1
|
Choo MZY, Chai CLL. Promoting GAINs (Give Attention to Limitations in Assays) over PAINs Alerts: no PAINS, more GAINs. ChemMedChem 2022; 17:e202100710. [PMID: 35146933 DOI: 10.1002/cmdc.202100710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/14/2022] [Indexed: 11/09/2022]
Abstract
Many concepts and guidelines in medicinal chemistry have been introduced to aid in successful drug discovery and development. An example is the concept of Pan-Assay Interference Compounds (PAINS) and the elimination of such nuisance compounds from high-throughput screening (HTS) libraries. PAINs, along with other guidelines in medicinal chemistry, are like double-edged swords. If used appropriately, they may be beneficial for drug discovery and development. However, rigid and blind use of such concepts can hinder productivity. In this perspective, we introduce GAINS (give attention to limitations in assays) and highlight its relevance for successful drug discovery.
Collapse
Affiliation(s)
- Malcolm Z Y Choo
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, Singapore, 117543, Singapore
| | - Christina L L Chai
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, Singapore, 117543, Singapore
| |
Collapse
|
2
|
Singh N, Villoutreix BO. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Comput Struct Biotechnol J 2021; 19:2537-2548. [PMID: 33936562 PMCID: PMC8074526 DOI: 10.1016/j.csbj.2021.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas and in a short period of time, several vaccines have been developed. But, while the race to find vaccines for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds. Finally, we question the overall lack of discussion and plan observed in academic research in many countries during this crisis and suggest that there is room for improvement.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Bruno O. Villoutreix
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| |
Collapse
|
3
|
Mozhaitsev ES, Zakharenko AL, Suslov EV, Korchagina DV, Zakharova OD, Vasil'eva IA, Chepanova AA, Black E, Patel J, Chand R, Reynisson J, Leung IKH, Volcho KP, Salakhutdinov NF, Lavrik OI. Novel Inhibitors of DNA Repair Enzyme TDP1 Combining Monoterpenoid and Adamantane Fragments. Anticancer Agents Med Chem 2020; 19:463-472. [PMID: 30523770 DOI: 10.2174/1871520619666181207094243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND OBJECTIVE The DNA repair enzyme tyrosyl-DNA-phosphodiesterase 1 (TDP1) is a current inhibition target to improve the efficacy of cancer chemotherapy. Previous studies showed that compounds combining adamantane and monoterpenoid fragments are active against TDP1 enzyme. This investigation is focused on the synthesis of monoterpenoid derived esters of 1-adamantane carboxylic acid as TDP1 inhibitors. METHODS New esters were synthesized by the interaction between 1-adamantane carboxylic acid chloride and monoterpenoid alcohols. The esters were tested against TDP1 and its binding to the enzyme was modeling. RESULTS 13 Novel ester-based TDP1 inhibitors were synthesized with yields of 21-94%; of these, nine esters had not been previously described. A number of the esters were found to inhibit TDP1, with IC50 values ranging from 0.86-4.08 µM. Molecular modelling against the TDP1 crystal structure showed a good fit of the active esters in the catalytic pocket, explaining their potency. A non-toxic dose of ester, containing a 3,7- dimethyloctanol fragment, was found to enhance the cytotoxic effect of topotecan, a clinically used anti-cancer drug, against the human lung adenocarcinoma cell line A549. CONCLUSION The esters synthesized were found to be active against TDP1 in the lower micromolar concentration range, with these findings being corroborated by molecular modeling. Simultaneous action of the ester synthesized from 3,7-dimethyloctanol-1 and topotecan revealed a synergistic effect.
Collapse
Affiliation(s)
- Evgenii S Mozhaitsev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Alexandra L Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Evgeniy V Suslov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Dina V Korchagina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Olga D Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Inna A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Arina A Chepanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Ellena Black
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Jinal Patel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Raina Chand
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Konstantin P Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, 2, Pirogova Str., Novosibirsk, 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, 2, Pirogova Str., Novosibirsk, 630090, Russian Federation
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, 2, Pirogova Str., Novosibirsk, 630090, Russian Federation
| |
Collapse
|
4
|
Kanlaya R, Thongboonkerd V. Molecular Mechanisms of Epigallocatechin-3-Gallate for Prevention of Chronic Kidney Disease and Renal Fibrosis: Preclinical Evidence. Curr Dev Nutr 2019; 3:nzz101. [PMID: 31555758 PMCID: PMC6752729 DOI: 10.1093/cdn/nzz101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a common public health problem worldwide characterized by gradual decline of renal function over months/years accompanied by renal fibrosis and failure in tissue wound healing after sustained injury. Patients with CKD frequently present with profound signs/symptoms that require medical treatment, mostly culminating in hemodialysis and renal transplantation. To prevent CKD more efficiently, there is an urgent need for better understanding of the pathogenic mechanisms and molecular pathways of the disease pathogenesis and progression, and for developing novel therapeutic targets. Recently, several lines of evidence have shown that epigallocatechin-3-gallate (EGCG), an abundant phytochemical polyphenol derived from Camellia sinensis, might be a promising bioactive compound for prevention of CKD development/progression. This review summarizes current knowledge of molecular mechanisms underlying renoprotective roles of EGCG in CKD based on available preclinical evidence (from both in vitro and in vivo animal studies), particularly its antioxidant property through preservation of mitochondrial function and activation of Nrf2 (nuclear factor erythroid 2-related factor 2)/HO-1 (heme oxygenase-1) signaling, anti-inflammatory activity, and protective effect against epithelial mesenchymal transition. Finally, future perspectives, challenges, and concerns regarding its clinical use in CKD and renal fibrosis are discussed.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Dantas RF, Evangelista TCS, Neves BJ, Senger MR, Andrade CH, Ferreira SB, Silva-Junior FP. Dealing with frequent hitters in drug discovery: a multidisciplinary view on the issue of filtering compounds on biological screenings. Expert Opin Drug Discov 2019; 14:1269-1282. [DOI: 10.1080/17460441.2019.1654453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rafael Ferreira Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tereza Cristina Santos Evangelista
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- LabChem – Laboratory of Cheminformatics, Centro Universitário de Anápolis, UniEVANGÉLICA, Anápolis, Brazil
| | - Mario Roberto Senger
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sabrina Baptista Ferreira
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Floriano Paes Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Siramshetty VB, Preissner R, Gohlke BO. Exploring Activity Profiles of PAINS and Their Structural Context in Target–Ligand Complexes. J Chem Inf Model 2018; 58:1847-1857. [DOI: 10.1021/acs.jcim.8b00385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vishal B. Siramshetty
- Structural Bioinformatics Group, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
- BB3R - Berlin Brandenburg 3R Graduate School, Freie Universität Berlin, 14195 Berlin, Germany
| | - Robert Preissner
- Structural Bioinformatics Group, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
- BB3R - Berlin Brandenburg 3R Graduate School, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bjoern-Oliver Gohlke
- Structural Bioinformatics Group, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
| |
Collapse
|