1
|
Sowndarya A, Thangadurai TD, Manjubaashini N, Pavithrakumar M, Senthilkumar K, Nataraj D, Kadirvelu K, Kalagatur KN. Surface-designed AuNPs-based fluorescent probe for ultra-sensitive detection of oral poultry antibacterial drug furaltadone via intermolecular hydrogen bonding. RSC Adv 2024; 14:28224-28233. [PMID: 39234519 PMCID: PMC11372455 DOI: 10.1039/d4ra04293j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/17/2024] [Indexed: 09/06/2024] Open
Abstract
Furaltadone (FTD), a nitrofuran drug, was primarily utilized as a very effective oral veterinary antibiotic, especially in poultry production farms. As a result, FTD, a form of carcinogen, might easily enter people via the food chain, leading to fatal cancers. As a result, it is critical to develop a quick and efficient approach for detecting FTD at extremely low concentrations. Considering the aforementioned purpose, pamoic acid (PA) capped gold nanoparticles (PA@AuNPs) were synthesized in spherical morphology (size 10-15 nm) using the method of chemical reduction and used as a fluorescent probe to detect FTD. The interaction between PA@AuNPs and FTD was validated by UV-vis, XRD, and FTIR methods. Microscopic images (FESEM and HRTEM) show that PA@AuNPs have varying morphologies including rod, triangle, hexagonal, and pentagonal, and average sizes of 20-50 nm after sensing FTD. The average surface roughness of PA@AuNPs was determined to be 46.75 nm using the AFM technique. The addition of FTD (0 → 100 μM) quenched the fluorescence emission intensity of PA@AuNPs at 436 nm (λ ex 353 nm) by 4-fold. This static quenching was confirmed by the formation of a ground state complex, PA@AuNPs·FTD, between AuNPs and FTD using fluorescence lifetime analysis. The presence of an isosbestic point at 412 nm in the UV-visible titration, as well as FTIR data, further demonstrated the existence of this ground state complex. PA@AuNPs revealed high sensitivity (LoD = 9.78 nM; K a = 1.0615 × 102 M-1) to FTD in water, resulting in a decrease in predicted quantum yield (Φ F) from 3.36% to 0.35%. To establish PA@AuNPs as a first-generation fluorescence probe for real samples, FTD in blood serum was measured (LoD = 6.07 nM; K a = 1.0595 × 102 M-1). The non-toxic cytotoxicity and bioimaging in live zebrafish broadened the practical uses of PA@AuNPs. Furthermore, the surface interactions between PA@AuNPs and FTD were studied theoretically using time-dependent density functional theory (TD-DFT) at the B3LYP/6-31G(d,p) level of theory to support the findings from the experiment.
Collapse
Affiliation(s)
- A Sowndarya
- Department of Chemistry and Centre for Research and Development, KPR Institute of Engineering and Technology Coimbatore 641407 Tamilnadu India
| | - T Daniel Thangadurai
- Department of Chemistry and Centre for Research and Development, KPR Institute of Engineering and Technology Coimbatore 641407 Tamilnadu India
| | - N Manjubaashini
- National Centre for Nanoscience and Nanotechnology, University of Madras Chennai 600025 India
| | - M Pavithrakumar
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - K Senthilkumar
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - D Nataraj
- Department of Physics, Bharathiar University Coimbatore 641046 India
| | - K Kadirvelu
- DRDO-Life Sciences, Bharathiar University Coimbatore 641046 India
| | | |
Collapse
|
2
|
Guo Y, Zhang T, Wang X, Zhang J, Miao W, Li QX, Fan Y. Toxic effects of the insecticide tolfenpyrad on zebrafish embryos: Cardiac toxicity and mitochondrial damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2583-2595. [PMID: 38205909 DOI: 10.1002/tox.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Tolfenpyrad, a highly effective and broad-spectrum insecticide and acaricide extensively utilized in agriculture, presents a potential hazard to nontarget organisms. This study was designed to explore the toxic mechanisms of tolfenpyrad on zebrafish embryos. Between 24 and 96 h after exposure of the fertilized embryos to tolfenpyrad at concentrations ranging from 0.001 to 0.016 mg/L (96 h-LC50 = 0.017 mg/L), lethal effects were apparent, accompanied with notable anomalies including pericardial edema, increased pericardial area, diminished heart rate, and an elongated distance between the venous sinus and the arterial bulb. Tolfenpyrad elicited noteworthy alterations in the expression of genes pertinent to cardiac development and apoptosis, with the most pronounced changes observed in the cardiac development-related genes of bone morphogenetic protein 2b (bmp2b) and p53 upregulated modulator of apoptosis (puma). The findings underscore that tolfenpyrad induces severe cardiac toxicity and mitochondrial damage in zebrafish embryos. This data is imperative for a comprehensive assessment of tolfenpyrad risks to aquatic ecosystems, particularly considering the limited knowledge regarding its detrimental impact on aquatic vertebrates.
