1
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
2
|
Kantak KM. Rodent models of attention-deficit hyperactivity disorder: An updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 2022; 216:173378. [DOI: 10.1016/j.pbb.2022.173378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
|
3
|
Jenkins S, Harker A, Gibb R. Distinct sex-dependent effects of maternal preconception nicotine and enrichment on the early development of rat offspring brain and behavior. Neurotoxicol Teratol 2022; 91:107062. [PMID: 34998861 DOI: 10.1016/j.ntt.2021.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Developmental nicotine exposure is harmful to offspring. Whereas much is known about the consequences of prenatal nicotine exposure, relatively little is understood about how maternal preconception nicotine impacts the next generation. Positive experiences, such as environmental enrichment/complexity, have considerable potential to improve developmental outcomes and even treat and prevent drug addiction. Therefore, the current study sought to identify how maternal exposure to moderate levels of nicotine prior to conception impacts offspring development, and if the presumably negative consequence of nicotine could be reversed by concurrent exposure to an enriched environment. We treated female Long Evans rats with nicotine in their drinking water (15 mg nicotine salt/L) for seven weeks while residing in either standard or enriched conditions. Both experiences occurred exclusively prior to mating. Nicotine exposure reduced dam fertility by ~20% (p = .06). Females reared their own litters, and offspring were tested in two assessments of early development: negative geotaxis and open field. Offspring were euthanized at weaning (P21), and their brains were processed with Golgi-Cox solution to allow quantification of dendritic spine density. Results indicate that neither maternal nicotine or enrichment had an impact on maternal care, but male offspring were impaired at negative geotaxis due to maternal nicotine, female offspring showed altered open field exploration due to maternal enrichment, and offspring of both sexes had increased spine density in OFC due to maternal enrichment. Therefore, this experiment provides novel insights into the unique, sex-dependent consequences of maternal preconception nicotine and enrichment on the early development of rat behavior and brain.
Collapse
Affiliation(s)
- Serena Jenkins
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| | - Allonna Harker
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| | - Robbin Gibb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
4
|
Li JH, Liu JL, Zhang KK, Chen LJ, Xu JT, Xie XL. The Adverse Effects of Prenatal METH Exposure on the Offspring: A Review. Front Pharmacol 2021; 12:715176. [PMID: 34335277 PMCID: PMC8317262 DOI: 10.3389/fphar.2021.715176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 01/12/2023] Open
Abstract
Abuse of methamphetamine (METH), an illicit psychostimulant, is a growing public health issue. METH abuse during pregnancy is on the rise due to its stimulant, anorectic, and hallucinogenic properties. METH can lead to multiple organ toxicity in adults, including neurotoxicity, cardiovascular toxicity, and hepatotoxicity. It can also cross the placental barrier and have long-lasting effects on the fetus. This review summarizes neurotoxicity, cardiovascular toxicity, hepatotoxicity, toxicity in other organs, and biomonitoring of prenatal METH exposure, as well as the possible emergence of sensitization associated with METH. We proposed the importance of gut microbiota in studying prenatal METH exposure. There is rising evidence of the adverse effects of METH exposure during pregnancy, which are of significant concern.
