguish senescent cells from other cells, efforts are being made to find markers commonly expressed in senescent cells using bulk RNA-sequencing. Moreover, single-cell RNA (scRNA) sequencing, which analyzes the transcripts of each cell, has been utilized to understand the in vivo characteristics of the rare senescent cells. Recently, transcriptomic cell atlases for each organ using this technology have been published in various species. Novel senescent cells that do not express previously established marker genes have been discovered in some organs. However, there is still insufficient information on senescent cells due to the limited throughput of the scRNA sequencing technology. Therefore, it is necessary to improve the throughput of the scRNA sequencing technology or develop a way to enrich the rare senescent cells. The in vivo senescent cell atlas that is established using rapidly developing single-cell technologies will contribute to the precise rejuvenation by specifically removing senescent cells in each tissue and individual.
Collapse
Affiliation(s)
- Sohee Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Chuna Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| |
Collapse
|
19
|
Bcl-xL: A Focus on Melanoma Pathobiology. Int J Mol Sci 2021; 22:ijms22052777. [PMID: 33803452 PMCID: PMC7967179 DOI: 10.3390/ijms22052777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Apoptosis is the main mechanism by which multicellular organisms eliminate damaged or unwanted cells. To regulate this process, a balance between pro-survival and pro-apoptotic proteins is necessary in order to avoid impaired apoptosis, which is the cause of several pathologies, including cancer. Among the anti-apoptotic proteins, Bcl-xL exhibits a high conformational flexibility, whose regulation is strictly controlled by alternative splicing and post-transcriptional regulation mediated by transcription factors or microRNAs. It shows relevant functions in different forms of cancer, including melanoma. In melanoma, Bcl-xL contributes to both canonical roles, such as pro-survival, protection from apoptosis and induction of drug resistance, and non-canonical functions, including promotion of cell migration and invasion, and angiogenesis. Growing evidence indicates that Bcl-xL inhibition can be helpful for cancer patients, but at present, effective and safe therapies targeting Bcl-xL are lacking due to toxicity to platelets. In this review, we summarized findings describing the mechanisms of Bcl-xL regulation, and the role that Bcl-xL plays in melanoma pathobiology and response to therapy. From these findings, it emerged that even if Bcl-xL plays a crucial role in melanoma pathobiology, we need further studies aimed at evaluating the involvement of Bcl-xL and other members of the Bcl-2 family in the progression of melanoma and at identifying new non-toxic Bcl-xL inhibitors.
Collapse
|
20
|
Pandit K, Kaur S, Kumar A, Bhardwaj R, Kaur S. trans-Anethole Abrogates Cell Proliferation and Induces Apoptosis through the Mitochondrial-Mediated Pathway in Human Osteosarcoma Cells. Nutr Cancer 2020; 73:1727-1745. [PMID: 32781844 DOI: 10.1080/01635581.2020.1803927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
trans-Anethole, the major bioactive component of Illicium verum Hook. commonly known as star anise exhibits various pharmacological activities including anti-inflammatory, antimicrobial, insecticidal, and antitumor. Osteosarcoma is an extremely aggressive malignant bone tumor that affects children and young adults and accounts for around 60% of all sarcomas. The study was planned to evaluate the potential of trans-Anethole against Human osteosarcoma cell line MG-63. The antiproliferative activity of trans-Anethole was assessed by MTT assay. trans-Anethole exhibited apoptotic cell death as monitored by confocal/electron microscopy and flow cytometry studies. Modulation of gene expression was studied by Western blot and RT-PCR analysis. The present study revealed that trans-Anethole inhibited osteosarcoma proliferation in a dose-dependent manner with a GI50 value of 60.25 µM and showed pro-apoptotic activity as analyzed by Annexin V-FITC/PI assay. Flow cytometric analysis revealed that trans-Anethole induced cell cycle arrest at the G0/G1 phase with the generation of reactive oxygen species and reduction in mitochondrial membrane potential (ΔΨm). Immunoblotting results showed the increased expression of caspase-9/-3, p53, and decreased expression of Bcl-xL suggesting the involvement of the p53 and mitochondrial intrinsic pathway. This work provides a rationale that trans-Anethole might be considered as a promising chemotherapeutic/nutraceutical agent for the management of osteosarcoma.Highlightstrans-Anethole inhibited cell growth and caused G0/G1 arrest in Human osteosarcoma MG-63 cell line.trans-Anethole led to the loss of mitochondrial membrane permeability along with ROS generation.trans-Anethole upregulates the expression of p53, Caspase-9/-3, and downregulate Bcl-xL expression.
