1
|
Andrade-Meza A, Arias-Romero LE, Armas-López L, Ávila-Moreno F, Chirino YI, Delgado-Buenrostro NL, García-Castillo V, Gutiérrez-Cirlos EB, Juárez-Avelar I, Leon-Cabrera S, Mendoza-Rodríguez MG, Olguín JE, Perez-Lopez A, Pérez-Plasencia C, Reyes JL, Sánchez-Pérez Y, Terrazas LI, Vaca-Paniagua F, Villamar-Cruz O, Rodríguez-Sosa M. Mexican Colorectal Cancer Research Consortium (MEX-CCRC): Etiology, Diagnosis/Prognosis, and Innovative Therapies. Int J Mol Sci 2023; 24:ijms24032115. [PMID: 36768437 PMCID: PMC9917340 DOI: 10.3390/ijms24032115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023] Open
Abstract
In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.
Collapse
Affiliation(s)
- Antonio Andrade-Meza
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Luis E. Arias-Romero
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Leonel Armas-López
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Yolanda I. Chirino
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Norma L. Delgado-Buenrostro
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Verónica García-Castillo
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Emma B. Gutiérrez-Cirlos
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Sonia Leon-Cabrera
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Carrera de Médico Cirujano, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Mónica G. Mendoza-Rodríguez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Jonadab E. Olguín
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Araceli Perez-Lopez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - José L. Reyes
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Luis I. Terrazas
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Olga Villamar-Cruz
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Correspondence: ; Tel.: +52-55-5623-1333
| |
Collapse
|
2
|
Jian L, Zhicheng H, shubai L. Polysaccharide Peptide Induced Colorectal Cancer Cells Apoptosis by Down-Regulating EGFR and PD-L1 Expression. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123909. [PMID: 36942063 PMCID: PMC10024323 DOI: 10.5812/ijpr-123909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
Abstract
Background Colorectal cancer (CRC) is the most frequent death-causing disease in the world. The Trametes versicolor mushroom, a traditional Chinese medicine, has been used as anti-cancer medicine with long history. Its cultured mycelia extracts, namely polysaccharide peptide (PSP) as the major active component in Trametes versicolor, is widely used in eastern countries to stimulate the immune system and treat deadly cancers, including CRC. Methods This study aimed to explore the mechanism through which PSP inhibits CRC cells proliferation. In vitro, cell proliferation and cytotoxicity of PSP were assessed using human CRC cell lines (HCT116 and HT29). The real-time polymerase chain reaction (PCR), western blot, and immunofluorescence methods were used to examine the expression of epidermal growth factor receptor (EGFR), programmed cell death-ligand 1 (PD-L1), activator of transcription 3 (STAT3), c-Jun, and NF-κB in the PSP treated CRC cells. Human peripheral blood mononuclear cells (PBMC), which were activated with CD3/CD28/CD2 T cell activator and interleukin 2 (IL-2), were co-cultured with HCT116, which was pre-treated with PSP to reduce PD-L1 expression. The synergic effect of T-cells killing was evaluated using the terminal-deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) method. Results Polysaccharide peptide significantly inhibited proliferation of HCT116 and HT29 cell line in vitro. Polysaccharide peptide strongly reduced the expression and phosphorylation level of EGFR. In addition, PSP pretreatment significantly decreased the expression of downstream molecules PD-L1 and EGFR signaling pathways (c-Jun and STAT3) in HCT116. Polysaccharide peptide pretreatment enhanced the T-cells killing effect induced by co-culture PBMC on HCT116 cells. Conclusions Polysaccharide peptide may be used as a prophylactic and therapeutic agent against CRC via down-regulating PD-L1 and EGFR signaling pathway.
Collapse
Affiliation(s)
- Lin Jian
- State Key Laboratory of Phytochemistry and Plant Resources inWest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Zhicheng
- State Key Laboratory of Phytochemistry and Plant Resources inWest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liu shubai
- State Key Laboratory of Phytochemistry and Plant Resources inWest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- Corresponding Author: State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. O. Box 650201, Yunnan, China. Tel: +86-871-6522 3309,
| |
Collapse
|
3
|
Liu W, Meng J, Su R, Shen C, Zhang S, Zhao Y, Liu W, Du J, Zhu S, Li P, Wang Z, Li X. SP1-mediated up-regulation of lncRNA TUG1 underlines an oncogenic property in colorectal cancer. Cell Death Dis 2022; 13:433. [PMID: 35508523 PMCID: PMC9068916 DOI: 10.1038/s41419-022-04805-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
Abstract
The long non-coding RNA (lncRNA) taurine up-regulated gene 1 (TUG1) acts as tumor-promoting factor in colorectal cancer (CRC). We aimed to elucidate the mechanism by which the transcription factor specificity protein 1 (SP1) regulates TUG1 and microRNAs (miRs)/mRNAs in the context of CRC, which has not been fully studied before. Expression patterns of TUG1 and SP1 were determined in clinical CRC samples and cells, followed by identification of their interaction. Next, the functional significance of TUG1 in CRC was investigated. An in vivo CRC model was established to validate the effect of TUG1. The results demonstrated that TUG1 and SP1 were highly-expressed in CRC, wherein SP1 bound to the TUG1 promoter and consequently, positively regulated its expression. Silencing of TUG1 caused suppression of CRC cell growth and promotion of cell apoptosis. TUG1 could bind to miR-421 to increase KDM2A expression, a target gene of miR-421. TUG1 could activate the ERK pathway by impairing miR-421-targeted inhibition of KDM2A. Additionally, SP1 could facilitate the tumorigenesis of CRC cells in vivo by regulating the TUG1/miR-421/KDM2A/ERK axis. Altogether, the current study emphasizes the oncogenic role of TUG1 in CRC, and illustrates its interactions with the upstream transcription factor SP1 and the downstream modulatory axis miR-421/KDM2A/ERK, thus offering novel insights into the cancerogenic mechanism in CRC.