Collapse
Affiliation(s)
- Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jing-Tao Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Acquisition of remifentanil self-administration: Enhanced in female rats but no effect of adolescent stress exposure. Pharmacol Biochem Behav 2020; 199:173038. [PMID: 32910927 DOI: 10.1016/j.pbb.2020.173038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/23/2022]
Abstract
Animal models of acquisition have been vital in shaping our understanding of vulnerability factors that influence susceptibility to drugs of abuse. Decades of research substantiates a number of biological, environmental, and behavioral factors that predict vulnerability - many of which have been important in the development of early intervention efforts in humans. The goal of the present study was to examine the acquisition of a synthetic opioid derivative in 66 adult male and female Long-Evans rats following histories of stress exposure during adolescence. Stress-exposed rats were subjected to a mild stress paradigm, which included alternating exposure to synthetic fox feces and physical restraint for eight days. Following stress induction and assessment, all rats were implanted with intravenous catheters in order to self-administer remifentanil (1 μm/kg/infusion) with no prior operant training. Acquisition of remifentanil self-administration was measured over 15 days. Findings indicate that regardless of stress condition, female rats acquired remifentanil self-administration sooner and emitted more active lever presses than males. Stress exposed animals exhibited increased anxiety-like response compared to the control group following exposure to stress, operationalized as decreased exploratory behavior on an Elevated Plus Maze. However, these effects were not expressed as significant differences in self-administration by stress. Together, these findings indicate that sex differences are evident in remifentanil self-administration.
Collapse
|
6
|
Eliasen JN, Krall J, Frølund B, Kohlmeier KA. Sex-specific alterations in GABA receptor-mediated responses in laterodorsal tegmentum are associated with prenatal exposure to nicotine. Dev Neurobiol 2020; 80:178-199. [PMID: 32628361 DOI: 10.1002/dneu.22772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Smoking during pregnancy is associated with deleterious physiological and cognitive effects on the offspring, which are likely due to nicotine-induced alteration in the development of neurotransmitter systems. Prenatal nicotine exposure (PNE) in rodents is associated with changes in behaviors controlled in part by the pontine laterodorsal tegmentum (LDT), and LDT excitatory signaling is altered in a sex and age-dependent manner by PNE. As effects on GABAergic LDT signaling are unknown, we used calcium imaging to evaluate GABAA receptor- (GABAA R as well as GABAA -ρ R) and GABAB receptor (GABAB R)-mediated calcium responses in LDT brain slices from female and male PNE mice in two different age groups. Overall, in older PNE females, changes in calcium induced by stimulation of GABAA R and GABAB R, including GABAA -ρ R were shifted toward calcium rises. In both young and old males, PNE was associated with alterations in calcium mediated by all three receptors; however, the GABAA R was the most affected. These results show for the first time that PNE is associated with alterations in GABAergic transmission in the LDT in a sex- and age-dependent manner, and these data are the first to show PNE-associated alterations in functionality of GABA receptors in any nucleus. PNE-associated alterations in LDT GABAergic transmission within the LDT would be expected to alter output to target regions and could play a role in LDT-implicated, negative behavioral outcomes following gestational exposure to smoking. Accordingly, our data provide further supportive evidence of the importance of eliminating the consumption of nicotine during pregnancy.
Collapse
Affiliation(s)
- Jannik Nicklas Eliasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Krall
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Polli FS, Kohlmeier KA. Alterations in NMDAR-mediated signaling within the laterodorsal tegmental nucleus are associated with prenatal nicotine exposure. Neuropharmacology 2019; 158:107744. [DOI: 10.1016/j.neuropharm.2019.107744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/23/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022]
|
8
|
Gartstein MA, Skinner MK. Prenatal influences on temperament development: The role of environmental epigenetics. Dev Psychopathol 2018; 30:1269-1303. [PMID: 29229018 PMCID: PMC5997513 DOI: 10.1017/s0954579417001730] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review summarizes current knowledge and outlines future directions relevant to questions concerning environmental epigenetics and the processes that contribute to temperament development. Links between prenatal adversity, epigenetic programming, and early manifestations of temperament are important in their own right, also informing our understanding of biological foundations for social-emotional development. In addition, infant temperament attributes represent key etiological factors in the onset of developmental psychopathology, and studies elucidating their prenatal foundations expand our understanding of developmental origins of health and disease. Prenatal adversity can take many forms, and this overview is focused on the environmental effects of stress, toxicants, substance use/psychotropic medication, and nutrition. Dysregulation associated with attention-deficit/hyperactivity-disruptive disorders was noted in the context of maternal substance use and toxicant exposures during gestation, as well as stress. Although these links can be made based on the existing literature, currently few studies directly connect environmental influences, epigenetic programming, and changes in brain development/behavior. The chain of events starting with environmental inputs and resulting in alterations to gene expression, physiology, and behavior of the organism is driven by epigenetics. Epigenetics provides the molecular mechanism of how environmental factors impact development and subsequent health and disease, including early brain and temperament development.
