1
|
Zhong C, Tang Z, Yu X, Wang L, Ren C, Qin L, Zhou P. Advances in the Construction and Application of Bone-on-a-Chip Based on Microfluidic Technologies. J Biomed Mater Res B Appl Biomater 2024; 112:e35502. [PMID: 39555794 DOI: 10.1002/jbm.b.35502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Bone-on-a-chip (BOC) models that based on microfluidic technology have widely applied to understand bone physiology and the pathogenesis of related diseases. In this review, we provide an overview of bone biology and related diseases, explain the advantages and applications of microfluidic technology in the construction of BOC models, and summarize their progress in physiology, pathology, and drug development. Finally, we discussed the problems to be solved and the future directions of microfluidic technology and BOC platforms, so as to provide a reference for researchers to design better BOC models.
Collapse
Affiliation(s)
- Chang Zhong
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Zihui Tang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Xin Yu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Lu Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Chenyuan Ren
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Gansu Health Vocational College, Lanzhou, China
| | - Ping Zhou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Shang J, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, Zhao J, Liang W, Zeng B. Recent developments in nanomaterials for upgrading treatment of orthopedics diseases. Front Bioeng Biotechnol 2023; 11:1221365. [PMID: 37621999 PMCID: PMC10446844 DOI: 10.3389/fbioe.2023.1221365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
Nanotechnology has changed science in the last three decades. Recent applications of nanotechnology in the disciplines of medicine and biology have enhanced medical diagnostics, manufacturing, and drug delivery. The latest studies have demonstrated this modern technology's potential for developing novel methods of disease detection and treatment, particularly in orthopedics. According to recent developments in bone tissue engineering, implantable substances, diagnostics and treatment, and surface adhesives, nanomedicine has revolutionized orthopedics. Numerous nanomaterials with distinctive chemical, physical, and biological properties have been engineered to generate innovative medication delivery methods for the local, sustained, and targeted delivery of drugs with enhanced therapeutic efficacy and minimal or no toxicity, indicating a very promising strategy for effectively controlling illnesses. Extensive study has been carried out on the applications of nanotechnology, particularly in orthopedics. Nanotechnology can revolutionize orthopedics cure, diagnosis, and research. Drug delivery precision employing nanotechnology using gold and liposome nanoparticles has shown especially encouraging results. Moreover, the delivery of drugs and biologics for osteosarcoma is actively investigated. Different kind of biosensors and nanoparticles has been used in the diagnosis of bone disorders, for example, renal osteodystrophy, Paget's disease, and osteoporosis. The major hurdles to the commercialization of nanotechnology-based composite are eventually examined, thus helping in eliminating the limits in connection to some pre-existing biomaterials for orthopedics, important variables like implant life, quality, cure cost, and pain and relief from pain. The potential for nanotechnology in orthopedics is tremendous, and most of it looks to remain unexplored, but not without challenges. This review aims to highlight the up tp date developments in nanotechnology for boosting the treatment modalities for orthopedic ailments. Moreover, we also highlighted unmet requirements and present barriers to the practical adoption of biomimetic nanotechnology-based orthopedic treatments.
Collapse
Affiliation(s)
- Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
3
|
Kim MK, Paek K, Woo SM, Kim JA. Bone-on-a-Chip: Biomimetic Models Based on Microfluidic Technologies for Biomedical Applications. ACS Biomater Sci Eng 2023. [PMID: 37183366 DOI: 10.1021/acsbiomaterials.3c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
With the increasing importance of preclinical evaluation of newly developed drugs or treatments, in vitro organ or disease models are necessary. Although various organ-specific on-chip (organ-on-a-chip, or OOC) systems have been developed as emerging in vitro models, bone-on-a-chip (BOC) systems that recapitulate the bone microenvironment have been less developed or reviewed compared with other OOCs. The bone is one of the most dynamic organs and undergoes continuous remodeling throughout its lifetime. The aging population is growing worldwide, and healthcare costs are rising rapidly. Since in vitro BOC models that recapitulate native bone niches and pathological features can be important for studying the underlying mechanism of orthopedic diseases and predicting drug responses in preclinical trials instead of in animals, the development of biomimetic BOCs with high efficiency and fidelity will be accelerated further. Here, we review recently engineered BOCs developed using various microfluidic technologies and investigate their use to model the bone microenvironment. We have also explored various biomimetic strategies based on biological, geometrical, and biomechanical cues for biomedical applications of BOCs. Finally, we addressed the limitations and challenging issues of current BOCs that should be overcome to obtain more acceptable BOCs in the biomedical and pharmaceutical industries.
