1
|
Mohammed I, Sagurthi SR. Current Approaches and Strategies Applied in First-in-class Drug Discovery. ChemMedChem 2024:e202400639. [PMID: 39648151 DOI: 10.1002/cmdc.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
First-in-class drug discovery (FICDD) offers novel therapies, new biological targets and mechanisms of action (MOAs) toward targeting various diseases and provides opportunities to understand unexplored biology and to target unmet diseases. Current screening approaches followed in FICDD for discovery of hit and lead molecules can be broadly categorized and discussed under phenotypic drug discovery (PDD) and target-based drug discovery (TBDD). Each category has been further classified and described with suitable examples from the literature outlining the current trends in screening approaches applied in small molecule drug discovery (SMDD). Similarly, recent applications of functional genomics, structural biology, artificial intelligence (AI), machine learning (ML), and other such advanced approaches in FICDD have also been highlighted in the article. Further, some of the current medicinal chemistry strategies applied during discovery of hits and optimization studies such as hit-to-lead (HTL) and lead optimization (LO) have been simultaneously overviewed in this article.
Collapse
Affiliation(s)
- Idrees Mohammed
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, Telangana, India
| | - Someswar Rao Sagurthi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, Telangana, India
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
2
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
3
|
Wilson C, Gardner JMF, Gray DW, Baragana B, Wyatt PG, Cookson A, Thompson S, Mendoza-Martinez C, Bodkin MJ, Gilbert IH, Tarver GJ. Design of the Global Health chemical diversity library v2 for screening against infectious diseases. PLoS Negl Trop Dis 2023; 17:e0011799. [PMID: 38150490 PMCID: PMC10752525 DOI: 10.1371/journal.pntd.0011799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023] Open
Abstract
There is a need for novel chemical matter for phenotypic and target-based screens to find starting points for drug discovery programmes in neglected infectious diseases and non-hormonal contraceptives that disproportionately affect Low- and Middle-Income Countries (LMICs). In some disease areas multiple screens of corporate and other libraries have been carried out, giving rise to some valuable starting points and leading to preclinical candidates. Whilst in other disease areas, little screening has been carried out. Much screening against pathogens has been conducted phenotypically as there are few robustly validated protein targets. However, many of the active compound series identified share the same molecular targets. To address the need for new chemical material, in this article we describe the design of a new library, designed for screening in drug discovery programmes for neglected infectious diseases. The compounds have been selected from the Enamine REAL (REadily AccessibLe) library, a virtual library which contains approximately 4.5 billion molecules. The molecules theoretically can be synthesized quickly using commercially available intermediates and building blocks. The vast majority of these have not been prepared before, so this is a source of novel compounds. In this paper we describe the design of a diverse library of 30,000 compounds from this collection (graphical abstract). The new library will be made available to laboratories working in neglected infectious diseases, subject to a review process. The project has been supported by the Bill & Melinda Gates Foundation and the Wellcome Trust (Wellcome).
Collapse
Affiliation(s)
- Caroline Wilson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - J. Mark F. Gardner
- AMG Consultants Ltd, Discovery Park House, Ramsgate Road, Sandwich, Kent, United Kingdom
| | - David W. Gray
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Beatriz Baragana
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Paul G. Wyatt
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Alex Cookson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Cesar Mendoza-Martinez
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Michael J. Bodkin
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Ian H. Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Gary J. Tarver
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
4
|
Djoumbou-Feunang Y, Wilmot J, Kinney J, Chanda P, Yu P, Sader A, Sharifi M, Smith S, Ou J, Hu J, Shipp E, Tomandl D, Kumpatla SP. Cheminformatics and artificial intelligence for accelerating agrochemical discovery. Front Chem 2023; 11:1292027. [PMID: 38093816 PMCID: PMC10716421 DOI: 10.3389/fchem.2023.1292027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 10/17/2024] Open
Abstract
The global cost-benefit analysis of pesticide use during the last 30 years has been characterized by a significant increase during the period from 1990 to 2007 followed by a decline. This observation can be attributed to several factors including, but not limited to, pest resistance, lack of novelty with respect to modes of action or classes of chemistry, and regulatory action. Due to current and projected increases of the global population, it is evident that the demand for food, and consequently, the usage of pesticides to improve yields will increase. Addressing these challenges and needs while promoting new crop protection agents through an increasingly stringent regulatory landscape requires the development and integration of infrastructures for innovative, cost- and time-effective discovery and development of novel and sustainable molecules. Significant advances in artificial intelligence (AI) and cheminformatics over the last two decades have improved the decision-making power of research scientists in the discovery of bioactive molecules. AI- and cheminformatics-driven molecule discovery offers the opportunity of moving experiments from the greenhouse to a virtual environment where thousands to billions of molecules can be investigated at a rapid pace, providing unbiased hypothesis for lead generation, optimization, and effective suggestions for compound synthesis and testing. To date, this is illustrated to a far lesser extent in the publicly available agrochemical research literature compared to drug discovery. In this review, we provide an overview of the crop protection discovery pipeline and how traditional, cheminformatics, and AI technologies can help to address the needs and challenges of agrochemical discovery towards rapidly developing novel and more sustainable products.