Collapse
Affiliation(s)
- Kritika Pandit
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
21
|
D’Aguanno S, Del Bufalo D. Inhibition of Anti-Apoptotic Bcl-2 Proteins in Preclinical and Clinical Studies: Current Overview in Cancer. Cells 2020; 9:cells9051287. [PMID: 32455818 PMCID: PMC7291206 DOI: 10.3390/cells9051287] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
The dynamic interplay between pro-death and pro-survival Bcl-2 family proteins is responsible for a cell’s fate. Due to the recognized relevance of this family in cancer progression and response to therapy, different efforts have made in recent years in order to develop small molecules able to target anti-apoptotic proteins such as Bcl-2, Bcl-xL and Mcl-1. The limitations of the first Bcl-2 family targeted drugs, regarding on-target and off-target toxicities, have been overcome with the development of venetoclax (ABT-199), the first BH3 mimetic inhibitor approved by the FDA. The purpose of this review is to discuss the state-of-the-art in the development of drugs targeting Bcl-2 anti-apoptotic proteins and to highlight the potential of their application as single agents or in combination for improving anti-cancer therapy, focusing in particular on solid tumors.
Collapse
|
22
|
Paez‐Ribes M, González‐Gualda E, Doherty GJ, Muñoz‐Espín D. Targeting senescent cells in translational medicine. EMBO Mol Med 2019; 11:e10234. [PMID: 31746100 PMCID: PMC6895604 DOI: 10.15252/emmm.201810234] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Organismal ageing is a complex process driving progressive impairment of functionality and regenerative potential of tissues. Cellular senescence is a state of stable cell cycle arrest occurring in response to damage and stress and is considered a hallmark of ageing. Senescent cells accumulate in multiple organs during ageing, contribute to tissue dysfunction and give rise to pathological manifestations. Senescence is therefore a defining feature of a variety of human age-related disorders, including cancer, and targeted elimination of these cells has recently emerged as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration. In addition, in vivo identification of senescent cells has significant potential for early diagnosis of multiple pathologies. Here, we review existing senolytics, small molecules and drug delivery tools used in preclinical therapeutic strategies involving cellular senescence, as well as probes to trace senescent cells. We also review the clinical research landscape in senescence and discuss how identifying and targeting cellular senescence might positively affect pathological and ageing processes.