Collapse
Affiliation(s)
- Yuzhao Guo
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Taiyu Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Xinyu Wang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| |
Collapse
|
3
|
Shao X, Xiao D, Yang Z, Jiang L, Li Y, Wang Y, Ding Y. Frontier of toxicology studies in zebrafish model. J Appl Toxicol 2024; 44:488-500. [PMID: 37697940 DOI: 10.1002/jat.4543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Based on the 87 original publications only from quartiles 1 and 2 of Journal Citation Report (JCR) collected by the major academic databases (Science Direct, Web of Science, PubMed, and Wiley) in 2022, the frontier of toxicology studies in zebrafish model is summarized. Herewith, a total of six aspects is covered such as developmental, neurological, cardiovascular, hepatic, reproductive, and immunizing toxicities. The tested samples involve chemicals, drugs, new environmental pollutants, nanomaterials, and its derivatives, along with those related mechanisms. This report may provide a frontier focus benefit to researchers engaging in a zebrafish model for environment, medicine, food, and other fields.
Collapse
Affiliation(s)
- Xinting Shao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Lindahl G, Fjellander S, Selvaraj K, Vildeval M, Ali Z, Almter R, Erkstam A, Rodriguez GV, Abrahamsson A, Kersley ÅR, Fahlgren A, Kjølhede P, Linder S, Dabrosin C, Jensen L. Zebrafish tumour xenograft models: a prognostic approach to epithelial ovarian cancer. NPJ Precis Oncol 2024; 8:53. [PMID: 38413842 PMCID: PMC10899227 DOI: 10.1038/s41698-024-00550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is the gynaecological malignancy with highest mortality. Although adjuvant treatment with carboplatin and paclitaxel leads to an objective response in ~80% of these patients, a majority will relapse within two years. Better methods for assessing long-term treatment outcomes are needed. To address this, we established safe and efficacious doses of carboplatin and paclitaxel using IGROV-1 zebrafish-CDX models. Then fluorescently-labelled cell suspensions from 83 tumour biopsies collected at exploratory laparotomy of women with suspected EOC were generated and 37 (45%) were successfully implanted in zebrafish larvae. Among these 19 of 27 pathology-confirmed EOC samples (70%) engrafted. These zebrafish patient-derived tumour xenograft (ZTX) models were treated with carboplatin or paclitaxel and tumour growth/regression and metastatic dissemination were recorded. In a subgroup of nine patients, four ZTX models regressed during carboplatin treatment. All four corresponding patients had >24 months PFS. Furthermore, both ZTX models established from two patients having <24 months PFS failed to regress during carboplatin treatment. Seven of eight models seeding <6 metastatic cells were established from patients having >24 months PFS. In eleven of fourteen patients, FIGO stage I + II or III tumours gave rise to ZTX models seeding <4 or >4 metastatic cells, respectively. In conclusion, ZTX models predicted patients having >24 or <24 months PFS, based on response/no response to carboplatin. Furthermore, high metastatic dissemination in ZTX models correlated to shorter PFS and more advanced disease at diagnosis. These preliminary results suggest that ZTX models could become a useful prognostic tool in EOC treatment planning.