Collapse
Affiliation(s)
| | - Jeremy Wilmot
- Corteva Agriscience, Crop Protection Discovery and Development, Indianapolis, IN, United States
| | - John Kinney
- Corteva Agriscience, Farming Solutions and Digital, Indianapolis, IN, United States
| | - Pritam Chanda
- Corteva Agriscience, Farming Solutions and Digital, Indianapolis, IN, United States
| | - Pulan Yu
- Corteva Agriscience, Crop Protection Discovery and Development, Indianapolis, IN, United States
| | - Avery Sader
- Corteva Agriscience, Crop Protection Discovery and Development, Indianapolis, IN, United States
| | - Max Sharifi
- Corteva Agriscience, Regulatory and Stewardship, Indianapolis, IN, United States
| | - Scott Smith
- Corteva Agriscience, Farming Solutions and Digital, Indianapolis, IN, United States
| | - Junjun Ou
- Corteva Agriscience, Crop Protection Discovery and Development, Indianapolis, IN, United States
| | - Jie Hu
- Corteva Agriscience, Farming Solutions and Digital, Indianapolis, IN, United States
| | - Elizabeth Shipp
- Corteva Agriscience UK Limited, Regulation Innovation Center, Abingdon, United Kingdom
| | | | | |
Collapse
|
5
|
Jia X, Fan S, Dong W, Li S, Zhang Y, Ma Y, Wang S. Setmelanotide optimization through fragment-growing, molecular docking in-silico method targeting MC4 receptor. J Biomol Struct Dyn 2023; 41:15411-15420. [PMID: 37126536 DOI: 10.1080/07391102.2023.2204385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/28/2023] [Indexed: 05/02/2023]
Abstract
Obesity has emerged as a global issue, but with the complex structures of multiple related important targets and their agonists or antagonists determined, the mechanism of ligand-protein interaction may offer new chances for developing new generation agonists anti-obesity. Based on the molecule surface of the cryo-EM protein structure 7AUE, we tried to replace D-Ala3 with D-Met in setmelanotide as the linker site for fragment-growing with De novo evolution. The simulation results indicate that the derivatives could improve the binding abilities with the melanocortin 4 receptor and the selectivity over the melanocortin 1 receptor. The improved selectivity of the newly designed derivatives is mainly due to the shape difference of the molecular surface at the orthosteric peptide-binding pocket between melanocortin 4 receptor and melanocortin 1 receptor. The new extended fragments could not only enhance the binding affinities but also function as a gripper to seize the pore, making it easier to balance and stabilize the other component of the new derivatives. Although it is challenging to synthesize the compounds designed in silico, this study may perhaps serve as a trigger for additional anti-obesity research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaopu Jia
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shuai Fan
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Weili Dong
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shaoyong Li
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ying Ma
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Lucas SCC, Börjesson U, Bostock MJ, Cuff J, Edfeldt F, Embrey KJ, Eriksson PO, Gohlke A, Gunnarson A, Lainchbury M, Milbradt AG, Moore R, Rawlins PB, Sinclair I, Stubbs C, Storer RI. Fragment screening at AstraZeneca: developing the next generation biophysics fragment set. RSC Med Chem 2022; 13:1052-1057. [PMID: 36324499 PMCID: PMC9491351 DOI: 10.1039/d2md00154c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/29/2022] [Indexed: 05/18/2024] Open
Abstract
Fragment based drug discovery is a critical part of the lead generation toolbox and relies heavily on a readily available, high quality fragment library. Over years of use, the AstraZeneca fragment set had become partially depleted and instances of compound deterioration had been found. It was recognised that a redevelopment was required. This provided an opportunity to evolve our screening sets strategy, whilst ensuring that the quality of the fragment set met the robust requirements of fragment screening campaigns. In this communication we share the strategy employed, in particular highlighting two aspects of our approach that we believe others in the community would benefit from, namely that; (i) fragments were selected with input from Medicinal Chemists at an early stage, and (ii) the library was arranged in a layered format to ensure maximum flexibility on a per target basis.