Collapse
Affiliation(s)
- Marta Paez‐Ribes
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Estela González‐Gualda
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Gary J Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusCambridgeUK
| | - Daniel Muñoz‐Espín
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
23
|
Structure-activity relationship studies on Bax activator SMBA1 for the treatment of ER-positive and triple-negative breast cancer. Eur J Med Chem 2019; 178:589-605. [DOI: 10.1016/j.ejmech.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022]
|
24
|
Zhang Y, He Z, Liu X, Chen Z, Sun J, Wu Z, Yang X, Chen X, Tang Z, Wang K. Oral administration of Angelica sinensis polysaccharide protects against pancreatic islets failure in type 2 diabetic mice: Pancreatic β-cell apoptosis inhibition. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Li T, Cui Y, Wu B. Molecular dynamics investigations of structural and functional changes in Bcl-2 induced by the novel antagonist BDA-366. J Biomol Struct Dyn 2018; 37:2527-2537. [DOI: 10.1080/07391102.2018.1491424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, P. R. China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
26
|
Probing Gallate-Mediated Selectivity and High-Affinity Binding of Epigallocatechin Gallate: a Way-Forward in the Design of Selective Inhibitors for Anti-apoptotic Bcl-2 Proteins. Appl Biochem Biotechnol 2018; 187:1061-1080. [PMID: 30155742 DOI: 10.1007/s12010-018-2863-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Selective inhibition is a key focus in the design of chemotherapeutic compounds that can abrogate the oncogenic activities of anti-apoptotic Bcl-2 proteins. Although recent efforts have led to the development of highly selective BH3 mimetics, setbacks such as toxicities have limited their use in cancer therapy. Epigallocatechingallate (EGCG) has been widely reported to selectively inhibit Bcl-2 and Bcl-xL compared to other green tea phenols due to its gallate group. Herein, we investigate the interaction dynamics of EGCG at the hydrophobic grooves of Bcl-2 and Bcl-xL and the consequential effects on their BH4 domains. Arg143 and Asp108 (Bcl-2), and Glu96 and Tyr195 (Bcl-xL) formed high-affinity hydrogen interactions with the gallate group while non-gallate groups of EGCG formed weak interactions. EGCG-bound proteins showed systemic perturbations of BH4 domains coupled with the burial of crucial surface-exposed residues such as Lys17 (Bcl-2) and Asp11 (Bcl-xL); hence, a distortion of non-canonical domain interactions. Interactions of gallate group of EGCG with key hydrophobic groove residues underlie EGCG selectivity while concurrent BH4 domain perturbations potentiate EGCG inhibitory activities. Findings will aid the optimization and design of selective inhibitors that could suppress anti-apoptotic activities of Bcl2-family proteins with minimal toxicities.
Collapse
|
27
|
Micro-Economics of Apoptosis in Cancer: ncRNAs Modulation of BCL-2 Family Members. Int J Mol Sci 2018; 19:ijms19040958. [PMID: 29570632 PMCID: PMC5979352 DOI: 10.3390/ijms19040958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022] Open
Abstract
In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology.
Collapse
|
28
|
Hou Z, Cui Y, Xing H, Mu X. Down-expression of poly(ADP-ribose) polymerase in p53-regulated pancreatic cancer cells. Oncol Lett 2018; 15:1943-1948. [PMID: 29434894 DOI: 10.3892/ol.2017.7500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
The present study investigated whether poly(ADP-ribose) polymerase (PARP) has an effect on p53-regulated pancreatic cancer. The results of the present study demonstrated that the expression of PARP affects proliferation and apoptosis of pancreatic cancer cells. Olaparib was used to suppress the expression level of PARP-1 in PanC-1 cells. Decreased expression of PARP-1 suppressed cell proliferation and induced apoptosis of PanC-1 cells when compared with controls. Furthermore, decreased expression of PARP-1 resulted in decreased levels of pro-caspase-3 expression, increased caspase-3 activity, suppressed B-cell lymphoma 2 (Bcl-2) protein expression and increased p53 protein expression in PanC-1 cells. Subsequently, ataxia telangiectasia mutated (ATM) activity was inhibited alongside down-expression of PARP-1 resulting in significantly decreased cellular viability of PanC-1 cells, increased p53 protein expression, decreased expression of pro-caspase-3, increased caspase-3 activity and suppressed Bcl-2 protein expression, when compared with PARP-1 suppression alone. Overall, the in vitro data confirmed that down-expression of PARP-1 suppressed cell proliferation and induced apoptosis of pancreatic cancer via ATM-deficient p53 signaling pathway.
