1
|
Zhou Y, Phelps GA, Mangrum MM, McLeish J, Phillips EK, Lou J, Ancajas CF, Rybak JM, Oelkers PM, Lee RE, Best MD, Reynolds TB. The small molecule CBR-5884 inhibits the Candida albicans phosphatidylserine synthase. mBio 2024; 15:e0063324. [PMID: 38587428 PMCID: PMC11077991 DOI: 10.1128/mbio.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gregory A. Phelps
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jemma McLeish
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Jeffrey M. Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Peter M. Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael D. Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Sekar G, Singh G, Qin X, Guibao CD, Schwam B, Inde Z, Grace CR, Zhang W, Slavish PJ, Lin W, Chen T, Lee RE, Rankovic Z, Sarosiek K, Moldoveanu T. Small molecule SJ572946 activates BAK to initiate apoptosis. iScience 2022; 25:105064. [PMID: 36147946 PMCID: PMC9485059 DOI: 10.1016/j.isci.2022.105064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
Poration of the outer mitochondrial membrane by the effector BCL-2 proteins BAK and BAX initiates apoptosis. BH3-only initiators BID and BIM trigger conformational changes in BAK and BAX transforming them from globular dormant proteins to oligomers of the apoptotic pores. Small molecules that can directly activate effectors are being sought for applications in cancer treatment. Here, we describe the small molecule SJ572946, discovered in a fragment-based screen that binds to the activation groove of BAK and selectively triggers BAK activation over that of BAX in liposome and mitochondrial permeabilization assays. SJ572946 independently kills BAK-expressing BCL2allKO HCT116 cells revealing on target cellular activity. In combination with apoptotic inducers and BH3 mimetics, SJ572946 kills experimental cancer cell lines. SJ572946 also cooperates with the endogenous BAK activator BID in activating a misfolded BAK mutant substantially impaired in activation. SJ572946 is a proof-of-concept tool for probing BAK-mediated apoptosis in preclinical cancer research.
Collapse
Affiliation(s)
- Giridhar Sekar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Geetika Singh
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Children’s GMP, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston,02115 MA, USA,Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, 02115 MA, USA,Laboratory of Systems Pharmacology, Harvard Medical School, Boston,02115 MA, USA
| | - Cristina D. Guibao
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brittany Schwam
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston,02115 MA, USA,Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, 02115 MA, USA,Laboratory of Systems Pharmacology, Harvard Medical School, Boston,02115 MA, USA
| | - Christy R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Weixing Zhang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - P. Jake Slavish
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kristopher Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston,02115 MA, USA,Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, 02115 MA, USA,Laboratory of Systems Pharmacology, Harvard Medical School, Boston,02115 MA, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Roeck, AR 72205, USA,Corresponding author
| |
Collapse
|
3
|
Fernando DM, Gee CT, Griffith EC, Meyer CJ, Wilt LA, Tangallapally R, Wallace MJ, Miller DJ, Lee RE. Biophysical analysis of the Mycobacteria tuberculosis peptide binding protein DppA reveals a stringent peptide binding pocket. Tuberculosis (Edinb) 2022; 132:102157. [PMID: 34894561 PMCID: PMC8818035 DOI: 10.1016/j.tube.2021.102157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
The peptide binding protein DppA is an ABC transporter found in prokaryotes that has the potential to be used as drug delivery tool for hybrid antibiotic compounds. Understanding the motifs and structures that bind to DppA is critical to the development of these bivalent compounds. This study focused on the biophysical analysis of the MtDppA from M. tuberculosis. Analysis of the crystal structure revealed a SVA tripeptide was co-crystallized with the protein. Further peptide analysis demonstrated MtDppA shows very little affinity for dipeptides but rather preferentially binds to peptides that are 3-4 amino acids in length. The structure-activity relationships (SAR) between MtDppA and tripeptides with varied amino acid substitutions were evaluated using thermal shift, SPR, and molecular dynamics simulations. Efforts to identify novel ligands for use as alternative scaffolds through the thermal shift screening of 35,000 compounds against MtDppA were unsuccessful, indicating that the MtDppA binding pocket is highly specialized for uptake of peptides. Future development of compounds that seek to utilize MtDppA as a drug delivery mechanism, will likely require a tri- or tetrapeptide component with a hydrophobic -non-acidic peptide sequence.