Collapse
Affiliation(s)
- Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Gothenburg Sweden
| | - Mark J Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - John Cuff
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca Alderley Park UK
| | - Fredrik Edfeldt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Gothenburg Sweden
| | - Kevin J Embrey
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Per-Olof Eriksson
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Gothenburg Sweden
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Anders Gunnarson
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Gothenburg Sweden
| | | | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Rachel Moore
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Alderley Park UK
| | - Philip B Rawlins
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Ian Sinclair
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca Alderley Park UK
| | - Christopher Stubbs
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - R Ian Storer
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| |
Collapse
|
7
|
Carbery A, Skyner R, von Delft F, Deane CM. Fragment Libraries Designed to Be Functionally Diverse Recover Protein Binding Information More Efficiently Than Standard Structurally Diverse Libraries. J Med Chem 2022; 65:11404-11413. [PMID: 35960886 PMCID: PMC9421645 DOI: 10.1021/acs.jmedchem.2c01004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Current fragment-based drug design relies on the efficient exploration of chemical space by using structurally diverse libraries of small fragments. However, structurally dissimilar compounds can exploit the same interactions and thus be functionally similar. Using three-dimensional structures of many fragments bound to multiple targets, we examined if a better strategy for selecting fragments for screening libraries exists. We show that structurally diverse fragments can be described as functionally redundant, often making the same interactions. Ranking fragments by the number of novel interactions they made, we show that functionally diverse selections of fragments substantially increase the amount of information recovered for unseen targets compared to the amounts recovered by other methods of selection. Using these results, we design small functionally efficient libraries that can give significantly more information about new protein targets than similarly sized structurally diverse libraries. By covering more functional space, we can generate more diverse sets of drug leads.
Collapse
Affiliation(s)
- Anna Carbery
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, U.K.,Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Rachael Skyner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.,Centre for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, U.K
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, U.K
| |
Collapse
|
8
|
Towards systematic exploration of chemical space: building the fragment library module in molecular property diagnostic suite. Mol Divers 2022:10.1007/s11030-022-10506-5. [PMID: 35925528 PMCID: PMC9362107 DOI: 10.1007/s11030-022-10506-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 11/04/2022]
Abstract
A fragment-based drug discovery (FBDD) approach has traditionally been of utmost significance in drug design studies. It allows the exploration of large chemical space to find novel scaffolds and chemotypes which can be improved into selective inhibitors with good affinity. In the current work, several public domain chemical libraries (ChEMBL, DrugCentral, PDB ligands, COCONUT, and SAVI) comprising bioactive and virtual molecules were retrieved to develop a fragment library. A systematic fragmentation method that breaks a given molecule into rings, linkers, and substituents was used to cleave the molecules and the fragments were analyzed. Further, only the ring framework was taken into the consideration to develop a fragment library that consists of a total number of 107,614 unique fragments. This set represents a rich diverse structure framework that covers a wide variety of yet-to-be-explored fragments for a wide range of small molecule-based applications. This fragment library is an integral part of the molecular property diagnostic suite (MPDS) suite that can be used with other modeling and informatics methods for FBDD approaches. The fragment library module of MPDS can be accessed at http://mpds.neist.res.in:8085.