Collapse
Affiliation(s)
- Zhenyu Hou
- The Second Department of Surgery, Nankai Hospital, Tianjin Medical University, Tianjin 300162, P.R. China
| | - Yunfeng Cui
- The Second Department of Surgery, Nankai Hospital, Tianjin Medical University, Tianjin 300162, P.R. China
| | - Huizhi Xing
- Department of General Surgery, The Affiliated Hospital, Logistics University of CATF, Tianjin 300162, P.R. China
| | - Xiaoyan Mu
- Department of General Surgery, The Affiliated Hospital, Logistics University of CATF, Tianjin 300162, P.R. China
| |
Collapse
|
29
|
2-aryl benzimidazole conjugate induced apoptosis in human breast cancer MCF-7 cells through caspase independent pathway. Apoptosis 2018; 22:118-134. [PMID: 27770267 DOI: 10.1007/s10495-016-1290-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Apoptosis is a representative form of programmed cell death, which has been assumed to be critical for cancer prevention. Thus, any agent that can induce apoptosis may be useful for cancer treatment and apoptosis induction is arguably the most potent defense against cancer promotion. In our previous studies, 2-aryl benzimidazole conjugates were synthesized and evaluated for their antiproliferative activity and one of the new molecule (2f) was considered as a potential lead. This lead molecule showed significant antiproliferative activity against human breast cancer cell line, MCF-7. The results of the present study revealed that this compound arrested the cell cycle at G2/M phase. Topoisomerase II inhibition assay and Western blot analysis suggested that this compound effectively inhibits topoisomerase II activity which leads to apoptotic cell death. Apoptosis induction in MCF-7 cells was further confirmed by loss of mitochondrial membrane potential (∆Ψm), release of cytochrome c from mitochondria, an increase in the level of apoptosis inducing factor (AIF), generation of reactive oxygen species (ROS), up regulation of proapoptotic protein Bax and down regulation of anti apoptotic protein Bcl-2. Apoptosis assay using Annexin V-FITC assay also suggested that this compound induced cell death by apoptosis. However, compound 2f induced apoptosis could not be reversed by Z-VAD-FMK (a pan-caspase inhibitor) demonstrated that the 2f induced apoptosis was caspase independent. Further, 2f treatment did not activate caspase-7 and caspase-9 activity, suggesting that this compound induced apoptosis in breast cancer cells via a caspase independent pathway. Most importantly, this compound was less toxic towards non-tumorigenic breast epithelial cells, MCF-10A. Furthermore, docking studies also support the potentiality of this molecule to bind to the DNA topoisomerase II.
Collapse
|
30
|
Deng J, Park D, Wang M, Nooka A, Deng Q, Matulis S, Kaufman J, Lonial S, Boise LH, Galipeau J, Deng X. BCL2-BH4 antagonist BDA-366 suppresses human myeloma growth. Oncotarget 2017; 7:27753-63. [PMID: 27049723 PMCID: PMC5053685 DOI: 10.18632/oncotarget.8513] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous plasma cell malignancy and remains incurable. B-cell lymphoma-2 (BCL2) protein correlates with the survival and the drug resistance of myeloma cells. BH3 mimetics have been developed to disrupt the binding between BCL2 and its pro-apoptotic BCL2 family partners for the treatment of MM, but with limited therapeutic efficacy. We recently identified a small molecule BDA-366 as a BCL2 BH4 domain antagonist, converting it from an anti-apoptotic into a pro-apoptotic molecule. In this study, we demonstrated that BDA-366 induces robust apoptosis in MM cell lines and primary MM cells by inducing BCL2 conformational change. Delivery of BDA-366 substantially suppressed the growth of human MM xenografts in NOD-scid/IL2Rγnull mice, without significant cytotoxic effects on normal hematopoietic cells or body weight. Thus, BDA-366 functions as a novel BH4-based BCL2 inhibitor and offers an entirely new tool for MM therapy.