Collapse
Affiliation(s)
- Wei Liu
- Department of General Surgery, Yan'an People's Hospital, Yan'an, 716000, P.R. China
| | - Jin Meng
- Department of Fifth Treatment Areas of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang, 110002, P.R. China
| | - Rongjun Su
- Department of General Surgery, Yan'an People's Hospital, Yan'an, 716000, P.R. China
| | - Changjun Shen
- Department of General Surgery, Yan'an People's Hospital, Yan'an, 716000, P.R. China
| | - Shuai Zhang
- Department of General Surgery, Yan'an People's Hospital, Yan'an, 716000, P.R. China
| | - Yantao Zhao
- Department of General Surgery, Yan'an People's Hospital, Yan'an, 716000, P.R. China
| | - Wenqi Liu
- Department of General Surgery, Yan'an People's Hospital, Yan'an, 716000, P.R. China
| | - Jiang Du
- Department of General Surgery, Yan'an People's Hospital, Yan'an, 716000, P.R. China
| | - Shuai Zhu
- Department of General Surgery, Yan'an People's Hospital, Yan'an, 716000, P.R. China
| | - Pan Li
- Department of General Surgery, Yan'an People's Hospital, Yan'an, 716000, P.R. China
| | - Zhigang Wang
- Department of Fifth Treatment Areas of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang, 110002, P.R. China
| | - Xiaoxia Li
- Department of General Surgery, Yan'an People's Hospital, Yan'an, 716000, P.R. China.
| |
Collapse
|
4
|
He Y, Liu S, Newburg DS. Musarin, a novel protein with tyrosine kinase inhibitory activity from Trametes versicolor, inhibits colorectal cancer stem cell growth. Biomed Pharmacother 2021; 144:112339. [PMID: 34656057 DOI: 10.1016/j.biopha.2021.112339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is the second deadly cancer in the world. Trametes versicolor is a traditional Chinese medicinal mushroom with a long history of being used to regulate immunity and prevent cancer. Trametes versicolor mushroom extract demonstrates strongly cell growth inhibitory activity on human colorectal tumor cells. In this study, we characterized a novel 12-kDa protein that named musarin, which was purified from Trametes versicolor mushroom extract and showed significant growth inhibition on multiple human colorectal cancer cell lines in vitro. The protein sequence of musarin was determined through enzyme digestion and MS/MS analysis. Furthermore, Musarin, in particular, strongly inhibits aggressive human colorectal cancer stem cell-like CD24+CD44+ HT29 proliferation in vitro and in a NOD/SCID murine xenograft model. Through whole transcription profile and gene enrichment analysis of musarin-treated CSCs-like cells, major signaling pathways and network modulated by musarin have been enriched, including the bioprocess of the Epithelial-Mesenchymal Transition, the EGFR-Ras signaling pathway and enzyme inhibitor activity. Musarin demonstrated tyrosine kinase inhibitory activity in vitro. Musarin strongly attenuated EGFR expression and down-regulated phosphorylation level, thereby slowing cancer cells proliferation. In addition, oral ingestion of musarin significantly inhibited CD24+CD44+ HT29 generated tumor development in SCID/NOD mice with less side effects in microgram doses. Targeting self-renewal aggressive stem-cell like cancer cell proliferation, with higher water solubility and lower cytotoxicity, musarin has shown strong potence to be developed as a promising novel therapeutic drug candidate against colorectal cancers, especially those that acquire chemo-resistance.
Collapse
Affiliation(s)
- YingYing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; School of Chemical Science & Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - David S Newburg
- University of Cincinnati College of Medicine, 130 Panzeca Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
Yue C, Chen J, Li Z, Li L, Chen J, Guo Y. microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKα2-FTO-m6A/MYC axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:240. [PMID: 33183350 PMCID: PMC7659164 DOI: 10.1186/s13046-020-01731-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the frequently occurred malignancies in the world. To date, several onco-microRNAs (miRNAs or miRs), including miR-96, have been identified in the pathogenesis of CRC. In the present study, we aimed to corroborate the oncogenic effect of miR-96 on CRC and to identify the specific mechanisms related to AMPKα2/FTO/m6A/MYC. METHODS RT-qPCR and Western blot analysis were performed to examine the expression pattern of miR-96, AMPKα2, FTO and MYC in the clinical CRC tissues and cells. The relationship between miR-96 and AMPKα2 was then predicted using in silico analysis and identified by dual-luciferase reporter assay. Gain- or loss-of-function approaches were manipulated to evaluate the modulatory effects of miR-96, AMPKα2, FTO and MYC on cell growth, cycle progression and apoptosis. The mechanism of FTO-mediated m6A modification of MYC was analyzed via Me-RIP and PAR-CLIP analysis. The mediatory effects of miR-96 antagomir on cancerogenesis were validated in vivo. RESULTS miR-96, FTO and MYC were upregulated, while AMPKα2 was downregulated in CRC tissues and cells. miR-96 could down-regulate AMPKα2, which led to increased expression of FTO and subsequent upregulated expression of MYC via blocking its m6A modification. This mechanism was involved in the pro-proliferative and anti-apoptotic roles of miR-96 in CRC cells. Besides, down-regulation of miR-96 exerted inhibitory effect on tumor growth in vivo. CONCLUSIONS Taken together, miR-96 antagomir could potentially retard the cancerogenesis in CRC via AMPKα2-dependent inhibition of FTO and blocking FTO-mediated m6A modification of MYC, highlighting novel mechanisms associated with colorectal cancerogenesis.