Collapse
|
9
|
Fragment Screening by NMR. Methods Mol Biol 2021. [PMID: 33877602 DOI: 10.1007/978-1-0716-1197-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
This chapter describes the use of NMR to screen a fragment library as part of a fragment-based lead discovery (FBLD) campaign. The emphasis is on the practicalities involved in fragment screening by NMR, with particular attention to the use of 1D ligand-observed 1H NMR experiments. An overview of the theoretical considerations underlying the choice of method and experimental configuration is given, along with a discussion of steps that can be taken in order to minimize the risk of experimental artifacts often associated with the identification of low-affinity interactions.
Collapse
|
10
|
Caplin MJ, Foley DJ. Emergent synthetic methods for the modular advancement of sp 3-rich fragments. Chem Sci 2021; 12:4646-4660. [PMID: 34168751 PMCID: PMC8179648 DOI: 10.1039/d1sc00161b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/28/2021] [Indexed: 12/29/2022] Open
Abstract
Fragment-based drug discovery is an important and increasingly reliable technology for the delivery of clinical candidates. Notably, however, sp3-rich fragments are a largely untapped resource in molecular discovery, in part due to the lack of general and suitably robust chemical methods available to aid their development into higher affinity lead and drug compounds. This Perspective describes the challenges associated with developing sp3-rich fragments, and succinctly highlights recent advances in C(sp3)-H functionalisations of high potential value towards advancing fragment hits by 'growing' functionalised rings and chains from unconventional, carbon-centred vectors.
Collapse
Affiliation(s)
- Max J Caplin
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| | - Daniel J Foley
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| |
Collapse
|
11
|
St Denis JD, Hall RJ, Murray CW, Heightman TD, Rees DC. Fragment-based drug discovery: opportunities for organic synthesis. RSC Med Chem 2020; 12:321-329. [PMID: 34041484 PMCID: PMC8130625 DOI: 10.1039/d0md00375a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
This Review describes the increasing demand for organic synthesis to facilitate fragment-based drug discovery (FBDD), focusing on polar, unprotected fragments. In FBDD, X-ray crystal structures are used to design target molecules for synthesis with new groups added onto a fragment via specific growth vectors. This requires challenging synthesis which slows down drug discovery, and some fragments are not progressed into optimisation due to synthetic intractability. We have evaluated the output from Astex's fragment screenings for a number of programs, including urokinase-type plasminogen activator, hematopoietic prostaglandin D2 synthase, and hepatitis C virus NS3 protease-helicase, and identified fragments that were not elaborated due, in part, to a lack of commercially available analogues and/or suitable synthetic methodology. This represents an opportunity for the development of new synthetic research to enable rapid access to novel chemical space and fragment optimisation.
Collapse
Affiliation(s)
| | - Richard J Hall
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Tom D Heightman
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - David C Rees
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| |
Collapse
|
12
|
Liu M, Quinn RJ. Fragment-based screening with natural products for novel anti-parasitic disease drug discovery. Expert Opin Drug Discov 2019; 14:1283-1295. [PMID: 31512943 PMCID: PMC6816479 DOI: 10.1080/17460441.2019.1653849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022]
Abstract
Introduction: Fragment-based drug discovery can identify relatively simple compounds with low binding affinity due to fewer binding interactions with protein targets. FBDD reduces the library size and provides simpler starting points for subsequent chemical optimization of initial hits. A much greater proportion of chemical space can be sampled in fragment-based screening compared to larger molecules with typical molecular weights (MWs) of 250-500 g mol-1 used in high-throughput screening (HTS) libraries. Areas covered: The authors cover the role of natural products in fragment-based drug discovery against parasitic disease targets. They review the approaches to develop fragment-based libraries either using natural products or natural product-like compounds. The authors present approaches to fragment-based drug discovery against parasitic diseases and compare these libraries with the 3D attributes of natural products. Expert opinion: To effectively use the three-dimensional properties and the chemical diversity of natural products in fragment-based drug discovery against parasitic diseases, there needs to be a mind-shift. Library design, in the medicinal chemistry area, has acknowledged that escaping flat-land is very important to increase the chances of clinical success. Attempts to increase sp3 richness in fragment libraries are acknowledged. Sufficient low molecular weight natural products are known to create true natural product fragment libraries.