Collapse
Affiliation(s)
- Gabriel Lindahl
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sebastian Fjellander
- BioReperia AB, Linköping, Sweden
- Linköping University, Department of Health, Medicine and Care, Division of Diagnostics and Specialist Medicine, Linköping, Sweden
| | - Karthik Selvaraj
- Linköping University, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | | | | | | | | | | | - Annelie Abrahamsson
- Linköping University, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Åsa Rydmark Kersley
- Department of Obstetrics and Gynecology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Fahlgren
- BioReperia AB, Linköping, Sweden
- Linköping University, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Preben Kjølhede
- Department of Obstetrics and Gynecology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Stig Linder
- Linköping University, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lasse Jensen
- BioReperia AB, Linköping, Sweden.
- Linköping University, Department of Health, Medicine and Care, Division of Diagnostics and Specialist Medicine, Linköping, Sweden.
| |
Collapse
|
5
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Cho KH, Baek SH, Nam HS, Bahuguna A, López-González LE, Rodríguez-Cortina I, Illnait-Ferrer J, Fernández-Travieso JC, Molina-Cuevas V, Pérez-Guerra Y, Oyarzabal Yera A, Mendoza-Castaño S. Beeswax Alcohol Prevents Low-Density Lipoprotein Oxidation and Demonstrates Antioxidant Activities in Zebrafish Embryos and Human Subjects: A Clinical Study. Curr Issues Mol Biol 2024; 46:409-429. [PMID: 38248328 PMCID: PMC10813917 DOI: 10.3390/cimb46010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress is one of the primary instigators of the onset of various human ailments, including cancers, cardiovascular diseases, and dementia. Particularly, oxidative stress severely affects low-density lipid & protein (LDL) oxidation, leading to several detrimental health effects. Therefore, in this study, the effect of beeswax alcohol (BWA) was evaluated in the prevention of LDL oxidation, enhancement of paraoxonase 1 (PON-1) activity of high-density lipid & protein (HDL), and zebrafish embryo survivability. Furthermore, the implication of BWA consumption on the oxidative plasma variables was assessed by a preliminary clinical study on middle-aged and older human subjects (n = 50). Results support BWA augmentation of PON-1 activity in a dose-dependent manner (10-30 μM), which was significantly better than the effect exerted by coenzyme Q10 (CoQ10). Moreover, BWA significantly curtails LDL/apo-B oxidation evoked by CuSO4 (final 0.5 μM) and a causes a marked reduction in lipid peroxidation in LDL. The transmission electron microscopy (TEM) analysis revealed a healing effect of BWA towards the restoration of LDL morphology and size impaired by the exposure of Cu2+ ions (final 0.5 μM). Additionally, BWA counters the toxicity induced by carboxymethyllysine (CML, 500 ng) and rescues zebrafish embryos from development deformities and apoptotic cell death. A completely randomized, double-blinded, placebo-controlled preliminary clinical study on middle- and older-aged human subjects (n = 50) showed that 12 weeks of BWA (100 mg/day) supplementation efficiently diminished serum malondialdehyde (MDA) and total hydroperoxides and enhanced total antioxidant status by 25%, 27%, and 22%, respectively, compared to the placebo-control and baseline values. Furthermore, the consumption of BWA did not exhibit any noteworthy changes in physical variables, lipid profile, glucose levels, and biomarkers pertinent to kidney and liver function, thus confirming the safety of BWA for consumption. Conclusively, in vitro, BWA prevents LDL oxidation, enhances PON-1 activity in HDL, and positively influences oxidative variables in human subjects.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Seung-Hee Baek
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Hyo-Seon Nam
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ashutosh Bahuguna
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu R, Huang Y, Chen Y, Huang D, Zhao Z, He T, Shi Y, Chen X. Lactobacillus plantarum E2 regulates intestinal microbiota and alleviates Pseudomonas plecoglossicida induced inflammation and apoptosis in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109170. [PMID: 37852511 DOI: 10.1016/j.fsi.2023.109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Pseudomonas plecoglossicida infection is a highly contagious epidemic in aquaculture, causing significant mortality among teleost. Our previous research has demonstrated that Lactobacillus plantarum E2 is beneficial for large yellow croaker in resisting infections caused by P. plecoglossicida. However, the relevant mechanisms remain largely unclear. In the present study, we used zebrafish (Danio rerio) to further explore the function of L. plantarum E2 and its mechanisms for resisting P. plecoglossicida infection. E2 supplementation diet significantly improved the growth rates and α-amylase and trypsin