Collapse
Affiliation(s)
- Min Kyeong Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyurim Paek
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Mi Woo
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| |
Collapse
|
4
|
Ong LJY, Fan X, Rujia Sun A, Mei L, Toh YC, Prasadam I. Controlling Microenvironments with Organs-on-Chips for Osteoarthritis Modelling. Cells 2023; 12:cells12040579. [PMID: 36831245 PMCID: PMC9954502 DOI: 10.3390/cells12040579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoarthritis (OA) remains a prevalent disease affecting more than 20% of the global population, resulting in morbidity and lower quality of life for patients. The study of OA pathophysiology remains predominantly in animal models due to the complexities of mimicking the physiological environment surrounding the joint tissue. Recent development in microfluidic organ-on-chip (OoC) systems have demonstrated various techniques to mimic and modulate tissue physiological environments. Adaptations of these techniques have demonstrated success in capturing a joint tissue's tissue physiology for studying the mechanism of OA. Adapting these techniques and strategies can help create human-specific in vitro models that recapitulate the cellular processes involved in OA. This review aims to comprehensively summarise various demonstrations of microfluidic platforms in mimicking joint microenvironments for future platform design iterations.
Collapse
Affiliation(s)
- Louis Jun Ye Ong
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Correspondence: (L.J.Y.O.); (I.P.)
| | - Xiwei Fan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Antonia Rujia Sun
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Lin Mei
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Centre for Microbiome Research, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Indira Prasadam
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Correspondence: (L.J.Y.O.); (I.P.)
| |
Collapse
|
5
|
Oudda S, Ali AM, Chien AL, Park S. Leveraging Tissue Engineering for Skin Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:97-113. [PMID: 36484897 DOI: 10.1007/5584_2022_755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioengineered in vitro three-dimensional (3D) skin model has emerged as a promising tool for recapitulating different types of skin cancer and performing pre-clinical tests. However, a full-thickness 3D model including the epidermis, dermis, and hypodermis layers is scarce despite its significance in human physiology and diverse biological processes. In this book chapter, an attempt has been made to summarize various skin cancer models, including utilized skin layers, materials, cell lines, specific treatments, and fabrication techniques for three types of skin cancer: melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Subsequently, current limitations and future directions of skin cancer models are discussed. The knowledge of the current status of skin cancer models can provide various potential applications in cancer research and thus a more effective way for cancer treatment.
Collapse
Affiliation(s)
- Sumayah Oudda
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Abdulla M Ali
- The Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
6
|
Chen MQ. Recent Advances and Perspective of Nanotechnology-Based Implants for Orthopedic Applications. Front Bioeng Biotechnol 2022; 10:878257. [PMID: 35547165 PMCID: PMC9082310 DOI: 10.3389/fbioe.2022.878257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bioimplant engineering strives to provide biological replacements for regenerating, retaining, or modifying injured tissues and/or organ function. Modern advanced material technology breakthroughs have aided in diversifying ingredients used in orthopaedic implant applications. As such, nanoparticles may mimic the surface features of real tissues, particularly in terms of wettability, topography, chemistry, and energy. Additionally, the new features of nanoparticles support their usage in enhancing the development of various tissues. The current study establishes the groundwork for nanotechnology-driven biomaterials by elucidating key design issues that affect the success or failure of an orthopaedic implant, its antibacterial/antimicrobial activity, response to cell attachment propagation, and differentiation. The possible use of nanoparticles (in the form of nanosized surface or a usable nanocoating applied to the implant’s surface) can solve a number of problems (i.e., bacterial adhesion and corrosion resilience) associated with conventional metallic or non-metallic implants, particularly when implant techniques are optimised. Orthopaedic biomaterials’ prospects (i.e., pores architectures, 3D implants, and smart biomaterials) are intriguing in achieving desired implant characteristics and structure exhibiting stimuli-responsive attitude. The primary barriers to commercialization of nanotechnology-based composites are ultimately discussed, therefore assisting in overcoming the constraints in relation to certain pre-existing orthopaedic biomaterials, critical factors such as quality, implant life, treatment cost, and pain alleviation.
