1
|
Benfeito S, Albuquerque B, Sequeira L, Lima C, Chavarria D, Serrão P, Cagide F, Soares-da-Silva P, Borges F. Discovery of a Potent, Selective, and Blood-Brain Barrier Permeable Non-nitrocatechol Inhibitor of Catechol- O-methyltransferase. J Med Chem 2024; 67:18384-18399. [PMID: 39374514 DOI: 10.1021/acs.jmedchem.4c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A new library of non-nitrocatechol compounds (HetCAMs) was developed and their efficacy was compared to tolcapone, a standard COMT inhibitor for PD. Compound 9 emerged as the most potent inhibitor, showing selective inhibition of brain (IC50 = 24 nM) and liver (IC50 = 81 nM) MB-COMT over liver S-COMT (IC50 = 620 nM) isoforms. Although compound 9 presented higher IC50 values than tolcapone, it was more selective for brain MB-COMT than liver S-COMT. Unlike tolcapone, compound 9 is not a tight-binding inhibitor and is less cytotoxic to HepG2 and SK-N-SH cells. Additionally, compound 9 is predicted to cross the blood-brain barrier (BBB) by passive diffusion and chelate divalent metals like Fe(II) and Cu(II). The results demonstrate the potential of this rational drug design strategy for developing new CNS-active drug candidates, offering symptom relief via COMT inhibition that can provide a long-term, disease-modifying outcome (chelation of divalent metals) in PD.
Collapse
Affiliation(s)
- Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Bárbara Albuquerque
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| | - Lisa Sequeira
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Carla Lima
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Paula Serrão
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Patrício Soares-da-Silva
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| |
Collapse
|
2
|
Zhou P, Wang C, Wan G, Zheng W, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent Metal-Catalyzed Oxidative Alkynylation of 2-Arylthiazoles with Terminal Alkynes under Air Conditions. J Org Chem 2024; 89:10953-10964. [PMID: 39016014 DOI: 10.1021/acs.joc.4c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Regiodivergent transition-metal-catalyzed oxidative C5- and ortho-alkynylation of 2-arylthiazoles have been demonstrated. Namely, Pd(II)-catalysis selectively generated C5-alkynylated products from the reaction of 2-arylthiazoles and terminal alkynes. In contrast, Ru(II)-catalysis exclusively provided ortho-alkynylated products from the same substrates. This protocol features a wide substrate scope, good functional group tolerance, high atom-economy, and exclusive regioselectivity. The alkynylated products can be readily converted into highly valuable synthons, which hold potential for applications in the fields of medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Cheng Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Guibin Wan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Weining Zheng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
3
|
Zhou Z, Li Y, Wang F, Zhu G, Qi S, Wang H, Ma Y, Zhu R, Zheng Y, Ge G, Wang P. Bioactive components and mechanisms of Pu-erh tea in improving levodopa metabolism in rats through COMT inhibition. Food Funct 2024; 15:5287-5299. [PMID: 38639730 DOI: 10.1039/d4fo00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Catechol-O-methyltransferase (COMT) plays a central role in the metabolic inactivation of endogenous neurotransmitters and xenobiotic drugs and hormones having catecholic structures. Its inhibitors are used in clinical practice to treat Parkinson's disease. In this study, a fluorescence-based visualization inhibitor screening method was developed to assess the inhibition activity on COMT both in vitro and in living cells. Following the screening of 94 natural products, Pu-erh tea extract exhibited the most potent inhibitory effect on COMT with an IC50 value of 0.34 μg mL-1. In vivo experiments revealed that Pu-erh tea extract substantially hindered COMT-mediated levodopa metabolism in rats, resulting in a significant increase in levodopa levels and a notable decrease in 3-O-methyldopa in plasma. Subsequently, the chemical components of Pu-erh tea were analyzed using UHPLC-Q-Exactive Orbitrap HRMS, identifying 24 major components. Among them, epigallocatechin gallate, gallocatechin gallate, epicatechin gallate, and catechin gallate exhibited potent inhibition of COMT activity with IC50 values from 93.7 nM to 125.8 nM and were the main bioactive constituents in Pu-erh tea responsible for its COMT inhibition effect. Inhibition kinetics analyses and docking simulations revealed that these compounds competitively inhibit COMT-mediated O-methylation at the catechol site. Overall, this study not only explained how Pu-erh tea catechins inhibit COMT, suggesting Pu-erh tea as a potential dietary intervention for Parkinson's disease, but also introduced a new strategy for discovering COMT inhibitors more effectively.