Collapse
Affiliation(s)
- Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Ronald J. Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| |
Collapse
|
13
|
Lim AT, Vincent IM, Barrett MP, Gilbert IH. Small Polar Hits against S. aureus: Screening, Initial Hit Optimization, and Metabolomic Studies. ACS OMEGA 2019; 4:19199-19215. [PMID: 31763544 PMCID: PMC6869403 DOI: 10.1021/acsomega.9b02507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The global prevalence of antibacterial resistance requires new antibacterial drugs with novel chemical scaffolds and modes of action. It is also vital to design compounds with optimal physicochemical properties to permeate the bacterial cell envelope. We described an approach of combining and integrating whole cell screening and metabolomics into early antibacterial drug discovery using a library of small polar compounds. Whole cell screening of a diverse library of small polar compounds against Staphylococcus aureus gave compound 2. Hit expansion was carried out to determine structure-activity relationships. A selection of compounds from this series, together with other screened active compounds, was subjected to an initial metabolomics study to provide a metabolic fingerprint of the mode of action. It was found that compound 2 and its analogues have a different mode of action from some of the known antibacterial compounds tested. This early study highlighted the potential of whole cell screening and metabolomics in early antibacterial drug discovery. Future works will require improving potency and performing orthogonal studies to confirm the modes of action.
Collapse
Affiliation(s)
- Andrew
S. T. Lim
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, U.K.
| | - Isabel M. Vincent
- Glasgow
Polyomics, University of Glasgow, Wolfson
Wohl Cancer Research Centre, Garscube Campus, Bearsden G61 1QH, U.K.
| | - Michael P. Barrett
- Glasgow
Polyomics, University of Glasgow, Wolfson
Wohl Cancer Research Centre, Garscube Campus, Bearsden G61 1QH, U.K.
- Wellcome
Centre for Molecular Parasitology, Institute of Infection, Immunity
and Inflammation, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Ian H. Gilbert
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, U.K.
| |
Collapse
|
14
|
Grygorenko OO, Volochnyuk DM, Ryabukhin SV, Judd DB. The Symbiotic Relationship Between Drug Discovery and Organic Chemistry. Chemistry 2019; 26:1196-1237. [PMID: 31429510 DOI: 10.1002/chem.201903232] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Indexed: 12/20/2022]
Abstract
All pharmaceutical products contain organic molecules; the source may be a natural product or a fully synthetic molecule, or a combination of both. Thus, it follows that organic chemistry underpins both existing and upcoming pharmaceutical products. The reverse relationship has also affected organic synthesis, changing its landscape towards increasingly complex targets. This Review article sets out to give a concise appraisal of this symbiotic relationship between organic chemistry and drug discovery, along with a discussion of the design concepts and highlighting key milestones along the journey. In particular, criteria for a high-quality compound library design enabling efficient virtual navigation of chemical space, as well as rise and fall of concepts for its synthetic exploration (such as combinatorial chemistry; diversity-, biology-, lead-, or fragment-oriented syntheses; and DNA-encoded libraries) are critically surveyed.