Collapse
Affiliation(s)
- Ming-Qi Chen
- Traumatic Orthopedics Yantai Mountain Hospital, Yantai, China
| |
Collapse
|
7
|
Hodgkinson T, Amado IN, O'Brien FJ, Kennedy OD. The role of mechanobiology in bone and cartilage model systems in characterizing initiation and progression of osteoarthritis. APL Bioeng 2022. [DOI: 10.1063/5.0068277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tom Hodgkinson
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Isabel N. Amado
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fergal J. O'Brien
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials Bio-Engineering Research Centre (AMBER), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials Bio-Engineering Research Centre (AMBER), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Lipreri MV, Baldini N, Graziani G, Avnet S. Perfused Platforms to Mimic Bone Microenvironment at the Macro/Milli/Microscale: Pros and Cons. Front Cell Dev Biol 2022; 9:760667. [PMID: 35047495 PMCID: PMC8762164 DOI: 10.3389/fcell.2021.760667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
As life expectancy increases, the population experiences progressive ageing. Ageing, in turn, is connected to an increase in bone-related diseases (i.e., osteoporosis and increased risk of fractures). Hence, the search for new approaches to study the occurrence of bone-related diseases and to develop new drugs for their prevention and treatment becomes more pressing. However, to date, a reliable in vitro model that can fully recapitulate the characteristics of bone tissue, either in physiological or altered conditions, is not available. Indeed, current methods for modelling normal and pathological bone are poor predictors of treatment outcomes in humans, as they fail to mimic the in vivo cellular microenvironment and tissue complexity. Bone, in fact, is a dynamic network including differently specialized cells and the extracellular matrix, constantly subjected to external and internal stimuli. To this regard, perfused vascularized models are a novel field of investigation that can offer a new technological approach to overcome the limitations of traditional cell culture methods. It allows the combination of perfusion, mechanical and biochemical stimuli, biological cues, biomaterials (mimicking the extracellular matrix of bone), and multiple cell types. This review will discuss macro, milli, and microscale perfused devices designed to model bone structure and microenvironment, focusing on the role of perfusion and encompassing different degrees of complexity. These devices are a very first, though promising, step for the development of 3D in vitro platforms for preclinical screening of novel anabolic or anti-catabolic therapeutic approaches to improve bone health.
Collapse
Affiliation(s)
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Biomedical Science and Technologies Lab, IRCSS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gabriela Graziani
- Laboratory for NanoBiotechnology (NaBi), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
10
|
Bartolotti I, Roseti L, Petretta M, Grigolo B, Desando G. A Roadmap of In Vitro Models in Osteoarthritis: A Focus on Their Biological Relevance in Regenerative Medicine. J Clin Med 2021; 10:1920. [PMID: 33925222 PMCID: PMC8124812 DOI: 10.3390/jcm10091920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a multifaceted musculoskeletal disorder, with a high prevalence worldwide. Articular cartilage and synovial membrane are among the main biological targets in the OA microenvironment. Gaining more knowledge on the accuracy of preclinical in vitro OA models could open innovative avenues in regenerative medicine to bridge major gaps, especially in translation from animals to humans. Our methodological approach entailed searches on Scopus, the Web of Science Core Collection, and EMBASE databases to select the most relevant preclinical in vitro models for studying OA. Predicting the biological response of regenerative strategies requires developing relevant preclinical models able to mimic the OA milieu influencing tissue responses and organ complexity. In this light, standard 2D culture models lack critical properties beyond cell biology, while animal models suffer from several limitations due to species differences. In the literature, most of the in vitro models only recapitulate a tissue compartment, by providing fragmented results. Biotechnological advances may enable scientists to generate new in vitro models that combine easy manipulation and organ complexity. Here, we review the state-of-the-art of preclinical in vitro models in OA and outline how the different preclinical systems (inflammatory/biomechanical/microfluidic models) may be valid tools in regenerative medicine, describing their pros and cons. We then discuss the prospects of specific and combinatorial models to predict biological responses following regenerative approaches focusing on mesenchymal stromal cells (MSCs)-based therapies to reduce animal testing.