Collapse
Affiliation(s)
- Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA-99164-4820, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA-99164-4236, USA
| |
Collapse
|
9
|
HIV-1 proteins dysregulate motivational processes and dopamine circuitry. Sci Rep 2018; 8:7869. [PMID: 29777165 PMCID: PMC5959859 DOI: 10.1038/s41598-018-25109-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
Motivational alterations, such as apathy, in HIV-1+ individuals are associated with decreased performance on tasks involving frontal-subcortical circuitry. We used the HIV-1 transgenic (Tg) rat to assess effect of long-term HIV-1 protein exposure on motivated behavior using sucrose (1–30%, w/v) and cocaine (0.01–1.0 mg/kg/infusion) maintained responding with fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement. For sucrose-reinforced responding, HIV-1 Tg rats displayed no change in EC50 relative to controls, suggesting no change in sucrose reinforcement but had a downward shifted concentration-response curves, suggesting a decrease in response vigor. Cocaine-maintained responding was attenuated in HIV-1 Tg rats (FR1 0.33 mg/kg/infusion and PR 1.0 mg/kg/infusion). Dose-response tests (PR) revealed that HIV-1 Tg animals responded significantly less than F344 control rats and failed to earn significantly more infusions of cocaine as the unit dose increased. When choosing between cocaine and sucrose, control rats initially chose sucrose but with time shifted to a cocaine preference. In contrast, HIV-1 disrupted choice behaviors. DAT function was altered in the striatum of HIV-1 Tg rats; however, prior cocaine self-administration produced a unique effect on dopamine homeostasis in the HIV-1 Tg striatum. These findings of altered goal directed behaviors may determine neurobiological mechanisms of apathy in HIV-1+ patients.
Collapse
|
10
|
Nieto SJ, Kosten TA. Female Sprague-Dawley rats display greater appetitive and consummatory responses to alcohol. Behav Brain Res 2017; 327:155-161. [PMID: 28365196 DOI: 10.1016/j.bbr.2017.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023]
Abstract
The narrowing of the gender gap in alcohol drinking patterns is a concern because women are more susceptible to adverse health consequences of alcohol use. Animal models of alcohol-seeking and -consuming are useful to delineate sex differences to test for effective sex-specific pharmacological treatments. We investigated potential sex differences in appetitive and consummatory responses to alcohol. Appetitive behaviors included numbers of head entries into the dipper access area and active lever presses. Consummatory behaviors included number of reinforcers delivered and consumed. Male and female Sprague-Dawley rats were placed on an overnight alcohol (10%) drinking schedule and trained to lever press for alcohol (10% solution). Separate groups of male and female animals had access to water overnight and were trained to lever press for sucrose (3% solution). Tests were conducted under a progressive ratio schedule of reinforcement. Alcohol-responding females demonstrated higher alcohol intake overnight and showed greater appetitive and consummatory responses compared to males. Similar sex differences were seen in the sucrose group. Effect sizes indicated greater sex differences in consummatory measures in the alcohol vs. sucrose groups. Conversely, greater sex differences in appetitive behaviors were observed in the sucrose vs. alcohol groups. Overall, the magnitude of the sex differences was stronger for appetitive behaviors compared to consummatory behaviors. Findings of quantitative sex differences in appetitive and consummatory behaviors for alcohol and for the natural reinforcer, sucrose, suggest this procedure is useful to assess efficacy of sex-specific treatments aimed at reducing appetitive and consummatory responses to alcohol.