Collapse
Affiliation(s)
- Caifeng Yue
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, 524045, Zhanjiang, P. R. China
| | - Jierong Chen
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, P. R. China
| | - Ziyue Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, P. R. China
| | - Laisheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, P. R. China
| | - Jugao Chen
- Department of Oncology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, No. 3046, Shennan East Road, Luohu District, 518020, Shenzhen, Guangdong Province, P. R. China.
| | - Yunmiao Guo
- Clinical Research Institute of Zhanjiang, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, 524045, Zhanjiang, Guangdong Province, P. R. China.
| |
Collapse
|
6
|
Wong CK, Lambert AW, Ozturk S, Papageorgis P, Lopez D, Shen N, Sen Z, Abdolmaleky HM, Győrffy B, Feng H, Thiagalingam S. Targeting RICTOR Sensitizes SMAD4-Negative Colon Cancer to Irinotecan. Mol Cancer Res 2020; 18:414-423. [PMID: 31932471 DOI: 10.1158/1541-7786.mcr-19-0525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/04/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
Deciphering molecular targets to enhance sensitivity to chemotherapy is becoming a priority for effectively treating cancers. Loss of function mutations of SMAD4 in colon cancer are associated with metastatic progression and resistance to 5-fluorouracil (5-FU), the most extensively used drug of almost all chemotherapy combinations used in the treatment of metastatic colon cancer. Here, we report that SMAD4 deficiency also confers resistance to irinotecan, another common chemotherapeutic frequently used alone or in combination with 5-FU against colon cancer. Mechanistically, we find that SMAD4 interacts with and inhibits RICTOR, a component of the mTORC2 complex, resulting in suppression of downstream effector phosphorylation of AKT at Serine 473. In silico meta-analysis of publicly available gene expression datasets derived from tumors indicates that lower levels of SMAD4 or higher levels of RICTOR/AKT, irrespective of the SMAD4 status, correlate with poor survival, suggesting them as strong prognostic biomarkers and targets for therapeutic intervention. Moreover, we find that overexpression of SMAD4 or depletion of RICTOR suppresses AKT signaling and increases sensitivity to irinotecan in SMAD4-deficient colon cancer cells. Consistent with these observations, pharmacologic inhibition of AKT sensitizes SMAD4-negative colon cancer cells to irinotecan in vitro and in vivo. Overall, our study suggests that hyperactivation of the mTORC2 pathway is a therapeutic vulnerability that could be exploited to sensitize SMAD4-negative colon cancer to irinotecan. IMPLICATIONS: Hyperactivation of the mTORC2 pathway in SMAD4-negative colon cancer provides a mechanistic rationale for targeted inhibition of mTORC2 or AKT as a distinctive combinatorial therapeutic opportunity with chemotherapy for colon cancer.
Collapse
Affiliation(s)
- Chen Khuan Wong
- Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts.,Biomedical Genetics Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Arthur W Lambert
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Sait Ozturk
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Panagiotis Papageorgis
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Delia Lopez
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ning Shen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Zaina Sen
- Biomedical Genetics Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Hamid M Abdolmaleky
- Biomedical Genetics Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary.,Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Hui Feng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Sam Thiagalingam
- Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts. .,Biomedical Genetics Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Yan G, Zhang L, Feng C, Gong R, Idiiatullina E, Huang Q, He M, Guo S, Yang F, Li Y, Ding F, Ma W, Pavlov V, Han Z, Wang Z, Xu C, Cai B, Yuan Y, Yang L. Blue light emitting diodes irradiation causes cell death in colorectal cancer by inducing ROS production and DNA damage. Int J Biochem Cell Biol 2018; 103:81-88. [PMID: 30125666 DOI: 10.1016/j.biocel.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/23/2018] [Accepted: 08/15/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Gege Yan
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lai Zhang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chao Feng
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Rui Gong
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Elina Idiiatullina
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, 450008, Russia
| | - Qihe Huang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Mingyu He
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shuyuan Guo
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, China
| | - Fan Yang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuan Li
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Fengzhi Ding
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wenya Ma
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Valentin Pavlov
- Department of Pharmacology, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zhenbo Han
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhiguo Wang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chaoqian Xu
- Department of Pharmacology, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Benzhi Cai
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ye Yuan
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
8
|
Planque C, Rajabi F, Grillet F, Finetti P, Bertucci F, Gironella M, Lozano JJ, Beucher B, Giraud J, Garambois V, Vincent C, Brown D, Caillo L, Kantar J, Pelegrin A, Prudhomme M, Ripoche J, Bourgaux JF, Ginestier C, Castells A, Hollande F, Pannequin J, Pascussi JM. Pregnane X-receptor promotes stem cell-mediated colon cancer relapse. Oncotarget 2018; 7:56558-56573. [PMID: 27448961 PMCID: PMC5302934 DOI: 10.18632/oncotarget.10646] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/29/2016] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer lethality usually results from post-treatment relapse in the majority of stage II-IV patients, due to the enhanced resistance of Cancer Stem Cells (CSCs). Here, we show that the nuclear receptor Pregnane X Receptor (PXR, NR1I2), behaves as a key driver of CSC-mediated tumor recurrence. First, PXR is specifically expressed in CSCs, where it drives the expression of genes involved in self-renewal and chemoresistance. Clinically, high levels of PXR correlate with poor recurrence-free survival in a cohort of >200 stage II/III colorectal cancer patients treated with chemotherapy, for whom finding biomarkers of treatment outcome is an urgent clinical need. shRNA silencing of PXR increased the chemo-sensitivity of human colon CSCs, reduced their self-renewal and tumor-initiating potential, and drastically delayed tumor recurrence in mice following chemotherapy. This study uncovers PXR as a key factor for CSC self-renewal and chemoresistance and targeting PXR thus represents a promising strategy to minimize colorectal cancer relapse by selectively sensitizing CSCs to chemotherapy.