Collapse
Affiliation(s)
- Isabella Bartolotti
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (I.B.); (M.P.); (B.G.)
| | - Livia Roseti
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (I.B.); (M.P.); (B.G.)
| | - Mauro Petretta
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (I.B.); (M.P.); (B.G.)
- RegenHu Company, Z.I Du Vivier 22, 1690 Villaz-St-Pierre, Switzerland
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (I.B.); (M.P.); (B.G.)
| | - Giovanna Desando
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (I.B.); (M.P.); (B.G.)
| |
Collapse
|
11
|
Frassica MT, Grunlan MA. Perspectives on Synthetic Materials to Guide Tissue Regeneration for Osteochondral Defect Repair. ACS Biomater Sci Eng 2020; 6:4324-4336. [PMID: 33455185 DOI: 10.1021/acsbiomaterials.0c00753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative engineering holds the potential to treat clinically pervasive osteochondral defects (OCDs). In a synthetic materials-guided approach, the scaffold's chemical and physical properties alone instruct cellular behavior in order to effect regeneration, referred to herein as "instructive" properties. While this alleviates the costs and off-target risks associated with exogenous growth factors, the scaffold must be potently instructive to achieve tissue growth. Moreover, toward achieving functionality, such a scaffold should also recapitulate the spatial complexity of the osteochondral tissues. Thus, in addition to the regeneration of the articular cartilage and underlying cancellous bone, the complex osteochondral interface, composed of calcified cartilage and subchondral bone, should also be restored. In this Perspective, we highlight recent synthetic-based, instructive osteochondral scaffolds that have leveraged new material chemistries as well as innovative fabrication strategies. In particular, scaffolds with spatially complex chemical and morphological features have been prepared with electrospinning, solvent-casting-particulate-leaching, freeze-drying, and additive manufacturing. While few synthetic scaffolds have advanced to clinical studies to treat OCDs, these recent efforts point to the promising use of the chemical and physical properties of synthetic materials for regeneration of osteochondral tissues.
Collapse
Affiliation(s)
- Michael T Frassica
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States.,Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
12
|
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110154. [DOI: 10.1016/j.msec.2019.110154] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/04/2019] [Accepted: 08/31/2019] [Indexed: 12/13/2022]
|
13
|
Udomluck N, Kim SH, Cho H, Park JY, Park H. Three-dimensional cartilage tissue regeneration system harnessing goblet-shaped microwells containing biocompatible hydrogel. Biofabrication 2019; 12:015019. [PMID: 31783391 DOI: 10.1088/1758-5090/ab5d3e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Differentiation of stem cells into chondrocytes has been studied for the engineering of cartilage tissue. However, stem cells cultured two-dimensionally have limited ability to differentiate into chondrocytes, which led to the development of three-dimensional culture systems. A recently developed microtechnological method uses microwells as a tool to form uniformly sized spheroids. In this study, we fabricated an array (10 × 10) of goblet-shaped microwells based on polydimethylsiloxane for spheroid culture. A central processing unit (CPU) was used to form holes, and metallic beads were used to form hemispherical microwell geometry. The holes were filled with Pluronic F-127 to prevent cells from sinking through the holes and allowing the cells to form spheroids. Viability and chondrogenic differentiation of human adipose-derived stem cells were assessed. The fabrication method using a micro-pin mold and metallic beads is easy and cost-effective. Our three-dimensional spheroid culture system optimizes the efficient differentiation of cells and has various applications, such as drug delivery, cell therapy, and tissue engineering.
