1
|
Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Nah SY, Jeong JH, Byun JK, Ko SK, Bing G, Hong JS, Kim HC. Ginsenoside Re protects methamphetamine-induced dopaminergic neurotoxicity in mice via upregulation of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated neurokinin 1 receptor. J Neuroinflammation 2018; 15:52. [PMID: 29467000 PMCID: PMC5822489 DOI: 10.1186/s12974-018-1087-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously reported that ginsenoside Re (GRe) attenuated against methamphetamine (MA)-induced neurotoxicity via anti-inflammatory and antioxidant potentials. We also demonstrated that dynorphin possesses anti-inflammatory and antioxidant potentials against dopaminergic loss, and that balance between dynorphin and substance P is important for dopaminergic neuroprotection. Thus, we examined whether GRe positively affects interactive modulation between dynorphin and substance P against MA neurotoxicity in mice. METHODS We examined changes in dynorphin peptide level, prodynorphin mRNA, and substance P mRNA, substance P-immunoreactivity, homeostasis in enzymatic antioxidant system, oxidative parameter, microglial activation, and pro-apoptotic parameter after a neurotoxic dose of MA to clarify the effects of GRe, prodynorphin knockout, pharmacological inhibition of κ-opioid receptor (i.e., nor-binaltorphimine), or neurokinin 1 (NK1) receptor (i.e., L-733,060) against MA insult in mice. RESULTS GRe attenuated MA-induced decreases in dynorphin level, prodynorphin mRNA expression in the striatum of wild-type (WT) mice. Prodynorphin knockout potentiated MA-induced dopaminergic toxicity in mice. The imbalance of enzymatic antioxidant system, oxidative burdens, microgliosis, and pro-apoptotic changes led to the dopaminergic neurotoxicity. Neuroprotective effects of GRe were more pronounced in prodynorphin knockout than in WT mice. Nor-binaltorphimine, a κ-opioid receptor antagonist, counteracted against protective effects of GRe. In addition, we found that GRe significantly attenuated MA-induced increases in substance P-immunoreactivity and substance P mRNA expression in the substantia nigra. These increases were more evident in prodynorphin knockout than in WT mice. Although, we observed that substance P-immunoreactivity was co-localized in NeuN-immunreactive neurons, GFAP-immunoreactive astrocytes, and Iba-1-immunoreactive microglia. NK1 receptor antagonist L-733,060 or GRe selectively inhibited microgliosis induced by MA. Furthermore, L-733,060 did not show any additive effects against GRe-mediated protective activity (i.e., antioxidant, antimicroglial, and antiapoptotic effects), indicating that NK1 receptor is one of the molecular targets of GRe. CONCLUSIONS Our results suggest that GRe protects MA-induced dopaminergic neurotoxicity via upregulatgion of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated NK1 R.
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jung Hwan Jeong
- Headquarters of Forestry Support, Korea Forestry Promotion Institute, Seoul, 07570, Republic of Korea
| | - Jae Kyung Byun
- Korean Society of Forest Environment Research, Namyangju, 12014, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food and Nutrition, Semyung University, Jecheon, 27136, Republic of Korea.
| | - Guoying Bing
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Hypothalamic Amylin Acts in Concert with Leptin to Regulate Food Intake. Cell Metab 2015; 22:1059-67. [PMID: 26655697 DOI: 10.1016/j.cmet.2015.10.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 08/05/2015] [Accepted: 10/22/2015] [Indexed: 11/21/2022]
Abstract
In this report we evaluated the functions of hypothalamic amylin in vivo and in vitro. Profiling of hypothalamic neurons revealed that islet amyloid polypeptide (Iapp, precursor to amylin) is expressed in neurons in the lateral hypothalamus, arcuate nucleus, medial preoptic area, and elsewhere. Hypothalamic expression of lapp is markedly decreased in ob/ob mice and normalized by exogenous leptin. In slices, amylin and leptin had similar electrophysiologic effects on lateral hypothalamic leptin receptor ObRb-expressing neurons, while the amylin antagonist AC187 inhibited their activity and blunted the effect of leptin. Finally, i.c.v. infusion of AC187 acutely reduced the anorectic effects of leptin. These data show that hypothalamic amylin is transcriptionally regulated by leptin, that it can act directly on ObRb neurons in concert with leptin, and that it regulates feeding. These findings provide a potential mechanism for the increased efficacy of a metreleptin/pramlintide combination therapy for obesity.