Collapse
Affiliation(s)
- Chris Planque
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Fatemeh Rajabi
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Fanny Grillet
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Pascal Finetti
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - Meritxell Gironella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigaciones Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigaciones Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bertrand Beucher
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Julie Giraud
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | | | - Charles Vincent
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Daniel Brown
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Ludovic Caillo
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Jovana Kantar
- Laboratoire de Biochimie, CHU Carémeau, Nîmes, France
| | - André Pelegrin
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | | | | | | | - Christophe Ginestier
- Centre de Recherche en Cancérologie de Marseille, U1068 Inserm, Marseille, France
| | - Antoni Castells
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigaciones Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Frédéric Hollande
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France.,Department of Pathology, University of Melbourne, Parkville, Australia
| | - Julie Pannequin
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Jean Marc Pascussi
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| |
Collapse
|
9
|
Wu DM, Wang YJ, Fan SH, Zhuang J, Zhang ZF, Shan Q, Han XR, Wen X, Li MQ, Hu B, Sun CH, Bao YX, Xiao HJ, Yang L, Lu J, Zheng YL. Network meta-analysis of the efficacy of first-line chemotherapy regimens in patients with advanced colorectal cancer. Oncotarget 2017; 8:100668-100677. [PMID: 29246011 PMCID: PMC5725053 DOI: 10.18632/oncotarget.22177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
This network meta-analysis compared the short-term and long-term efficacies of first-line chemotherapy regimens in patients with advanced colorectal cancer (CRC). The 10 regimens included folinic acid + 5-fluorouracil + oxaliplatin (FOLFOX), folinic acid + 5-fluorouracil + irinotecan (FOLFIRI), folinic acid + 5-fluorouracil + gemcitabine (FFG), folinic acid + 5-fluorouracil + trimetrexate (FFT), folinic acid + 5-fluorouracil (FF), irinotecan + oxaliplatin (IROX), raltitrexed + oxaliplatin (TOMOX), folinic acid + tegafur-uracil (FTU), raltitrexed, and capecitabine. Electronic searches were performed in the Cochrane Library, PubMed and Embase databases from inception to June 2017. Network meta-analysis combined direct and indirect evidence to obtain odds ratios (ORs) and surface under the cumulative ranking curves (SUCRA) of different chemotherapy regimens for advanced CRC. Fourteen randomized controlled trails (RCTs) covering 4,383 patients with advanced CRC were included. The results revealed that FOLFOX, FOLFIRI, IROX, and TOMOX all showed higher overall response rates (ORRs) than FF or raltitrexed. Compared with raltitrexed, the aforementioned four regimens also had higher 1-year progression-free survival (PFS) rates. In addition, FOLFOX and FOLFIRI exhibited higher disease control rates (DCRs) and 1-year PFS rates than FF or raltitrexed. Cluster analysis revealed that FOLFOX, FOLFIRI, and TOMOX had better short-term and long-term efficacies. These findings suggest FOLFOX, FOLFIRI, and TOMOX are superior to other regimens for advanced CRC. These three regimens are therefore recommended for clinical treatment of advanced CRC.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China.,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, P.R. China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian 223300, P.R. China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Chun-Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Ya-Xing Bao
- Department of Orthopaedics, The Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou 221009, P.R. China
| | - Hai-Juan Xiao
- Department of Oncology, Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang 712000, P.R. China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang 712000, P.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| |
Collapse
|
10
|
Prieur A, Cappellini M, Habif G, Lefranc MP, Mazard T, Morency E, Pascussi JM, Flacelière M, Cahuzac N, Vire B, Dubuc B, Durochat A, Liaud P, Ollier J, Pfeiffer C, Poupeau S, Saywell V, Planque C, Assenat E, Bibeau F, Bourgaux JF, Pujol P, Sézeur A, Ychou M, Joubert D. Targeting the Wnt Pathway and Cancer Stem Cells with Anti-progastrin Humanized Antibodies as a Potential Treatment for K-RAS-Mutated Colorectal Cancer. Clin Cancer Res 2017; 23:5267-5280. [PMID: 28600477 DOI: 10.1158/1078-0432.ccr-17-0533] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
Purpose: Patients with metastatic colorectal cancer suffer from disease relapse mainly due to cancer stem cells (CSC). Interestingly, they have an increased level of blood progastrin, a tumor-promoting peptide essential for the self-renewal of colon CSCs, which is also a direct β-catenin/TCF4 target gene. In this study, we aimed to develop a novel targeted therapy to neutralize secreted progastrin to inhibit Wnt signaling, CSCs, and reduce relapses.Experimental Design: Antibodies (monoclonal and humanized) directed against progastrin were produced and selected for target specificity and affinity. After validation of their effectiveness on survival of colorectal cancer cell lines harboring B-RAF or K-RAS mutations, their efficacy was assessed in vitro and in vivo, alone or concomitantly with chemotherapy, on CSC self-renewal capacity, tumor recurrence, and