Collapse
Affiliation(s)
- Ziqiong Zhou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fangyuan Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Shenglan Qi
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haonan Wang
- Shanghai Inoherb Cosmetics Co. Ltd., Technology Center, 121 Chengyin Road, Baoshan District, Shanghai 200083, China
| | - Yuhe Ma
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Rong Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Pinto M, Silva TB, Sardão VA, Simões R, Albuquerque B, Oliveira PJ, Valente MJ, Remião F, Soares-da-Silva P, Fernandes C, Borges F. Cellular and Mitochondrial Toxicity of Tolcapone, Entacapone, and New Nitrocatechol Derivatives. ACS Pharmacol Transl Sci 2024; 7:1637-1649. [PMID: 38751615 PMCID: PMC11091965 DOI: 10.1021/acsptsci.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Nitrocatechols are the standard pharmacophore to develop potent tight-binding inhibitors of catechol O-methyltransferase (COMT), which can be used as coadjuvant drugs to manage Parkinson's disease. Tolcapone is the most potent drug of this class, but it has raised safety concerns due to its potential to induce liver damage. Tolcapone-induced hepatotoxicity has been attributed to the nitrocatechol moiety; however, other nitrocatechol-based COMT inhibitors, such as entacapone, are safe and do not damage the liver. There is a knowledge gap concerning which mechanisms and chemical properties govern the toxicity of nitrocatechol-based COMT inhibitors. Using a vast array of cell-based assays, we found that tolcapone-induced toxicity is caused by direct interference with mitochondria that does not depend on bioactivation by P450. Our findings also suggest that (a) lipophilicity is a key property in the toxic potential of nitrocatechols; (b) the presence of a carbonyl group directly attached to the nitrocatechol ring seems to increase the reactivity of the molecule, and (c) the presence of cyano moiety in double bond stabilizes the reactivity decreasing the cytotoxicity. Altogether, the fine balance between lipophilicity and the chemical nature of the C1 substituents of the nitrocatechol ring may explain the difference in the toxicological behavior observed between tolcapone and entacapone.
Collapse
Affiliation(s)
- Miguel Pinto
- CIQUP-IMS
− Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, Porto 4169-007, Portugal
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, Faculty
of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
- UCIBIO
− Applied Molecular Biosciences Unit, REQUIMTE. Laboratory
of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Tiago Barros Silva
- CIQUP-IMS
− Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, Porto 4169-007, Portugal
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, Faculty
of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
- UCIBIO
− Applied Molecular Biosciences Unit, REQUIMTE. Laboratory
of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Vilma A. Sardão
- CNC-UC
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004−504, Portugal
- MIA-Portugal
- Multidisciplinary Institute of Aging, University of Coimbra, Coimbra 3004−504, Portugal
| | - Rui Simões
- CNC-UC
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004−504, Portugal
- CIBB
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004−504, Portugal
| | - Bárbara Albuquerque
- CIQUP-IMS
− Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, Porto 4169-007, Portugal
- MedInUP -
Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| | - Paulo J. Oliveira
- CNC-UC
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004−504, Portugal
- CIBB
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004−504, Portugal
| | - Maria João Valente
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, Faculty
of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
- UCIBIO
− Applied Molecular Biosciences Unit, REQUIMTE. Laboratory
of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Fernando Remião
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, Faculty
of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
- UCIBIO
− Applied Molecular Biosciences Unit, REQUIMTE. Laboratory
of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Patrício Soares-da-Silva
- MedInUP -
Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| | - Carlos Fernandes
- CIQUP-IMS
− Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, Porto 4169-007, Portugal
| | - Fernanda Borges
- CIQUP-IMS
− Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, Porto 4169-007, Portugal
| |
Collapse
|
5
|
Liang S, Zhao W, Chen Y, Lin H, Zhang W, Deng M, Fu L, Zhong X, Zeng S, He B, Qi X, Lü M. A comparative investigation of catalytic mechanism and domain between catechol-O-methyltransferase isoforms by isomeric shikonin and alkannin. Int J Biol Macromol 2023; 242:124758. [PMID: 37150367 DOI: 10.1016/j.ijbiomac.2023.124758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
The differences in catalytic mechanism and domain between the soluble (S-COMT) and membrane-bound catechol-O-methyltransferase (MB-COMT) are poorly documented due to the unavailable crystal structure of MB-COMT. Considering the enzymatic nature of S-COMT and MB-COMT, the challenge could be solvable by probing the interactions between the enzymes with the ligands with minor differences in structures. Herein, isomeric shikonin and alkannin bearing a R/S -OH group in side chain at the C2 position were used for domain profiling of COMTs. Human and rat liver-derived COMTs showed the differences in inhibitory response (human's IC50 and Ki values for S-COMT < rat's, 5.80-19.56 vs. 19.56-37.47 μM; human's IC50 and Ki values for MB-COMT > rat's) and mechanism (uncompetition vs. noncompetition) towards the two isomers. The inhibition of the two isomers against human and rat S-COMTs was stronger than those for MB-COMTs (S-COMT's IC50 and Ki values < MB-COMT's, 5.80-37.47 vs. 40.01-111.8 μM). Additionally, the inhibition response of alkannin was higher than those of shikonin in no matter human and rat COMTs. Molecular docking stimulation was used for analysis. The inhibitory effects observed in in vitro and in silico tests were confirmed in vivo. These findings would facilitate further COMT-associated basic and applied research.