Collapse
|
3
|
Wang Q, Shin EJ, Nguyen XKT, Li Q, Bach JH, Bing G, Kim WK, Kim HC, Hong JS. Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice. J Neuroinflammation 2012; 9:124. [PMID: 22695044 PMCID: PMC3409049 DOI: 10.1186/1742-2094-9-124] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 06/13/2012] [Indexed: 11/25/2022] Open
Abstract
Background The striato-nigral projecting pathway contains the highest concentrations of dynorphin in the brain. The functional role of this opioid peptide in the regulation of mesencephalic dopaminergic (DAergic) neurons is not clear. We reported previously that exogenous dynorphin exerts potent neuroprotective effects against inflammation-induced dopaminergic neurodegeneration in vitro. The present study was performed to investigate whether endogenous dynorphin has neuroprotective roles in vivo. Methods 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (MA), two commonly used neurotoxins in rodent models of Parkinson’s disease, were administered to wild-type (Dyn+/+) and prodynorphin-deficient mice (Dyn−/−). We examined dopaminergic neurotoxicity by using an automated video tracking system, HPLC, immunocytochemistry, and reverse transcription and polymerase chain reaction (RT-PCR). Results Treatment with MPTP resulted in behavioral impairments in both strains. However, these impairments were more pronounced in Dyn-l- than in Dyn+/+. Dyn−/− showed more severe MPTP-induced dopaminergic neuronal loss in the substantia nigra and striatum than Dyn+/+. Similarly, the levels of dopamine and its metabolites in the striatum were depleted to a greater extent in Dyn−/− than in Dyn+/+. Additional mechanistic studies revealed that MPTP treatment caused a higher degree of microglial activation and M1 phenotype differentiation in Dyn−/− than in Dyn+/+. Consistent with these observations, prodynorphin deficiency also exacerbated neurotoxic effects induced by MA, although this effect was less pronounced than that of MPTP. Conclusions The in vivo results presented here extend our previous in vitro findings and further indicate that endogenous dynorphin plays a critical role in protecting dopaminergic neurons through its anti-inflammatory effects.
Collapse
Affiliation(s)
- Qingshan Wang
- Neuropsychopharmacology and Toxicology Program, College of PharmacyKangwon National University, Chunchon 200-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Piechota M, Korostynski M, Sikora M, Golda S, Dzbek J, Przewlocki R. Common transcriptional effects in the mouse striatum following chronic treatment with heroin and methamphetamine. GENES BRAIN AND BEHAVIOR 2012; 11:404-14. [PMID: 22390687 DOI: 10.1111/j.1601-183x.2012.00777.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular alterations that underlie the long-lasting behavioural effects of drugs of abuse, such as psychomotor sensitization and physical dependence, are still not known. Moreover, it is not known which molecular effects are similar for addictive drugs from various pharmacological classes. In this study, we utilized whole-genome microarray profiling to evaluate the detailed time-course of transcriptional alterations in the mouse striatum during chronic treatment with heroin (HER) and methamphetamine (METH) and after period of spontaneous withdrawal. We identified 27 genes regulated by chronic drug administration. The overlap between lists of HER- and METH-induced genes was highly significant. The most substantial impact on the gene expression profile was observed for circadian genes (Per1, Per2 and Nr1d1). However, changing the treatment scheme from diurnal to nocturnal was sufficient to attenuate the drug-induced changes in circadian gene mRNA levels. Both of the drugs caused a dose-dependent induction in glucocorticoid-dependent genes with relatively long mRNA half-lives (Fkbp5, Sult1a1 and Plin4). The analysis also showed a drug-regulated group of transcripts enriched in the nucleus accumbens and includes well known (Pdyn, Cartpt and Rgs2) as well as new (Fam40b and Inmt) candidate genes. All identified alterations in the striatal transcriptome were transient and persisted up to 6 days after withdrawal. Behavioural sensitization, however, was maintained throughout the 12-day withdrawal period for both HER and METH. We suggest that transient gene expression alterations during drug treatment and in the early period of withdrawal are involved in the establishment of persistent neuroplastic alterations responsible for the development of drug addiction.
Collapse
Affiliation(s)
- M Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Smetna 12, Krakow, Poland
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|