Collapse
Affiliation(s)
- Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine
| | - Dmitriy M Volochnyuk
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kiev, 02660, Ukraine
| | - Sergey V Ryabukhin
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine
| | - Duncan B Judd
- Awridian Ltd., Stevenage Bioscience Catalyst, Gunnelswood Road, Stevenage, Herts, SG1 2FX, UK
| |
Collapse
|
15
|
Heidrich J, Sperl LE, Boeckler FM. Embracing the Diversity of Halogen Bonding Motifs in Fragment-Based Drug Discovery-Construction of a Diversity-Optimized Halogen-Enriched Fragment Library. Front Chem 2019; 7:9. [PMID: 30834240 PMCID: PMC6387937 DOI: 10.3389/fchem.2019.00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022] Open
Abstract
Halogen bonds have recently gained attention in life sciences and drug discovery. However, it can be difficult to harness their full potential, when newly introducing them into an established hit or lead structure by molecular design. A possible solution to overcome this problem is the use of halogen-enriched fragment libraries (HEFLibs), which consist of chemical probes that provide the opportunity to identify halogen bonds as one of the main features of the binding mode. Initially, we have suggested the HEFLibs concept when constructing a focused library for finding p53 mutant stabilizers. Herein, we broaden and extent this concept aiming for a general HEFLib comprising a huge diversity of binding motifs and, thus, increasing the applicability to various targets. Using the construction principle of feature trees, we represent each halogenated fragment by treating all simple to complex substituents as modifiers of the central (hetero)arylhalide. This approach allows us to focus on the proximal binding interface around the halogen bond and, thus, its integration into a network of interactions based on the fragment's binding motif. As a first illustrative example, we generated a library of 198 fragments that unifies a two-fold strategy: Besides achieving a diversity-optimized basis of the library, we have extended this "core" by structurally similar "satellite compounds" that exhibit quite different halogen bonding interfaces. Tuning effects, i.e., increasing the magnitude of the σ-hole, can have an essential influence on the strength of the halogen bond. We were able to implement this key feature into the diversity selection, based on the rapid and efficient prediction of the highest positive electrostatic potential on the electron isodensity surface, representing the σ-hole, by VmaxPred.
Collapse
Affiliation(s)
- Johannes Heidrich
- Lab for Molecular Design & Pharmaceutical Biophysics, Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Laura E. Sperl
- Lab for Molecular Design & Pharmaceutical Biophysics, Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Frank M. Boeckler
- Lab for Molecular Design & Pharmaceutical Biophysics, Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
- Center for Bioinformatics Tübingen (ZBIT), Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Luise N, Wyatt EW, Tarver GJ, Wyatt PG. A Continuous Flow Strategy for the Facile Synthesis and Elaboration of Semi-Saturated Heterobicyclic Fragments. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nicola Luise
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| | - Eleanor W. Wyatt
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| | - Gary J. Tarver
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| | - Paul G. Wyatt
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| |
Collapse
|
17
|
Erlanson DA, Davis BJ, Jahnke W. Fragment-Based Drug Discovery: Advancing Fragments in the Absence of Crystal Structures. Cell Chem Biol 2018; 26:9-15. [PMID: 30482678 DOI: 10.1016/j.chembiol.2018.10.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/12/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023]
Abstract
Fragment-based drug discovery typically requires an interplay between screening methods, structural methods, and medicinal chemistry. X-ray crystallography is generally the method of choice to obtain three-dimensional structures of the bound ligand/protein complex, but this can sometimes be difficult, particularly for early, low-affinity fragment hits. In this Perspective, we discuss strategies to advance and evolve fragments in the absence of crystal structures of protein-fragment complexes, although the structure of the unliganded protein may be available. The strategies can involve other structural techniques, such as NMR spectroscopy, molecular modeling, or a variety of chemical approaches. Often, these strategies are aimed at guiding evolution of initial fragment hits to a stage where crystal structures can be obtained for further structure-based optimization.
Collapse
Affiliation(s)
- Daniel A Erlanson
- Carmot Therapeutics, Inc., 740 Heinz Avenue, Berkeley, CA 94710, USA.
| | - Ben J Davis
- Vernalis (R&D) Ltd, Granta Park, Cambridge, UK.
| | - Wolfgang Jahnke
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Novartis Campus, Basel, Switzerland.
| |
Collapse
|
18
|
Abstract
Herein we describe a method for the design, purchase, and assembly of a fragment-screening library from a list of commercially available compounds. The computational tools used in assessment of compound properties as well as the workflow for compound selection are provided for reference as implemented in commercially available software that is free and accessible to most academic users. The workflow can be modified as necessary to generate a fit-for-purpose fragment library with the desired compound property profiles. An analytical process for assessing the quality, identity, and suitability of a purchased fragment for inclusion in a screening collection is described. Results from our in-house library are presented as an example of compound progression through this quality control process.