Collapse
Affiliation(s)
- Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou 646000, China
| | - Wenjing Zhao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yonglan Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Hua Lin
- Technology Center of Chengdu Customs, Chengdu, China
| | - Wei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lu Fu
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Bing He
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Xiaoyi Qi
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou 646000, China.
| |
Collapse
|
6
|
Catechol- O-methyltransferase Inhibitors from Calendula officinalis Leaf. Molecules 2023; 28:molecules28031333. [PMID: 36770999 PMCID: PMC9919311 DOI: 10.3390/molecules28031333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Calendula officinalis is commonly known as marigold and its flowers are used in herbal medicines, cosmetics, perfumes, dyes, pharmaceutical preparations, and food products. However, the utility of its leaves has not been studied in depth. The purpose of the present study was to identify the major compounds in C. officinalis leaves and to determine the inhibitory properties of the isolated compounds toward human catechol-O-methyltransferase (COMT), a key neurotransmitter involved in Parkinson's disease and depression. We isolated and identified ten compounds, including two phenylpropanoids and seven flavonoids, from C. officinalis leaf extracts, of which four flavonoids were identified from C. officinalis leaves for the first time. Eight compounds exhibited COMT inhibitory activities with IC50 values of less than 100 μM. Our results indicate that compounds in C. officinalis leaves are potentially effective for preventing Parkinson's disease and depression. Thus, C. officinalis leaves may hold promise as dietary supplements.
Collapse
|
7
|
Fedorov II, Lineva VI, Tarasova IA, Gorshkov MV. Mass Spectrometry-Based Chemical Proteomics for Drug Target Discoveries. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:983-994. [PMID: 36180990 DOI: 10.1134/s0006297922090103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Chemical proteomics, emerging rapidly in recent years, has become a main approach to identifying interactions between the small molecules and proteins in the cells on a proteome scale and mapping the signaling and/or metabolic pathways activated and regulated by these interactions. The methods of chemical proteomics allow not only identifying proteins targeted by drugs, characterizing their toxicity and discovering possible off-target proteins, but also elucidation of the fundamental mechanisms of cell functioning under conditions of drug exposure or due to the changes in physiological state of the organism itself. Solving these problems is essential for both basic research in biology and clinical practice, including approaches to early diagnosis of various forms of serious diseases or prediction of the effectiveness of therapeutic treatment. At the same time, recent developments in high-resolution mass spectrometry have provided the technology for searching the drug targets across the whole cell proteomes. This review provides a concise description of the main objectives and problems of mass spectrometry-based chemical proteomics, the methods and approaches to their solution, and examples of implementation of these methods in biomedical research.