activities of the liver in zebrafish. After challenge with P. plecoglossicida strain PQLYC4, the survival rates of zebrafish were improved, and immune-related genes expression (IL-1β, TNF-α, IL-8, Ig-Z, TLR-22 and IL-12α) were down-regulated. Histological analysis showed that E2 group had a longer intestinal villus and thicker intestinal walls after 30 days of feeding and healthier intestinal structure after challenge with P. plecoglossicida strain PQLYC4. Furthermore, co-incubation of zebrafish embryo fibroblast (ZF-4 cells) with L. plantarum E2 reduced apoptosis of ZF-4 cells after exposed to P. plecoglossicida. Intestinal microbiota analysis showed that E2 strain significantly increased the relative abundance of Lactobacillus and Pseudomonas, and PCoA analysis revealed a noticeable divergence in the intestinal microbial communities after E2 supplement. Together, our results suggested that E2 strain may promote zebrafish survival against P. plecoglossicida infection by regulating the intestinal microbiota and alleviating inflammatory response and apoptosis, thus exhibiting the potential as a probiotic.
Collapse
Affiliation(s)
- Ruizhe Liu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulu Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - You Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongliang Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhexu Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianliang He
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Shi
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Fuzhou Institute of Oceanography, Fuzhou, 350108, China.
| |
Collapse
|
8
|
Al-Hamaly MA, Turner LT, Rivera-Martinez A, Rodriguez A, Blackburn JS. Zebrafish Cancer Avatars: A Translational Platform for Analyzing Tumor Heterogeneity and Predicting Patient Outcomes. Int J Mol Sci 2023; 24:2288. [PMID: 36768609 PMCID: PMC9916713 DOI: 10.3390/ijms24032288] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The increasing number of available anti-cancer drugs presents a challenge for oncologists, who must choose the most effective treatment for the patient. Precision cancer medicine relies on matching a drug with a tumor's molecular profile to optimize the therapeutic benefit. However, current precision medicine approaches do not fully account for intra-tumoral heterogeneity. Different mutation profiles and cell behaviors within a single heterogeneous tumor can significantly impact therapy response and patient outcomes. Patient-derived avatar models recapitulate a patient's tumor in an animal or dish and provide the means to functionally assess heterogeneity's impact on drug response. Mouse xenograft and organoid avatars are well-established, but the time required to generate these models is not practical for clinical decision-making. Zebrafish are emerging as a time-efficient and cost-effective cancer avatar model. In this review, we highlight recent developments in zebrafish cancer avatar models and discuss the unique features of zebrafish that make them ideal for the interrogation of cancer heterogeneity and as part of precision cancer medicine pipelines.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40356, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Logan T. Turner
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| | | | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| |
Collapse
|
9
|
Chen M, Li M, Li P, Lee SLJ, Tang J, Li Q, Lin S. Enhanced visible light-driven photodegradation of tetracycline by salicylic acid-modified graphitic carbon nitride and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90768-90778. [PMID: 35876997 DOI: 10.1007/s11356-022-22000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The tetracycline (TC) in water has led to serious concern. Graphitic carbon nitride (g-C3N4) photocatalysts were produced via copolymerization of mono-benzene ring-mediated precursors (urea, melamine, and dicyandiamide) involving salicylic acid (SA) for TC degradation. The SA-modified g-C3N4 samples showed improved visible light absorbance, transfer and separation of photogenerated electrons, and prospective photocatalytic application in TC degradation. As a result, the optimal SA-modified g-C3N4 (2 wt% of SA) using urea (CNU-SA-2) showed 2 times higher TC degradation than that of pristine g-C3N4. The process of TC degradation was evaluated by the reduction of antibacterial activity and extensively studied by varying the types of TC, initial pH values, co-existing anions, and natural organic materials. In addition, the catalyst could be reused for at least four cycles, indicating good reusability. The main active species were revealed to be h+ and ·O2- by scavenging experiments and electron spin resonance. The CNU-SA-2 photocatalyst and TC intermediates during degradation had no adverse impact on zebrafish embryos. This work could provide a design strategy and a perspective on the practical application of g-C3N4-based photocatalysts for the treatment of wastewater containing antibiotics.