Wnt signaling.Results: We show that anti-progastrin antibodies decrease self-renewal of CSCs both in vitro and in vivo, either alone or in combination with chemotherapy. Furthermore, migration and invasion of colorectal cancer cells are diminished; chemosensitivity is prolonged in SW620 and HT29 cells and posttreatment relapse is significantly delayed in T84 cells, xenografted nude mice. Finally, we show that the Wnt signaling activity in vitro is decreased, and, in transgenic mice developing Wnt-driven intestinal neoplasia, the tumor burden is alleviated, with an amplification of cell differentiation in the remaining tumors.Conclusions: Altogether, these data show that humanized anti-progastrin antibodies might represent a potential new treatment for K-RAS-mutated colorectal patients, for which there is a crucial unmet medical need. Clin Cancer Res; 23(17); 5267-80. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | - Thibault Mazard
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | - Chris Planque
- Institut de Génomique Fonctionnelle, Montpellier, France
| | - Eric Assenat
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Frédéric Bibeau
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | | | - Pascal Pujol
- Departement d'oncogénétique clinique, CHRU Montpellier, Montpellier, France
| | - Alain Sézeur
- Groupe Hospitalier Diaconesses Croix St Simon Chirurgie Digestive, Paris, France
| | - Marc Ychou
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | | |
Collapse
|
11
|
Mioc M, Soica C, Bercean V, Avram S, Balan-Porcarasu M, Coricovac D, Ghiulai R, Muntean D, Andrica F, Dehelean C, Spandidos DA, Tsatsakis AM, Kurunczi L. Design, synthesis and pharmaco-toxicological assessment of 5-mercapto-1,2,4-triazole derivatives with antibacterial and antiproliferative activity. Int J Oncol 2017; 50:1175-1183. [PMID: 28350123 PMCID: PMC5363884 DOI: 10.3892/ijo.2017.3912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/01/2017] [Indexed: 11/12/2022] Open
Abstract
The extensive biochemical research of multiple types of cancer has revealed important enzymatic signaling pathways responsible for tumor occurrence and progression, thus compelling the need for the discovery of new means with which to block these signaling cascades. The phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, which plays an important role in maintaining relevant cellular functions, exhibits various alterations in common human cancers, thus representing a suitable target in cancer treatment. Molecules bearing the 1,2,4-triazole moiety are known to possess multiple biological activities, including anticancer activity. The current study used molecular docking in the design of 5-mercapto-1,2,4-triazole derivatives with antiproliferative activity targeting the PI3K/AKT pathway. Three structures emerged as the result of this method, which indicated for these a highly favorable accommodation within the active binding site of PI3K protein, thus acting as potential PI3K inhibitors, and hence interfering with the above-mentioned pathway. The molecules were synthesized and their chemical structure was confirmed. The antiproliferative activity of these compounds was tested on 4 cancer cell lines (A375, B164A5, MDA-MB-231 and A549) and on normal human keratinocytes (HaCaT) by in vitro alamarBlue assay. The 3 compounds revealed antitumor activity against the breast cancer cell line (MDA-MB-231) and reduced toxicity on the normal cell line. The antibacterial activity of the compounds was also tested in vitro on Gram-positive and Gram-negative bacterial strains, revealing moderate activity.
Collapse
Affiliation(s)
- Marius Mioc
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Codruta Soica
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | | | - Sorin Avram
- Department of Computational Chemistry, Institute of Chemistry Timisoara of the Romanian Academy, Timisoara 300223, Romania
| | | | - Dorina Coricovac
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Delia Muntean
- Faculty of Medicine, Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Florina Andrica
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71409, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Ludovic Kurunczi
- Department of Computational Chemistry, Institute of Chemistry Timisoara of the Romanian Academy, Timisoara 300223, Romania
| |
Collapse
|
12
|
SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2. Nat Commun 2016; 5:3159. [PMID: 24457997 DOI: 10.1038/ncomms4159] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/19/2013] [Indexed: 12/11/2022] Open
Abstract
The adaptor SLAP is a negative regulator of receptor signalling in immune cells but its role in human cancer is ill defined. Here we report that SLAP is abundantly expressed in healthy epithelial intestine but strongly downregulated in 50% of colorectal cancer. SLAP overexpression suppresses cell tumorigenicity and invasiveness while SLAP silencing enhances these transforming properties. Mechanistically, SLAP controls SRC/EPHA2/AKT signalling via destabilization of the SRC substrate and receptor tyrosine kinase EPHA2. This activity is independent from CBL but requires SLAP SH3 interaction with the ubiquitination factor UBE4A and SLAP SH2 interaction with pTyr594-EPHA2. SRC phosphorylates EPHA2 on Tyr594, thus creating a feedback loop that promotes EPHA2 destruction and thereby self-regulates its transforming potential. SLAP silencing enhances SRC oncogenicity and sensitizes colorectal tumour cells to SRC inhibitors. Collectively, these data establish a tumour-suppressive role for SLAP in colorectal cancer and a mechanism of SRC oncogenic induction through stabilization of its cognate substrates.