Collapse
|
19
|
N-Acylhydrazones as drugs. Bioorg Med Chem Lett 2018; 28:2797-2806. [DOI: 10.1016/j.bmcl.2018.07.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 01/09/2023]
|
20
|
Luise N, Wyatt PG. Generation of Polar Semi-Saturated Bicyclic Pyrazoles for Fragment-Based Drug-Discovery Campaigns. Chemistry 2018; 24:10443-10451. [PMID: 29732638 DOI: 10.1002/chem.201801313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/27/2018] [Indexed: 12/13/2022]
Abstract
Synthesising polar semi-saturated bicyclic heterocycles can lead to better starting points for fragment-based drug discovery (FBDD) programs. We report the application of diverse chemistry to construct bicyclic systems from a common intermediate, where pyrazole, a privileged heteroaromatic able to bind effectively to biological targets, is fused to diverse saturated counterparts. The generated fragments can be further developed either after confirmation of their binding pose or early in the process, as their synthetic intermediates. Essential quality control (QC) for selection of small molecules to add to a fragment library is discussed.
Collapse
Affiliation(s)
- Nicola Luise
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Paul G Wyatt
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| |
Collapse
|
21
|
Bian Y, Xie XQS. Computational Fragment-Based Drug Design: Current Trends, Strategies, and Applications. AAPS JOURNAL 2018; 20:59. [PMID: 29633051 DOI: 10.1208/s12248-018-0216-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/08/2018] [Indexed: 01/08/2023]
Abstract
Fragment-based drug design (FBDD) has become an effective methodology for drug development for decades. Successful applications of this strategy brought both opportunities and challenges to the field of Pharmaceutical Science. Recent progress in the computational fragment-based drug design provide an additional approach for future research in a time- and labor-efficient manner. Combining multiple in silico methodologies, computational FBDD possesses flexibilities on fragment library selection, protein model generation, and fragments/compounds docking mode prediction. These characteristics provide computational FBDD superiority in designing novel and potential compounds for a certain target. The purpose of this review is to discuss the latest advances, ranging from commonly used strategies to novel concepts and technologies in computational fragment-based drug design. Particularly, in this review, specifications and advantages are compared between experimental and computational FBDD, and additionally, limitations and future prospective are discussed and emphasized.
Collapse
Affiliation(s)
- Yuemin Bian
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,NIH National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.,Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Xiang-Qun Sean Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,NIH National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA. .,Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA.
| |
Collapse
|
22
|
Prati F, Zuccotto F, Fletcher D, Convery MA, Fernandez‐Menendez R, Bates R, Encinas L, Zeng J, Chung C, De Dios Anton P, Mendoza‐Losana A, Mackenzie C, Green SR, Huggett M, Barros D, Wyatt PG, Ray PC. Screening of a Novel Fragment Library with Functional Complexity against Mycobacterium tuberculosis InhA. ChemMedChem 2018; 13:672-677. [PMID: 29399991 PMCID: PMC5915743 DOI: 10.1002/cmdc.201700774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 11/17/2022]
Abstract
Our findings reported herein provide support for the benefits of including functional group complexity (FGC) within fragments when screening against protein targets such as Mycobacterium tuberculosis InhA. We show that InhA fragment actives with FGC maintained their binding pose during elaboration. Furthermore, weak fragment hits with functional group handles also allowed for facile fragment elaboration to afford novel and potent InhA inhibitors with good ligand efficiency metrics for optimization.