Collapse
Affiliation(s)
- Mengmeng Chen
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Mengxue Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stephanie Ling Jie Lee
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Juanjuan Tang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Qian Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.
| |
Collapse
|
10
|
Curcio V, Macirella R, Sesti S, Ahmed AIM, Talarico F, Pizzolotto R, Tagarelli A, Mezzasalma M, Brunelli E. The role of exposure window and dose in determining lead toxicity in developing Zebrafish. CHEMOSPHERE 2022; 307:136095. [PMID: 35995187 DOI: 10.1016/j.chemosphere.2022.136095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal contamination is recognized worldwide as a serious threat to human health and wildlife, and reducing their emissions is a priority of international and EU actions. Due to its persistence, high bioaccumulation tendency, and toxicity properties, lead (Pb) is one of the heavy metals of greatest concern. Even at low concentrations, lead induces various clinical and subclinical conditions in both humans and animals, and it has been included in the priority list of hazardous substances. In the present study, we used zebrafish's early stages as a model, given their well-acknowledged predictive value in the risk assessment of chemicals. This study was designed to investigate the morphological and morphometric alterations induced by Pb during zebrafish's early development and disclose the putative effects stage- and/or dose-dependent. We examined injuries induced by two environmentally relevant and extremely low concentrations of Pb (2.5 μg/L and 5 μg/L) during two exposure windows: early (between 1 and 7 dpf) and late (between 2 and 8 dpf). We clearly demonstrated that the incidence and severity of morphological abnormalities increased with increasing Pb dose and exposure time in both early and late-exposed groups. Furthermore, we revealed that malformation severity was significantly higher in the early exposed group than in the late exposure group at all exposure times and for both tested doses, thus highlighting the high sensitivity of zebrafish during the initial stages of development. The information presented in this paper emphasizes the effectiveness of morphological biomarkers in unveiling threatening situations and supports the role of zebrafish embryos and larvae in risk assessment and environmental monitoring.
Collapse
Affiliation(s)
- Vittoria Curcio
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Settimio Sesti
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Abdalmoiz I M Ahmed
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Federica Talarico
- Natural History Museum and Botanical Garden, University of Calabria, 87036 Rende, Italy
| | - Roberto Pizzolotto
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Antonio Tagarelli
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, 87036, Italy
| | - Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
11
|
Kumari S, Dhiman P, Singh D, Saneja A. R-α-Lipoic Acid Conjugated to d-α-Tocopherol Polyethylene Glycol 1000 Succinate: Synthesis, Characterization, and Effect on Antiseizure Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7674-7682. [PMID: 35713421 DOI: 10.1021/acs.jafc.2c01685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
α-Lipoic acid (LA), a dithiol micronutrient, acts as a vital cofactor in various cellular catabolic reactions and is also known as a universal antioxidant. The therapeutic efficacy of LA is compromised by a poor aqueous solubility as well as a short half-life. In the present study, LA was conjugated to d-α-tocopherol polyethylene glycol succinate (TPGS) using carbodiimideacid-alcohol coupling reaction. The synthesized conjugate (TPGS-LA) was characterized using 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), UV-vis spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The TPGS-LA conjugate was demonstrated to be biocompatible and to have better anticonvulsion activity as compared to native LA in pentylenetetrazol (PTZ)-induced convulsions in zebrafish. Moreover, zebrafish larvae pretreated with TPGS-LA conjugate demonstrated a significant (p < 0.05) reduction of protein carbonylation levels and downregulation of c-fos expression during seizures as compared to native LA. Conclusively, the present findings demonstrate that the TPGS-LA conjugate can be a promising approach for the delivery of LA.
Collapse
Affiliation(s)
- Savita Kumari
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 Uttar Pradesh, India
| | - Poonam Dhiman
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 Uttar Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 Uttar Pradesh, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 Uttar Pradesh, India
| |
Collapse
|