Collapse
Affiliation(s)
- Steven J Nieto
- University of Houston, Department of Psychology & Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX 77204-6022, United States
| | - Therese A Kosten
- University of Houston, Department of Psychology & Texas Institute for Measurement, Evaluation and Statistics (TIMES), Houston, TX 77204-6022, United States.
| |
Collapse
|
11
|
Wang Y, Yao Y, Li Y, Nie H, He X. Prenatal morphine exposure during late embryonic stage enhances the rewarding effects of morphine and induces the loss of membrane-bound protein kinase C-α in intermediate medial mesopallium in the chick. Neurosci Lett 2016; 639:25-30. [PMID: 27989573 DOI: 10.1016/j.neulet.2016.12.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/17/2022]
Abstract
The susceptibility to drug abuse may be associated with the structural and/or functional changes in the reward-related brain regions induced by drug exposure during sensitive periods of embryonic development. Previously, we have found that prenatal morphine exposure during embryonic days 17-20 may be crucial for developing the susceptibility to morphine reward after hatching. However, the underlying structure and cellular mechanisms need further investigation. In the present study, the chicks of a few days old, which were prenatally exposed to morphine during E17-20, obviously showed higher preference for the morphine-paired chamber and hyperactivity during the expression of morphine conditioned place preference (CPP), and the reduction in membrane-bound of PKCα of the bilateral intermediate medial mesopallium (IMM) assayed immunologically. These results indicate that the decreased expression of PKCα in IMM may participate in the development of the susceptibility to the rewarding effects of morphine in chicks prenatally exposed to morphine, and provide further support for the cross-species evolutionary concordance among amniotes.
Collapse
Affiliation(s)
- Ying Wang
- School of Medical Humanities, Tianjin Medical University, Tianjin, PR China
| | - Yang Yao
- Department of Clinical Biochemistry, School of Medical Laboratory, Tianjin Medical University, Tianjin, PR China
| | - Yuan Li
- Department of Laboratory Animal Sciences, Tianjin Medical University, Tianjin, PR China
| | - Han Nie
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, PR China
| | - Xingu He
- School of Medical Humanities, Tianjin Medical University, Tianjin, PR China.
| |
Collapse
|
12
|
Lacy RT, Brown RW, Morgan AJ, Mactutus CF, Harrod SB. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring. Dev Neurosci 2016; 38:171-185. [PMID: 27287203 DOI: 10.1159/000446563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers compared to PS controls. PN rats treated with METH showed significant enhancement of locomotor behavior compared to PS rats following acute and repeated injections; however, PN did not produce differential initiation or expression of behavioral sensitization. METH produced conditioned hyperactivity, and PN rats exhibited a greater conditioned response of hyperactivity relative to controls. PN and METH exposure produced changes in BDNF protein levels in all three regions, and complex interactions were observed between these two factors. Logistic regression revealed that BDNF protein levels, throughout the mesocorticolimbic system, significantly predicted the difference in the conditioned hyperactive response of the animals: both correlations were significant, but the predicted relationship between BDNF and context-elicited activity was stronger in the PN (r = 0.67) compared to the PS rats (r = 0.42). These findings indicate that low-dose PN exposure produces long-term changes in activity and enhanced sensitivity to the locomotor effects of METH. The enhanced METH-induced contextual conditioning shown by the PN animals suggests that offspring of in utero tobacco smoke exposure have greater susceptibility to learn about drug-related conditional stimuli, such as the context. The PN-induced alterations in mesocorticolimbic BDNF protein lend further support for the hypothesis that maternal smoking during pregnancy produces alterations in neuronal plasticity that contribute to drug abuse vulnerability. The current findings demonstrate that these changes are persistent into adulthood.
Collapse
Affiliation(s)
- Ryan T Lacy
- Behavioral Neuroscience Program, Department of Psychology, University of South Carolina, Columbia, S.C., USA
| | | | | | | | | |
Collapse
|