Collapse
Affiliation(s)
- Ivan I Fedorov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Victoria I Lineva
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
8
|
Królicka E, Kieć-Kononowicz K, Łażewska D. Chalcones as Potential Ligands for the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2022; 15:ph15070847. [PMID: 35890146 PMCID: PMC9317344 DOI: 10.3390/ph15070847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022] Open
Abstract
Along with the increase in life expectancy, a significant increase of people suffering from neurodegenerative diseases (ND) has been noticed. The second most common ND, after Alzheimer’s disease, is Parkinson’s disease (PD), which manifests itself with a number of motor and non-motor symptoms that hinder the patient’s life. Current therapies can only alleviate those symptoms and slow down the progression of the disease, but not effectively cure it. So now, in addition to understanding the mechanism and causes of PD, it is also important to find a powerful way of treatment. It has been proved that in the etiology and course of PD, the essential roles are played by dopamine (DA) (an important neurotransmitter), enzymes regulating its level (e.g., COMT, MAO), and oxidative stress leading to neuroinflammation. Chalcones, due to their “simple” structure and valuable biological properties are considered as promising candidates for treatment of ND, also including PD. Here, we provide a comprehensive review of chalcones and related structures as potential new therapeutics for cure and prevention of PD. For this purpose, three databases (Pubmed, Scopus and Web of Science) were searched to collect articles published during the last 5 years (January 2018–February 2022). Chalcones have been described as promising enzyme inhibitors (MAO B, COMT, AChE), α-synuclein imaging probes, showing anti-neuroinflammatory activity (inhibition of iNOS or activation of Nrf2 signaling), as well as antagonists of adenosine A1 and/or A2A receptors. This review focused on the structure–activity relationships of these compounds to determine how a particular substituent or its position in the chalcone ring(s) (ring A and/or B) affects biological activity.
Collapse
|
9
|
Winter M, Simon RP, Wang Y, Bretschneider T, Bauer M, Magarkar A, Reindl W, Fernández-Montalván A, Montel F, Büttner FH. Differential analyte derivatization enables unbiased MALDI-TOF-based high-throughput screening: A proof-of-concept study for the discovery of catechol-o-methyltransferase inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:287-297. [PMID: 35597517 DOI: 10.1016/j.slasd.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in label-free high-throughput screening via matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) offer unprecedented opportunities for the identification of novel chemical starting points in target-based drug discovery. A clear advantage of the technology is the possibility for label-free, direct quantification of analytes with high precision and robustness. Here we have expanded the range of analytes and biology that can be addressed via MALDI-TOF HTS, by developing a method based on post-reaction pyrylium-based derivatization to detect 3-methoxytyramine, the physiological enzyme product of the catechol-O-methyltransferase (COMT) enzyme. The introduction of pyrylium-type reagents as universal derivatization strategy under aqueous conditions for molecules containing primary amines represents a valuable addition to the toolbox of MALDI-TOF assay development. Characterization of COMT's enzymatic activity and inhibition by reference inhibitors, and comparison of the results obtained in our assay with data from previous mechanistic studies validated the performance of this new method. To address the problem of isobaric interference, a source of false results in MALDI-TOF assays measuring low molecular weight analytes, we devised a differential derivatization workflow which can potentially replace other counter- or orthogonal assays in future screening campaigns. Finally, we report on the first label-free HTS campaign for the identification of COMT inhibitors performed in miniaturized 1536-well microtiter plate format via MALDI-TOF MS analysis.
Collapse
Affiliation(s)
- Martin Winter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.
| | - Roman P Simon
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Yuting Wang
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Tom Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Margit Bauer
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Aniket Magarkar
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Wolfgang Reindl
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | | | - Florian Montel
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Frank H Büttner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.
| |
Collapse
|
10
|
Miyata R, Sano H, Hoshino S, Kumazawa S. Thermostability and catechol-O-methyltransferase inhibitory activity of acylated anthocyanins from purple yam. Biosci Biotechnol Biochem 2022; 86:916-921. [PMID: 35467722 DOI: 10.1093/bbb/zbac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022]
Abstract
The thermostability of purple yam was investigated to be used as natural colorants. In addition, the inhibitory properties of purple yam and its isolated anthocyanins toward human catechol-O-methyltransferase (COMT), a key neurotransmitter involved in Parkinson's disease and depression, were also investigated. The thermostability of purple yam was higher than that of the reference samples (purple sweet potato and purple potato). Quantitative HPLC analysis revealed that alatanin A (2) contributed to the thermostability of purple yam. Methanol extracts of purple yam exhibited the highest COMT inhibitory activity of the tested samples. Alatanin D (1) showed the highest inhibitory activity of the anthocyanins in purple yam (IC50 19 µM). This study revealed the thermostability and COMT inhibitory activity of purple yam and may lead to its use not only as a thermostable natural source of colorants, but also for the prevention and treatment of Parkinson's disease and depression.