Collapse
|
13
|
Gao Y, An XH, Yang XL, Yang BL. Colon cancer stem cells: Markers, characteristics and pathogenic roles. Shijie Huaren Xiaohua Zazhi 2015; 23:5662-5669. [DOI: 10.11569/wcjd.v23.i35.5662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death worldwide. With the development of molecular biology, it is found that there is a small group of special cells, named cancer stem cells (CSCs), in tumor cells. CSCs are capable of continuous self-renewal and differentiation and are closely related to tumor growth, distant metastasis and recurrence. Specific recognition of CSCs from the tumor mass and normal healthy cells could be achieved by targeting specific cell surface markers, thus providing a foundation for CSC targeted therapies. CSCs are also responsible for tumor relapse, because conventional drugs fail to eliminate the CSC reservoir. Therefore, the design of CSC-targeted interventions is a rational strategy, which will enhance responsiveness to traditional therapeutic strategies and reduce local recurrence and metastasis. Understanding the mechanism of self-renewal and differentiation of CSCs and blocking their homeostasis will provide a new opportunity for the targeted treatment of colon cancer.
Collapse
|
14
|
Amorim R, Pinheiro C, Miranda-Gonçalves V, Pereira H, Moyer MP, Preto A, Baltazar F. Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells. Cancer Lett 2015; 365:68-78. [PMID: 26021766 DOI: 10.1016/j.canlet.2015.05.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/29/2015] [Accepted: 05/10/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells rely mostly on glycolysis to meet their energetic demands, producing large amounts of lactate that are extruded to the tumour microenvironment by monocarboxylate transporters (MCTs). The role of MCTs in the survival of colorectal cancer (CRC) cells is scarce and poorly understood. In this study, we aimed to better understand this issue and exploit these transporters as novel therapeutic targets alone or in combination with the CRC classical chemotherapeutic drug 5-Fluorouracil. For that purpose, we characterized the effects of MCT activity inhibition in normal and CRC derived cell lines and assessed the effect of MCT inhibition in combination with 5-FU. Here, we demonstrated that MCT inhibition using CHC (α-cyano-4-hydroxycinnamic acid), DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and quercetin decreased cell viability, disrupted the glycolytic phenotype, inhibited proliferation and enhanced cell death in CRC cells. These results were confirmed by specific inhibition of MCT1/4 by RNA interference. Notably, we showed that 5-FU cytotoxicity was potentiated by lactate transport inhibition in CRC cells, either by activity inhibition or expression silencing. These findings provide novel evidence for the pivotal role of MCTs in CRC maintenance and survival, as well as for the use of these transporters as potential new therapeutic targets in combination with CRC conventional therapy.
Collapse
Affiliation(s)
- Ricardo Amorim
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil; Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, Sao Paulo, Brazil
| | - Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Pereira
- Centre of Molecular and Environmental Biology (CBMA)/Department of Biology, University of Minho, Braga, Portugal
| | | | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA)/Department of Biology, University of Minho, Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
15
|
Sirvent A, Urbach S, Roche S. [Analysis of oncogenic signaling induced by tyrosine kinases in tumors by SILAC-based quantitative proteomic approach]. Med Sci (Paris) 2014; 30:558-66. [PMID: 24939544 DOI: 10.1051/medsci/20143005020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein tyrosine kinases (TK) transmit intracellular signaling induced by many extracellular stimuli resulting in cell growth or adhesion. Deregulation of their activity leads to malignant cell transformation that plays an important role in human cancer. The signaling pathways involved in this oncogenic process are however only partially elucidated. Interestingly, SILAC-based quantitative proteomics allow the identification of the whole spectrum of TK substrates and the dynamic of phosphorylation state involved in oncogenic signaling. For example, this approach has highlighted the unsuspected complexity of the oncogenic signaling induced by the TK Src in colorectal cancer (CRC) cells. In this review, we describe a new SILAC-based technology applied to in vivo models of human tumors engrafted in nude mice. This method revealed significant differences between Src-oncogenic signaling of CRC cells in tumors and in culture. Finally, we discuss the interest of SILAC with recently described in vivo proteomic methods and in cancer, including the analysis of oncogenic signaling in tumor progression and the anti-tumoral activity of TK inhibitors in vivo.
Collapse
Affiliation(s)
- Audrey Sirvent
- CNRS UMR5237, université de Montpellier 1 et 2, centre de recherche de biochimie macromoléculaire (CRBM), 34000 Montpellier, France
| | - Serge Urbach
- CNRS UMR5203, Inserm U661, université de Montpellier 1 et 2, institut de génomique fonctionnelle (IGF), plate-forme de protéomique fonctionnelle, 34000 Montpellier, France
| | - Serge Roche
- CNRS UMR5237, université de Montpellier 1 et 2, centre de recherche de biochimie macromoléculaire (CRBM), 34000 Montpellier, France
| |
Collapse
|
16
|
Modeling colorectal cancer as a 3-dimensional disease in a dish: the case for drug screening using organoids, zebrafish, and fruit flies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e73-81. [PMID: 24050233 DOI: 10.1016/j.ddtec.2012.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review discusses recent shifts in the understanding of colorectal cancer as a stem cell based disease, based on findings that tie patient prognosis to the presence of cancer stem cells in colorectal tumors. Currently no drugs specifically target CSCs in colorectal tumors. However, recent advances in the culturing of colorectal stem cells using mammalian organoids, zebrafish, and Drosophila offer promising avenues for anti-CSC drug discovery.