Collapse
Affiliation(s)
- Jiusheng Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - Mengchang Wang
- The First Affiliated Hospital, Xi'An Jiaotong University, Xi'An, China
| | - Ajay Nooka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - Qiaoya Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - Shannon Matulis
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - Jonathan Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - Xingming Deng
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| |
Collapse
|
31
|
Vervloessem T, Akl H, Tousseyn T, De Smedt H, Parys JB, Bultynck G. Reciprocal sensitivity of diffuse large B-cell lymphoma cells to Bcl-2 inhibitors BIRD-2 versus venetoclax. Oncotarget 2017; 8:111656-111671. [PMID: 29340082 PMCID: PMC5762350 DOI: 10.18632/oncotarget.22898] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/16/2017] [Indexed: 01/26/2023] Open
Abstract
Bcl-2 is often upregulated in cancers to neutralize the BH3-only protein Bim at the mitochondria. BH3 mimetics (e.g. ABT-199 (venetoclax)) kill cancer cells by targeting Bcl-2's hydrophobic cleft and disrupting Bcl-2/Bim complexes. Some cancers with elevated Bcl-2 display poor responses towards BH3 mimetics, suggesting an additional function for anti-apoptotic Bcl-2 in these cancers. Indeed, Bcl-2 via its BH4 domain prevents cytotoxic Ca2+ release from the endoplasmic reticulum (ER) by directly inhibiting the inositol 1,4,5-trisphosphate receptor (IP3R). The cell-permeable Bcl-2/IP3R disruptor-2 (BIRD-2) peptide can kill these Bcl-2-dependent cancers by targeting Bcl-2's BH4 domain, unleashing pro-apoptotic Ca2+-release events. We compared eight "primed to death" diffuse large B-cell lymphoma cell lines (DLBCL) for their apoptotic sensitivity towards BIRD-2 and venetoclax. By determining their IC50 using cytometric cell-death analysis, we discovered a reciprocal sensitivity towards venetoclax versus BIRD-2. Using immunoblotting, we quantified the expression levels of IP3R2 and Bim in DLBCL cell lysates, revealing that BIRD-2 sensitivity correlated with IP3R2 levels but not with Bim levels. Moreover, the requirement of intracellular Ca2+ for BIRD-2- versus venetoclax-induced cell death was different. Indeed, BAPTA-AM suppressed BIRD-2-induced cell death, but promoted venetoclax-induced cell death in DLBCL cells. Finally, compared to single-agent treatments, combining BIRD-2 with venetoclax synergistically enhanced cell-death induction, correlating with a Ca2+-dependent upregulation of Bim after BIRD-2 treatment. Our findings suggest that some cancer cells require Bcl-2 proteins at the mitochondria, preventing Bax activation via its hydrophobic cleft, while others require Bcl-2 proteins at the ER, preventing cytotoxic Ca2+-signaling events via its BH4 domain.
Collapse
Affiliation(s)
- Tamara Vervloessem
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Haidar Akl
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut (LKI), Leuven, Belgium.,Current/Present address: Lebanese University, Department of Biology, Hadath, Lebanon
| | - Thomas Tousseyn
- KU Leuven, Translational Cell & Tissue Research, Department of Imaging & Pathology, Leuven, Belgium
| | - Humbert De Smedt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut (LKI), Leuven, Belgium
| |
Collapse
|
32
|
Xie Q, Xu Y, Gao W, Zhang Y, Su J, Liu Y, Guo Y, Dou M, Hu K, Sun L. TAT‑fused IP3R‑derived peptide enhances cisplatin sensitivity of ovarian cancer cells by increasing ER Ca2+ release. Int J Mol Med 2017; 41:809-817. [PMID: 29207009 PMCID: PMC5752180 DOI: 10.3892/ijmm.2017.3260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/25/2017] [Indexed: 01/04/2023] Open
Abstract
Ovarian cancer is the most common gynecological malignancy. At present, cisplatin is used to treat ovarian cancer; however, the development of cisplatin resistance during therapy is a common obstacle to achieving favorable outcomes. Recently, the B‑cell lymphoma 2 (Bcl‑2) BH4 domain has been reported to mediate the prosurvival activity of Bcl‑2 in cancer; however, the involvement of the BH4 domain of Bcl‑2 in the cisplatin resistance of ovarian carcinoma cells is not entirely clear. In this study, we observed the cytoplasmic and mitochondrial levels of Ca2+ by confocal laser microscopy. We also detected cell apoptosis using western blot analysis and flow cytometry. The present study demonstrated that TAT‑fused inositol 1,4,5‑trisphosphate receptor‑derived peptide (TAT‑IDPS), which targets the BH4 domain of Bcl‑2, increased cisplatin‑induced Ca2+ flux from the endoplasmic reticulum (ER) into the cytosol and mitochondria. In addition, TAT‑IDPS increased cisplatin‑induced expression of mitochondrial apoptosis‑associated proteins and ER stress‑associated proteins. These results indicated that TAT‑IDPS may enhance the cytotoxicity of cisplatin toward ovarian carcinoma cells by increasing ER Ca2+ release.