Collapse
Affiliation(s)
- Ryo Miyata
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hitomi Sano
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sara Hoshino
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shigenori Kumazawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.,School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
11
|
Guo H, Yang Y, Zhang Q, Deng JR, Yang Y, Li S, So PK, Lam TC, Wong MK, Zhao Q. Integrated Mass Spectrometry Reveals Celastrol As a Novel Catechol-O-methyltransferase Inhibitor. ACS Chem Biol 2022; 17:2003-2009. [PMID: 35302751 DOI: 10.1021/acschembio.2c00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural product celastrol is known to have various biological activities, yet its molecular targets that correspond to many activities remain unclear. Here, we used multiple mass-spectrometry-based approaches to identify catechol-O-methyltransferase (COMT) as a major binding target of celastrol and characterized their interaction comprehensively. Celastrol was found to inhibit the enzymatic activity of COMT and increased the dopamine level in neuroendocrine chromaffin cells significantly. Our study not only revealed a novel binding target of celastrol but also provided a new scaffold and cysteine hot spot for developing new generation COMT inhibitors in combating neurological disorders.
Collapse
Affiliation(s)
- Haijun Guo
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Yang Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Qi Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, SAR 999077, China
| | - Jie-Ren Deng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Ying Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Shuqi Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Thomas C. Lam
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, SAR 999077, China
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Man-kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| |
Collapse
|
12
|
Miyata R, Hoshino S, Ahn MR, Kumazawa S. Chemical Profiles of Korean Bee Pollens and Their Catechol- O-methyltransferase Inhibitory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1174-1181. [PMID: 35057613 DOI: 10.1021/acs.jafc.1c07778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bee pollen is an apicultural product collected by honeybees from flower stamens and is consumed to help maintain a healthy diet. In this study, the chemical profiles of 11 Korean bee pollens were investigated using molecular networking analysis. This analysis elucidated the presence of two major clusters, hydroxycinnamoyl acid amides (HCAAs, molecular network 1 (MN1)) and flavonoid glycosides (MN2), in the bee pollen samples. The inhibitory properties of the bee pollens and the isolated HCAAs toward human catechol-O-methyltransferase (COMT), a key neurotransmitter involved in Parkinson's disease and depression, were determined. N1,N5,N10-(E)-tricaffeoylspermidine ((E,E,E)-1) exhibited the highest activity of the four compounds isolated, with an IC50 value 16 μM, and inhibited COMT competitively. Quantitative analysis of HCAAs showed that the amounts of N1,N10-dicaffeoyl-N5-p-coumaroylspermidine (2) and N10-caffeoyl-N1,N5-di-p-coumaroylspermidine (3) contributed to the observed differences in the COMT inhibitory activities of Korean bee pollens. This study may lead to the prevention and treatment of Parkinson's disease and depression using bee pollens.
Collapse
Affiliation(s)
- Ryo Miyata
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sara Hoshino
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | - Shigenori Kumazawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
13
|
Miyata R, Motoyama T, Nakano S, Ito S, Mukaide K, Vongsak B, Kumazawa S. Catechol-O-Methyltransferase Inhibitors Isolated From Thai Propolis. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211050273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Propolis is an aggregate of functional components found in plant resins and has been reported to exhibit a variety of valuable biological activities. This study investigated the inhibitory properties of propolis from Thailand toward human catechol- O-methyltransferase (COMT), a key neurotransmitter involved in Parkinson's disease and depression. Samples collected from Chanthaburi and Chiang Mai exhibited relatively high inhibitory activity against COMT. γ-Mangostin (1) and 6-prenyleriodictyol (3) were identified as COMT inhibitors with IC50 values of 62 and 75 μM, respectively. In an enzyme inhibition assay, 1 exhibited mixed inhibition toward COMT. The results suggest that both 1 and propolis have potential applications in the prevention and treatment of psychological illness.