Collapse
|
17
|
A new fluorescence-based reporter gene vector as a tool for analyzing and fishing cells with activated wnt signaling pathway. ISRN ONCOLOGY 2013; 2013:603129. [PMID: 24066239 PMCID: PMC3771423 DOI: 10.1155/2013/603129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/28/2013] [Indexed: 11/17/2022]
Abstract
The dysregulated Wnt pathway is a major cause for the activation of cell proliferation and reduced differentiation in tumor cells. Therefore the Wnt signaling pathway is the on-top target in searching for new anticancer drugs or therapeutic strategies. Although the key players of the pathway are known, no specific anti-Wnt drug entered a clinical trial by now. Several screening approaches for potential compounds have been performed with a reporter gene assay using multiple T-cell factor/lymphoid enhancer factor (TCF/LEF) binding motifs as promoters which control luciferase or β -galactosidase as reporter genes. In our work, we designed a reporter gene construct which anchors the enhanced green fluorescent protein (eGFP) to the plasma membrane. HEK 293T cells, which were stably transfected with this construct, express eGFP on the outer membrane after activation with either LiCl or WNT3A protein. Thus, cells with activated Wnt pathway could be identified and fished out of a heterogeneous cell pool by the use of magnetic-labeled anti-GFP antibodies. In summary, we present a new tool to easily detect, quantify, and sort cells with activated Wnt signaling pathway in a simple, fast, and cost-effective way.
Collapse
|
18
|
Tao L, Zhang K, Sun Y, Jin B, Zhang Z, Yang K. Anti-epithelial cell adhesion molecule monoclonal antibody conjugated fluorescent nanoparticle biosensor for sensitive detection of colon cancer cells. Biosens Bioelectron 2012; 35:186-192. [PMID: 22464249 DOI: 10.1016/j.bios.2012.02.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/09/2012] [Accepted: 02/20/2012] [Indexed: 11/28/2022]
Abstract
In this paper, a sensitive and selective sensor for detecting colon cancer cells based on nanoparticle covalent modified anti-human epithelial cell adhesion molecule (EpCAM) antibody is developed. The transmission electron microscope (TEM) images showed that the nanoparticle and functionalized nanoparticle had good decentrality for application. The NaIO(4) oxidation method, which was used as oxidizing antibody for immobilization of conjugating antibody on the silica-coated fluorescent nanoparticles, maintained the activities of antibodies very well. The fluorescence microscopy imaging and flow cytometer (FCM) experiments demonstrated that the nanosensor could increase the signal intensity obviously and distinguish three kinds of target cells (colo205, sw480 and NCM460) well. The membrane and nuclear staining showed the distribution and abundance of EpCAM in cells' membrane. It also provides a possibility to quantify special membrane proteins on different regions of cells' surface. At the end, the result of detecting a simple sample proved that colo205 cells were selected by anti-EpCAM antibody nanosensors in this environment, and made a good foundation for subsequent research.
Collapse
Affiliation(s)
- Liang Tao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, China
| | - Kui Zhang
- Department of Immunology, The Fourth Military Medical University, China
| | - Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, China
| | - Zhujun Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, China.
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, China.
| |
Collapse
|
19
|
Nasopharyngeal carcinoma signaling pathway: an update on molecular biomarkers. Int J Cell Biol 2012; 2012:594681. [PMID: 22500174 PMCID: PMC3303613 DOI: 10.1155/2012/594681] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 01/03/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an uncommon cancer, which has a distinctive ethnic and geographic distribution. Etiology of NPC is considered to be related with a complex interaction of environmental and genetic factors as well as Epstein-Barr virus infection. Since NPC is located in the silent painless area, the disease is usually therefore diagnosed at the advanced stages; hence early detection of NPC is difficult. Furthermore, understanding in molecular pathogenesis is still lacking, pondering the identification of effective prognostic and diagnostic biomarkers. Dysregulation of signaling molecules in intracellular signal transduction, which regulate cell proliferation, apoptosis, and adhesion, underlines the basis of NPC pathogenesis. In this paper, the molecular signaling pathways in the NPC are discussed for the holistic view of NPC development and progression. The important insights toward NPC pathogenesis may offer strategies for identification of novel biomarkers for diagnosis and prognosis.
Collapse
|
20
|
Epigenetics and chemoresistance in colorectal cancer: an opportunity for treatment tailoring and novel therapeutic strategies. Drug Resist Updat 2011; 14:280-96. [PMID: 21955833 DOI: 10.1016/j.drup.2011.08.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/09/2011] [Accepted: 08/13/2011] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is the second leading cause of cancer-related deaths in the world. Despite many therapeutic opportunities, prognosis remains dismal for patients with metastatic disease, and a significant portion of early-stage patients develop recurrence after chemotherapy. Epigenetic gene regulation is a major mechanism of cancer initiation and progression, through the inactivation of several tumor suppressor genes. Emerging evidence indicates that epigenetics may also play a key role in the development of chemoresistance. In the present review, we summarize epigenetic mechanisms triggering resistance to three commonly used agents in colorectal cancer: 5-fluorouracil, irinotecan and oxaliplatin. Those epigenetic biomarkers may help stratify colorectal cancer patients and develop a tailored therapeutic approach. In addition, epigenetic modifications are reversible through specific drugs: histone-deacetylase and DNA-methyl-transferase inhibitors. Preclinical studies suggest that these drugs may reverse chemoresistance in colorectal tumors. In conclusion, an epigenetic approach to colorectal cancer chemoresistance may pave the way to personalized treatment and to innovative therapeutic strategies.