Collapse
Affiliation(s)
- Nopphadol Udomluck
- School of Integrative Engineering, College of Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Wang L, Jiang D, Wang Q, Wang Q, Hu H, Jia W. The Application of Microfluidic Techniques on Tissue Engineering in Orthopaedics. Curr Pharm Des 2019; 24:5397-5406. [PMID: 30827230 DOI: 10.2174/1381612825666190301142833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
Background:
Tissue engineering (TE) is a promising solution for orthopaedic diseases such as bone or
cartilage defects and bone metastasis. Cell culture in vitro and scaffold fabrication are two main parts of TE, but
these two methods both have their own limitations. The static cell culture medium is unable to achieve multiple
cell incubation or offer an optimal microenvironment for cells, while regularly arranged structures are unavailable
in traditional cell-laden scaffolds, which results in low biocompatibility. To solve these problems, microfluidic
techniques are combined with TE. By providing 3-D networks and interstitial fluid flows, microfluidic platforms
manage to maintain phenotype and viability of osteocytic or chondrocytic cells, and the precise manipulation of
liquid, gel and air flows in microfluidic devices leads to the highly organized construction of scaffolds.
Methods:
In this review, we focus on the recent advances of microfluidic techniques applied in the field of tissue
engineering, especially in orthropaedics. An extensive literature search was done using PubMed. The introduction
describes the properties of microfluidics and how it exploits the advantages to the full in the aspects of TE. Then
we discuss the application of microfluidics on the cultivation of osteocytic cells and chondrocytes, and other
extended researches carried out on this platform. The following section focuses on the fabrication of highly organized
scaffolds and other biomaterials produced by microfluidic devices. Finally, the incubation and studying of
bone metastasis models in microfluidic platforms are discussed.
Conclusion:
The combination of microfluidics and tissue engineering shows great potentials in the osteocytic cell
culture and scaffold fabrication. Though there are several problems that still require further exploration, the future
of microfluidics in TE is promising.
Collapse
Affiliation(s)
- Lingtian Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Dajun Jiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Qiyang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Qing Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Haoran Hu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| |
Collapse
|
15
|
3D Bone Biomimetic Scaffolds for Basic and Translational Studies with Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19103150. [PMID: 30322134 PMCID: PMC6213614 DOI: 10.3390/ijms19103150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are recognized as an attractive tool owing to their self-renewal and differentiation capacity, and their ability to secrete bioactive molecules and to regulate the behavior of neighboring cells within different tissues. Accumulating evidence demonstrates that cells prefer three-dimensional (3D) to 2D culture conditions, at least because the former are closer to their natural environment. Thus, for in vitro studies and in vivo utilization, great effort is being dedicated to the optimization of MSC 3D culture systems in view of achieving the intended performance. This implies understanding cell–biomaterial interactions and manipulating the physicochemical characteristics of biomimetic scaffolds to elicit a specific cell behavior. In the bone field, biomimetic scaffolds can be used as 3D structures, where MSCs can be seeded, expanded, and then implanted in vivo for bone repair or bioactive molecules release. Actually, the union of MSCs and biomaterial has been greatly improving the field of tissue regeneration. Here, we will provide some examples of recent advances in basic as well as translational research about MSC-seeded scaffold systems. Overall, the proliferation of tools for a range of applications witnesses a fruitful collaboration among different branches of the scientific community.
Collapse
|
16
|
Emerging and Established Models of Bone Metastasis. Cancers (Basel) 2018; 10:cancers10060176. [PMID: 29865211 PMCID: PMC6024970 DOI: 10.3390/cancers10060176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death and drives patient morbidity as well as healthcare costs. Bone is the primary site of metastasis for several cancers—breast and prostate cancers in particular. Efforts to treat bone metastases have been stymied by a lack of models to study the progression, cellular players, and signaling pathways driving bone metastasis. In this review, we examine newly described and classic models of bone metastasis. Through the use of current in vivo, microfluidic, and in silico computational bone metastasis models we may eventually understand how cells escape the primary tumor and how these circulating tumor cells then home to and colonize the bone marrow. Further, future models may uncover how cells enter and then escape dormancy to develop into overt metastases. Recreating the metastatic process will lead to the discovery of therapeutic targets for disrupting and treating bone metastasis.
Collapse
|