Collapse
Affiliation(s)
- Dinesh M. Fernando
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Clifford T. Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Elizabeth C. Griffith
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Christopher J. Meyer
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Laura A. Wilt
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Rajendra Tangallapally
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Miranda J. Wallace
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Darcie J. Miller
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105,Corresponding Author:
| |
Collapse
|
4
|
Knez D, Hrast M, Frlan R, Pišlar A, Žakelj S, Kos J, Gobec S. Indoles and 1-(3-(benzyloxy)benzyl)piperazines: Reversible and selective monoamine oxidase B inhibitors identified by screening an in-house compound library. Bioorg Chem 2021; 119:105581. [PMID: 34990933 DOI: 10.1016/j.bioorg.2021.105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
The therapeutic indications for monoamine oxidases A and B (MAO-A and MAO-B) inhibitors that have emerged from biological studies on animal and cellular models of neurological and oncological diseases have focused drug discovery projects upon identifying reversible MAO inhibitors. Screening of our in-house academic compound library identified two hit compounds that inhibit MAO-B with IC50 values in micromolar range. Two series of indole (23 analogues) and 3-(benzyloxy)benzyl)piperazine (16 analogues) MAO-B inhibitors were derived from hits, and screened for their structure-activity relationships. Both series yielded low micromolar selective inhibitors of human MAO-B, namely indole 2 (IC50 = 12.63 ± 1.21 µM) and piperazine 39 (IC50 = 19.25 ± 4.89 µM), which is comparable to selective MAO-B inhibitor isatin (IC50 = 6.10 ± 2.81 µM), yet less potent in comparison to safinamide (IC50 = 0.029 ± 0.002 µM). Selective MAO-B inhibitors 2, 14, 38 and 39 exhibited favourable permeation of the blood-brain barrier and low cytotoxicity in the human neuroblastoma cell line SH-SY5Y.
Collapse
Affiliation(s)
- Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| | - Martina Hrast
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anja Pišlar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Janko Kos
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
DeJarnette C, Meyer CJ, Jenner AR, Butts A, Peters T, Cheramie MN, Phelps GA, Vita NA, Loudon-Hossler VC, Lee RE, Palmer GE. Identification of Inhibitors of Fungal Fatty Acid Biosynthesis. ACS Infect Dis 2021; 7:3210-3223. [PMID: 34786940 DOI: 10.1021/acsinfecdis.1c00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fungal fatty acid (FA) synthase and desaturase enzymes are essential for the growth and virulence of human fungal pathogens. These enzymes are structurally distinct from their mammalian counterparts, making them attractive targets for antifungal development. However, there has been little progress in identifying chemotypes that target fungal FA biosynthesis. To accomplish this, we applied a whole-cell-based method known as Target Abundance-based FItness Screening using Candida albicans. Strains with varying levels of FA synthase or desaturase expression were grown in competition to screen a custom small-molecule library. Hit compounds were defined as preferentially inhibiting the growth of the low target-expressing strains. Dose-response experiments confirmed that 16 hits (11 with an acyl hydrazide core) differentially inhibited the growth of strains with an altered desaturase expression, indicating a specific chemical-target interaction. Exogenous unsaturated FAs restored C. albicans growth in the presence of inhibitory concentrations of the most potent acyl hydrazides, further supporting the primary mechanism being inhibition of FA desaturase. A systematic analysis of the structure-activity relationship confirmed the acyl hydrazide core as essential for inhibitory activity. This collection demonstrated broad-spectrum activity against Candida auris and mucormycetes and retained the activity against azole-resistant candida isolates. Finally, a preliminary analysis of toxicity to mammalian cells identified potential lead compounds with desirable selectivities. Collectively, these results establish a scaffold that targets fungal FA biosynthesis with a potential for development into novel therapeutics.
Collapse
Affiliation(s)
- Christian DeJarnette
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee 38163, United States
| | - Chris J. Meyer
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Alexander R. Jenner
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Arielle Butts
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, United States
| | - Tracy Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, United States
| | - Martin N. Cheramie
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Gregory A. Phelps
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis Tennessee 38103, United States
| | - Nicole A. Vita
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee 38163, United States
| | - Victoria C. Loudon-Hossler
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Glen E. Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
6
|
Wu Q, Lin W, Li ZM, Rankovic Z, White SW, Chen T, Yang J. A protocol for high-throughput screening of histone lysine demethylase 4 inhibitors using TR-FRET assay. STAR Protoc 2021; 2:100702. [PMID: 34485934 PMCID: PMC8406026 DOI: 10.1016/j.xpro.2021.100702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Identification of diverse chemotypes of selective KDM4 inhibitors is important for exploring and validating the roles of KDM4s in the pathogenesis of human disease and for developing therapies. Here, we report a protocol for high-throughput screening of KDM4 inhibitors using TR-FRET demethylation functional assay. We describe this protocol for screen of KDM4B inhibitors, which can be modified to screen inhibitors of other JmjC-domain-containing KDMs. For complete details on the use and execution of this protocol, please refer to Singh et al. (2021). Describes protein expression and purification of KDM4B catalytic domain Describes preparation and optimization of KDM4B TR-FRET reagents and conditions Describes high-throughput KDM4B TR-FRET screening procedure
Collapse
Affiliation(s)
- Qiong Wu
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zhen-Mei Li
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephen W White
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.,Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jun Yang
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|