Collapse
Affiliation(s)
- Qi Xie
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Xu
- Department of Histology and Embryology, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Weinan Gao
- Department of Clinical Medicine, College of Clinical Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yong Zhang
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Su
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanan Liu
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuting Guo
- Department of Histology and Embryology, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Minghan Dou
- Department of Histology and Embryology, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Kebang Hu
- Department of Urology, First Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Liankun Sun
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
33
|
Gabellini C, Trisciuoglio D, Del Bufalo D. Non-canonical roles of Bcl-2 and Bcl-xL proteins: relevance of BH4 domain. Carcinogenesis 2017; 38:579-587. [PMID: 28203756 DOI: 10.1093/carcin/bgx016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 protein family is constituted by multidomain members originally identified as modulators of programmed cell death and whose expression is frequently misbalanced in cancer cells. The lead member Bcl-2 and its homologue Bcl-xL proteins are characterized by the presence of all four conserved BH domain and exert their antiapoptotic role mainly through the involvement of BH1, BH2 and BH3 homology domains, that mediate the interaction with the proapoptotic members of the same Bcl-2 family. The N-terminal BH4 domain of Bcl-2 and Bcl-xL is responsible for the interaction with other proteins that do not belong to Bcl-2 protein family. Beyond a classical role in inhibiting apoptosis, BH4 domain has been characterized as a crucial regulator of other important cellular functions attributed to Bcl-2 and Bcl-xL, including proliferation, autophagy, differentiation, DNA repair, cell migration, tumor progression and angiogenesis. During the last two decades a strong effort has been made to dissect the molecular pathways involved the capability of BH4 domain to regulate the canonical antiapoptotic and the non-canonical activities of Bcl-2 and Bcl-xL, creating the basis for the development of novel anticancer agents targeting this domain. Indeed, recent evidences obtained on in vitro and in vivo model of different cancer histotypes are confirming the promising therapeutic potential of BH4 domain inhibitors supporting their future employment as a novel anticancer strategy.
Collapse
Affiliation(s)
- Chiara Gabellini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy and.,Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
34
|
Novel quinoline-based oxadiazole derivatives induce G2/M arrest and apoptosis in human breast cancer MCF-7 cell line. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3078-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Vervliet T, Clerix E, Seitaj B, Ivanova H, Monaco G, Bultynck G. Modulation of Ca 2+ Signaling by Anti-apoptotic B-Cell Lymphoma 2 Proteins at the Endoplasmic Reticulum-Mitochondrial Interface. Front Oncol 2017; 7:75. [PMID: 28516063 PMCID: PMC5413508 DOI: 10.3389/fonc.2017.00075] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are important regulators of cell death and cell survival. Mitochondrial Ca2+ levels are critically involved in both of these processes. On the one hand, excessive mitochondrial Ca2+ leads to Ca2+-induced mitochondrial outer membrane permeabilization and thus apoptosis. On the other hand, mitochondria need Ca2+ in order to efficiently fuel the tricarboxylic acid cycle and maintain adequate mitochondrial bioenergetics. For obtaining this Ca2+, the mitochondria are largely dependent on close contact sites with the endoplasmic reticulum (ER), the so-called mitochondria-associated ER membranes. There, the inositol 1,4,5-trisphosphate receptors are responsible for the Ca2+ release from the ER. It comes as no surprise that this Ca2+ release from the ER and the subsequent Ca2+ uptake at the mitochondria are finely regulated. Cancer cells often modulate ER-Ca2+ transfer to the mitochondria in order to promote cell survival and to inhibit cell death. Important regulators of these Ca2+ signals and the onset of cancer are the B-cell lymphoma 2 (Bcl-2) family of proteins. An increasing number of reports highlight the ability of these Bcl-2-protein family members to finely regulate Ca2+ transfer from ER to mitochondria both in healthy cells and in cancer. In this review, we focus on recent insights into the dynamic regulation of ER-mitochondrial Ca2+ fluxes by Bcl-2-family members and how this impacts cell survival, cell death and mitochondrial energy production.