Collapse
Affiliation(s)
- Ryo Miyata
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kazuma Mukaide
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Boonyadist Vongsak
- Pharmaceutical Innovations of Natural Products Unit (PhInNat), Faculty of Pharmaceutical Sciences, Burapha University, ChonBuri, Thailand
| | - Shigenori Kumazawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
14
|
Interaction of silver nanoparticles with catechol O-methyltransferase: Spectroscopic and simulation analyses. Biochem Biophys Rep 2021; 26:101013. [PMID: 34027136 PMCID: PMC8131974 DOI: 10.1016/j.bbrep.2021.101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/24/2022] Open
Abstract
Catechol O-methyltransferase, an enzyme involved in the metabolism of catechol containing compounds, catalyzes the transfer of a methyl group between S-adenosylmethionine and the hydroxyl groups of the catechol. Furthermore it is considered a potential drug target for Parkinson’s disease as it metabolizes the drug levodopa. Consequently inhibitors of the enzyme would increase levels of levodopa. In this study, absorption, fluorescence and infrared spectroscopy as well as computational simulation studies investigated human soluble catechol O-methyltransferase interaction with silver nanoparticles. The nanoparticles form a corona with the enzyme and quenches the fluorescence of Trp143. This amino acid maintains the correct structural orientation for the catechol ring during catalysis through a static mechanism supported by a non-fluorescent fluorophore–nanoparticle complex. The enzyme has one binding site for AgNPs in a thermodynamically spontaneous binding driven by electrostatic interactions as confirmed by negative ΔG and ΔH and positive ΔS values. Fourier transform infrared spectroscopy within the amide I region of the enzyme indicated that the interaction causes relaxation of its β−structures, while simulation studies indicated the involvement of six polar amino acids. These findings suggest AgNPs influence the catalytic activity of catechol O-methyltransferase, and therefore have potential in controlling the activity of the enzyme. A recombinant soluble human catechol O-methyltransferase was inhibited by silver nanoparticles. Inhibition by AgNPs was concentration and size dependent. The binding mechanism was through spontaneous static quenching, driven by positive ΔS, and negative ΔH and ΔG. Stern-Volmer analysis suggested binding of AgNPs with Trp143. In silico indicate relaxation of β-sheets and the interaction of AgNPs with 6 amino acids in the enzyme’s helical structures.
Collapse
|
15
|
Zhao DF, Fan YF, Yu HN, Hou FB, Xiang YW, Wang P, Ge GB, Yang L, Xu JG. Discovery and characterization of flavonoids in vine tea as catechol-O-methyltransferase inhibitors. Fitoterapia 2021; 152:104913. [PMID: 33932529 DOI: 10.1016/j.fitote.2021.104913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Vine tea has been used as a traditionally functional herbal tea in China for centuries, which exhibits paramount potential for chronic metabolic diseases. Herein, the inhibitory potential of vine tea toward human catechol-O-methyltransferase (hCOMT) was investigated. A practical bioactivity-guided fractionation combined with chemical profiling strategy was developed to identify the naturally occurring hCOMT inhibitors. Five flavonoids in vine tea displayed moderate to strong inhibition on hCOMT with IC50 values ranging from 0.96 μM to 42.47 μM, in which myricetin was the critically potent constituent against hCOMT. Inhibition kinetics assays and molecular docking simulations showed that myricetin could bind to the active site of COMT and inhibited COMT-catalyzed 3-BTD methylation in a mixed manner. Collectively, our findings not only suggested that the strong hCOMT inhibition of vine tea has guiding significance in the drug exposure of catechol drugs, but also identified a promising lead compound for developing more efficacious hCOMT inhibitors.
Collapse
Affiliation(s)
- Dong-Fang Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Fan Fan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao-Nan Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fan-Bin Hou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
16
|
Liu J, Xu F, Nie Z, Shao L. Gut Microbiota Approach-A New Strategy to Treat Parkinson's Disease. Front Cell Infect Microbiol 2020; 10:570658. [PMID: 33194809 PMCID: PMC7643014 DOI: 10.3389/fcimb.2020.570658] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by neuronal loss and dysfunction of dopaminergic neurons located in the substantia nigra, which contain a variety of misfolded α-synuclein (α-syn). Medications that increase or substitute for dopamine can be used for the treatment of PD. Recently, numerous studies have shown gut microbiota plays a crucial role in regulating and maintaining multiple aspects of host physiology including host metabolism and neurodevelopment. In this review article, the role of gut microbiota in the etiological mechanism of PD will be reviewed. Furthermore, we discussed current pharmaceutical medicine-based methods to prevent and treat PD, followed by describing specific strains that affect the host brain function through the gut-brain axis. We explained in detail how gut microbiota directly produces neurotransmitters or regulate the host biosynthesis of neurotransmitters. The neurotransmitters secreted by the intestinal lumen bacteria may induce epithelial cells to release molecules that, in turn, can regulate neural signaling in the enteric nervous system and subsequently control brain function and behavior through the brain-gut axis. Finally, we proved that the microbial regulation of the host neuronal system. Endogenous α-syn can be transmitted long distance and bidirectional between ENS and brain through the circulatory system which gives us a new option that the possibility of altering the community of gut microbiota in completely new medication option for treating PD.
Collapse
Affiliation(s)
- Jing Liu
- Department of Microbiology and Immunity, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Microbial Pharmacology Laboratory, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Fei Xu
- Department of Microbiology and Immunity, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Microbial Pharmacology Laboratory, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhiyan Nie
- Department of Microbiology and Immunity, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine & Health Sciences, Shanghai, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|