1
|
Liang S, Wang H, Zhang Y, Tian H, Li C, Hua D. Prognostic implications of combining EGFR-TKIs and radiotherapy in Stage IV lung adenocarcinoma with 19-Del or 21-L858R mutations: A real-world study. Cancer Med 2024; 13:e7208. [PMID: 38659399 PMCID: PMC11043673 DOI: 10.1002/cam4.7208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE To elucidate the potential benefits of combining radiotherapy and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) for individuals with Stage IV lung adenocarcinoma (LUAD) harboring either exon 19 deletion (19-Del) or exon 21 L858R mutation (21-L858R). METHODS In this real-world retrospective study, 177 individuals with Stage IV LUAD who underwent EGFR-TKIs and radiotherapy at Shandong Cancer Hospital from June 2012 to August 2017 were included. The main focus of this real-world study was overall survival (OS). RESULTS The clinical characteristics of patients with Stage IV LUAD harboring 19-Del were similar to those harboring 21-L858R (p > 0.05). Overall, the patients had a median OS (mOS) of 32.0 months (95% confidence interval [CI]: 28.6-35.5). Subsequently, multivariate analysis indicated that both EGFR mutations and thoracic radiotherapy were independent predictors of OS (p = 0.001 and 0.013). Furthermore, subgroup analysis highlighted a longer OS for the 19-Del group compared to the 21-L858R group, especially when EGFR-TKIs were combined with bone metastasis or thoracic radiotherapy (mOS: 34.7 vs. 25.1 months and 51.0 vs. 29.6 months; p = 0.0056 and 0.0013, respectively). However, no significant differences were found in OS when considering patients who underwent brain metastasis radiotherapy (mOS: 34.7 vs. 25.1 months; p = 0.088). CONCLUSIONS Patients with Stage IV LUAD harboring 19-Del experience a notably prolonged OS following combined therapy with EGFR-TKIs and radiotherapy, while this OS benefit is observed despite the absence of substantial differences in the clinical characteristics between the 19-Del and 21-L858R groups.
Collapse
Affiliation(s)
- Shuai Liang
- Department of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical CenterWuxiChina
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Hanyu Wang
- The Affiliated Children's Hospital of Jiangnan University, Wuxi School of MedicineWuxiChina
| | - Yingyun Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Department of oncologyShengli Oilfield Central HospitalDongyingChina
| | - Haixia Tian
- Department of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical CenterWuxiChina
| | - Chengming Li
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Dong Hua
- Department of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical CenterWuxiChina
- The Affiliated Children's Hospital of Jiangnan University, Wuxi School of MedicineWuxiChina
| |
Collapse
|
2
|
de Haan R, van den Heuvel MM, van Diessen J, Peulen HMU, van Werkhoven E, de Langen AJ, Lalezari F, Pluim D, Verwijs-Janssen M, Vens C, Schellens JHM, Steeghs N, Verheij M, van Triest B. Phase I and Pharmacologic Study of Olaparib in Combination with High-dose Radiotherapy with and without Concurrent Cisplatin for Non-Small Cell Lung Cancer. Clin Cancer Res 2021; 27:1256-1266. [PMID: 33262140 DOI: 10.1158/1078-0432.ccr-20-2551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/26/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE To identify an MTD of olaparib, a PARP inhibitor, in combination with loco-regional radiotherapy with/without cisplatin for the treatment of non-small cell lung cancer (NSCLC). PATIENTS AND METHODS Olaparib dose was escalated in two groups: radiotherapy (66 Gy/24 fractions in 2.75 Gy/fraction) with and without daily cisplatin (6 mg/m2), using time-to-event continual reassessment method with a 1-year dose-limiting toxicity (DLT) period. The highest dose level with a DLT probability <15% was defined as MTD. Poly ADP-ribose (PAR) inhibition and radiation-induced PAR-ribosylation (PARylation) were determined in peripheral blood mononuclear cells. RESULTS Twenty-eight patients with loco-regional or oligometastatic disease (39%) were treated: 11 at olaparib 25 mg twice daily and 17 at 25 mg once daily. The lowest dose level with cisplatin was above the MTD due to hematologic and late esophageal DLT. The MTD without cisplatin was olaparib 25 mg once daily. At a latency of 1-2.8 years, severe pulmonary adverse events (AE) were observed in 5 patients across all dose levels, resulting in 18% grade 5 pulmonary AEs. Exploratory analyses indicate an association with the radiation dose to the lungs. At the MTD, olaparib reduced PAR levels by more than 95% and abolished radiation-induced PARylation. Median follow-up of survivors was 4.1 years. Two-year loco-regional control was 84%, median overall survival in patients with locally advanced NSCLC was 28 months. CONCLUSIONS Combined mildly hypofractionated radiotherapy and low-dose daily cisplatin and olaparib was not tolerable due to esophageal and hematologic toxicity. Severe pulmonary toxicity was observed as well, even without cisplatin. More conformal radiotherapy schedules with improved pulmonary and esophageal sparing should be explored.