Collapse
Affiliation(s)
- Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Eva Clerix
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Bruno Seitaj
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
37
|
Decreased WWOX expression promotes angiogenesis in osteosarcoma. Oncotarget 2017; 8:60917-60932. [PMID: 28977834 PMCID: PMC5617394 DOI: 10.18632/oncotarget.17126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/30/2017] [Indexed: 11/25/2022] Open
Abstract
WWOX (WW domain-containing oxidoreductase) is known to be an important tumor suppressor in cancer. In this study, we used samples from 201 osteosarcoma patients to investigate the effects of WWOX on angiogenesis and invasion. WWOX levels were negatively correlated with RUNX2 and VEGF levels, but were not correlated with OPN levels. Among the clinicopathological characteristics examined, WWOX was associated only with response to neoadjuvant chemotherapy, and its expression in osteosarcoma tissues was a predictor of disease-free survival. WWOX promoted apoptosis and inhibited invasion and expression of bcl-2, OPN, RUNX2, and VEGF in osteosarcoma cells in vitro. In MG-63 cells, bcl-2 increased VEGF expression, while RUNX2 increased VEGF and OPN expression. Administration of DNA methylation inhibitors increased WWOX expression in MG-63 cells and methylation of WWOX gene promoter CpG island in the osteosarcoma of patients was associated with suppression of WWOX expression. Overexpression of WWOX in osteosarcoma cells inhibited tube formation in co-cultured HUVEC cells, and high WWOX expression was associated with decreased microvessel density (MVD). These results suggest that reduced WWOX expression in osteosarcoma inhibits apoptosis, promotes invasion and increases MVD.
Collapse
|
38
|
Soto-Gamez A, Demaria M. Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 2017; 22:786-795. [PMID: 28111332 DOI: 10.1016/j.drudis.2017.01.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Organismal aging is a multifactorial process characterized by the onset of degenerative conditions and cancer. One of the key drivers of aging is cellular senescence, a state of irreversible growth arrest induced by many pro-tumorigenic stresses. Senescent cells accumulate late in life and at sites of age-related pathologies, where they contribute to disease onset and progression through complex cell and non-cell autonomous effects. Here, we summarize the mechanisms by which cellular senescence can promote aging, and we offer an extensive description of current potential pharmacological interventions for senescent cells, highlighting limitations and suggesting alternatives.
Collapse
Affiliation(s)
- Abel Soto-Gamez
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Marco Demaria
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| |
Collapse
|
39
|
Ding Y, Ding C, Ye N, Liu Z, Wold EA, Chen H, Wild C, Shen Q, Zhou J. Discovery and development of natural product oridonin-inspired anticancer agents. Eur J Med Chem 2016; 122:102-117. [PMID: 27344488 DOI: 10.1016/j.ejmech.2016.06.015] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Natural products have historically been, and continue to be, an invaluable source for the discovery of various therapeutic agents. Oridonin, a natural diterpenoid widely applied in traditional Chinese medicines, exhibits a broad range of biological effects including anticancer and anti-inflammatory activities. To further improve its potency, aqueous solubility and bioavailability, the oridonin template serves as an exciting platform for drug discovery to yield better candidates with unique targets and enhanced drug properties. A number of oridonin derivatives (e.g. HAO472) have been designed and synthesized, and have contributed to substantial progress in the identification of new agents and relevant molecular mechanistic studies toward the treatment of human cancers and other diseases. This review summarizes the recent advances in medicinal chemistry on the explorations of novel oridonin analogues as potential anticancer therapeutics, and provides a detailed discussion of future directions for the development and progression of this class of molecules into the clinic.
Collapse
Affiliation(s)
- Ye Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Chunyong Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Christopher Wild
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Qiang Shen
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States.
| |
Collapse
|