Collapse
Affiliation(s)
- Federica Prati
- Drug Discovery Unit, College of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
- DPU TB Diseases of the Developing WorldTres Cantos Medicines Development CampusGlaxoSmithKline Severo Ochoa 2Tres Cantos28760MadridSpain
| | - Fabio Zuccotto
- Drug Discovery Unit, College of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Daniel Fletcher
- Drug Discovery Unit, College of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Maire A. Convery
- Platform Technology and SciencesMedicines Research Centre, GlaxoSmithKlineGunnels Wood RoadStevenage HertsSG1 2NYHertfordshireUK
| | - Raquel Fernandez‐Menendez
- DPU TB Diseases of the Developing WorldTres Cantos Medicines Development CampusGlaxoSmithKline Severo Ochoa 2Tres Cantos28760MadridSpain
| | - Robert Bates
- DPU TB Diseases of the Developing WorldTres Cantos Medicines Development CampusGlaxoSmithKline Severo Ochoa 2Tres Cantos28760MadridSpain
| | - Lourdes Encinas
- DPU TB Diseases of the Developing WorldTres Cantos Medicines Development CampusGlaxoSmithKline Severo Ochoa 2Tres Cantos28760MadridSpain
| | - Jingkun Zeng
- Platform Technology and SciencesMedicines Research Centre, GlaxoSmithKlineGunnels Wood RoadStevenage HertsSG1 2NYHertfordshireUK
| | - Chun‐wa Chung
- Platform Technology and SciencesMedicines Research Centre, GlaxoSmithKlineGunnels Wood RoadStevenage HertsSG1 2NYHertfordshireUK
| | - Paco De Dios Anton
- DPU TB Diseases of the Developing WorldTres Cantos Medicines Development CampusGlaxoSmithKline Severo Ochoa 2Tres Cantos28760MadridSpain
| | - Alfonso Mendoza‐Losana
- DPU TB Diseases of the Developing WorldTres Cantos Medicines Development CampusGlaxoSmithKline Severo Ochoa 2Tres Cantos28760MadridSpain
| | - Claire Mackenzie
- Drug Discovery Unit, College of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Simon R. Green
- Drug Discovery Unit, College of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Margaret Huggett
- Drug Discovery Unit, College of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - David Barros
- DPU TB Diseases of the Developing WorldTres Cantos Medicines Development CampusGlaxoSmithKline Severo Ochoa 2Tres Cantos28760MadridSpain
| | - Paul G. Wyatt
- Drug Discovery Unit, College of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Peter C. Ray
- Drug Discovery Unit, College of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| |
Collapse
|
23
|
NMR-Fragment Based Virtual Screening: A Brief Overview. Molecules 2018; 23:molecules23020233. [PMID: 29370102 PMCID: PMC6017141 DOI: 10.3390/molecules23020233] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023] Open
Abstract
Fragment-based drug discovery (FBDD) using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.
Collapse
|
24
|
Chino A, Seo R, Amano Y, Namatame I, Hamaguchi W, Honbou K, Mihara T, Yamazaki M, Tomishima M, Masuda N. Fragment-Based Discovery of Pyrimido[1,2- b]indazole PDE10A Inhibitors. Chem Pharm Bull (Tokyo) 2018; 66:286-294. [DOI: 10.1248/cpb.c17-00836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ayaka Chino
- Drug Discovery Research, Astellas Pharma Inc
| | - Ryushi Seo
- Drug Discovery Research, Astellas Pharma Inc
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mukherjee R, Chandra Pal A, Banerjee M. Enabling faster Go/No-Go decisions through secondary screens in anti-mycobacterial drug discovery. Tuberculosis (Edinb) 2017; 106:44-52. [PMID: 28802404 DOI: 10.1016/j.tube.2017.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Management of tuberculosis, already a global health emergency, is becoming increasingly challenging with extensive misuse of second line drugs and their inaccessibility to eighty percent of the eligible patients. Rising statistics of antimicrobial resistance underscores the need for a set of completely new and more effective class of compounds with novel mechanisms of action that can be administered in combination to replace and shorten the present intensive six months regimen. In this review, we stress on the importance and the successes of phenotypic screening for discovery of anti-mycobacterial compound and discuss the importance of performing secondary screens and counter screens to get early estimate on compound's potentials for a successful development. We also highlight the recent advances and the related caveats in the assays that have been developed and discuss new screening modalities that can be incorporated during hit-selection to gain a quick insight into the mechanism of action, thus enabling quicker decisions in a hit triage.
Collapse
Affiliation(s)
- Raju Mukherjee
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India.
| | - Anup Chandra Pal
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India
| | - Mousumi Banerjee
- Indian Institute of Technology, Tirupati, Renigunta Road, Tirupati, 517506, India
| |
Collapse
|