Collapse
|
21
|
Serkova NJ. Translational imaging endpoints to predict treatment response to novel targeted anticancer agents. Drug Resist Updat 2011; 14:224-35. [PMID: 21640633 DOI: 10.1016/j.drup.2011.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/20/2011] [Accepted: 04/26/2011] [Indexed: 01/22/2023]
Abstract
Response Evaluation Criteria in Solid Tumors (RECIST) and World Health Organization (WHO) Criteria have been traditionally used for the evaluation of therapeutic response to chemotherapeutic treatment regimens. They determine anatomic criteria for patients response to anti-cancer therapy based on morphological measurements of each target lesion. While this assessment is justified for cytotoxic (chemotherapeutic) drugs, it is now recognized that morphological imaging protocols are poorly suited to the evaluation of the efficacy of novel signal transduction inhibitors (STIs) which exhibit cytostatic rather than cytotoxic properties. New imaging technologies are now designed to evaluate, in a functional manner, modifications in tumor metabolic activity, cellularity, and vascularization before a reduction in tumor volume can be detected. Introduction of physiological imaging end-points, derived from dynamic contrast-enhanced (DCE) imaging protocols--including magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US)--allow for early assessment of disruption in tumor perfusion and permeability for targeted anti-angiogenic agents. Diffusion-weighted MRI (DWI) provides another physiological imaging end-point since tumor necrosis and cellularity are seen early in response to anti-angiogenic treatment. Changes in glucose and phospholipid turnover, based on metabolic MRI and positron emission tomography (PET), provide reliable markers for therapeutic response to novel receptor-targeting agents. Finally, novel molecular imaging techniques of protein and gene expression have been developed in animal models followed by a successful human application for gene therapy-based protocols.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Center, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Duffy DJ, Frank U. Modulation of COUP-TF expression in a cnidarian by ectopic Wnt signalling and allorecognition. PLoS One 2011; 6:e19443. [PMID: 21552541 PMCID: PMC3084292 DOI: 10.1371/journal.pone.0019443] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/29/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND COUP transcription factors are required for the regulation of gene expression underlying development, differentiation, and homeostasis. They have an evolutionarily conserved function, being a known marker for neurogenesis from cnidarians to vertebrates. A homologue of this gene was shown previously to be a neuronal and nematocyte differentiation marker in Hydra. However, COUP-TFs had not previously been studied in a colonial cnidarian. METHODOLOGY/PRINCIPAL FINDINGS We cloned a COUP-TF homologue from the colonial marine cnidarian Hydractinia echinata. Expression of the gene was analysed during normal development, allorecognition events and ectopic Wnt activation, using in situ hybridisation and quantitative PCR. During normal Hydractinia development, the gene was first expressed in post-gastrula stages. It was undetectable in larvae, and its mRNA was present again in putative differentiating neurons and nematocytes in post-metamorphic stages. Global activation of canonical Wnt signalling in adult animals resulted in the upregulation of COUP-TF. We also monitored a strong COUP-TF upregulation in stolons undergoing allogeneic interactions. COUP-TF mRNA was most concentrated in the tissues that contacted allogeneic, non-self tissues, and decreased in a gradient away from the contact area. Interestingly, the gene was transiently upregulated during initial contact of self stolons, but dissipated rapidly following self recognition, while in non-self contacts high expression levels were maintained. CONCLUSIONS/SIGNIFICANCE We conclude that COUP-TF is likely involved in neuronal/nematocyte differentiation in a variety of contexts. This has now been shown to include allorecognition, where COUP-TF is thought to have been co-opted to mediate allorejection by recruiting stinging cells that are the effectors of cytotoxic rejection of allogeneic tissue. Our findings that Wnt activation upregulates COUP-TF expression suggests that Wnts' role in neuronal differentiation could be mediated through COUP-TF.
Collapse
Affiliation(s)
- David J. Duffy
- School of Natural Sciences and Martin Ryan Marine Science Institute, National University of Ireland Galway, Galway, Ireland
| | - Uri Frank
- School of Natural Sciences and Martin Ryan Marine Science Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
23
|
[Recent developments of pharmacogenomics in the treatment of colorectal cancers]. ANNALES PHARMACEUTIQUES FRANÇAISES 2010; 68:233-53. [PMID: 20637356 DOI: 10.1016/j.pharma.2010.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/16/2010] [Accepted: 04/16/2010] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CCR), which is one of the most common causes of cancer, has benefited from the major advances in the understanding of the intracellular signaling pathways implicated in the initiation, growing and local and metastasis dissemination of tumor, which have occurred during the 20 past years. The pharmacogenomics approach, especially the determination of the genetic polymorphisms, tries to find prognosis and predictive biomarkers permitting to identify patients who could benefit from a particular treatment or those exhibiting higher risks of toxicity. Among the numerous biomarkers, which have been studied, few are currently in use in clinical practice. The phenotyping of DPD and UGT1A1 activities, and to a lesser extent, its genotyping, appears as the most useful tool in terms of prediction of toxicities induced by two major drugs: 5-FU and irinotecan. For oxaliplatin, the determination of the polymorphisms of reparases and detoxification systems such as GSTpi seems interesting, but its exact place should be more defined. It is in the field of targeted therapies that the pharmacogenomics approach seems to be the more relevant. KRAS mutation is a dramatic example of single nucleotide polymorphism, which is able to identify a priori patients that could receive or not an anti-EGFR monoclonal antibody such as cetuximab or panitumumab. It is obvious that pre-clinical identification of molecular biomarkers predictive of the sensitivity of the drug targets, which subsequently implicate the selection of patients and the rational evaluation of responses, will be the cornerstone of any clinical trials concerning targeted therapies. Besides the determination of drug target polymorphisms, it is also important to consider those related to the distribution and metabolism. In this area, the determination of enzymatic activities should recover its place besides the genomic profiling.
Collapse
|