Collapse
Affiliation(s)
- Rosemarie de Haan
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michel M van den Heuvel
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Judi van Diessen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Heike M U Peulen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Erik van Werkhoven
- Department of Biometrics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Adrianus J de Langen
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ferry Lalezari
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dick Pluim
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Manon Verwijs-Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Conchita Vens
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Baukelien van Triest
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Li S, Liao R, Sheng X, Luo X, Zhang X, Wen X, Zhou J, Peng K. Hydrogen Gas in Cancer Treatment. Front Oncol 2019; 9:696. [PMID: 31448225 PMCID: PMC6691140 DOI: 10.3389/fonc.2019.00696] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Gas signaling molecules (GSMs), composed of oxygen, carbon monoxide, nitric oxide, hydrogen sulfide, etc., play critical roles in regulating signal transduction and cellular homeostasis. Interestingly, through various administrations, these molecules also exhibit potential in cancer treatment. Recently, hydrogen gas (formula: H2) emerges as another GSM which possesses multiple bioactivities, including anti-inflammation, anti-reactive oxygen species, and anti-cancer. Growing evidence has shown that hydrogen gas can either alleviate the side effects caused by conventional chemotherapeutics, or suppress the growth of cancer cells and xenograft tumor, suggesting its broad potent application in clinical therapy. In the current review, we summarize these studies and discuss the underlying mechanisms. The application of hydrogen gas in cancer treatment is still in its nascent stage, further mechanistic study and the development of portable instruments are warranted.
Collapse
Affiliation(s)
- Sai Li
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rongrong Liao
- Nursing Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyan Sheng
- Nursing Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaojun Luo
- The Centre of Preventive Treatment of Disease, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Wen
- The Centre of Preventive Treatment of Disease, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jin Zhou
- Nursing Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kang Peng
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Centre of Preventive Treatment of Disease, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
He L, Lv Y, Song Y, Zhang B. The prognosis comparison of different molecular subtypes of breast tumors after radiotherapy and the intrinsic reasons for their distinct radiosensitivity. Cancer Manag Res 2019; 11:5765-5775. [PMID: 31303789 PMCID: PMC6612049 DOI: 10.2147/cmar.s213663] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy can increase the cell cycle arrest that promotes apoptosis, reduces the risk of tumor recurrence and has become an irreplaceable component of systematic treatment for patients with breast cancer. Substantial advances in precise radiotherapy unequivocally indicate that the benefits of radiotherapy vary depending on intrinsic subtypes of the disease; luminal A breast cancer has the highest benefit whereas human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) are affected to a lesser extent irrespective of the selection of radiotherapy strategies, such as conventional whole-breast irradiation (CWBI), accelerated partial-breast irradiation (APBI), and hypofractionated whole-breast irradiation (HWBI). The benefit disparity correlates with the differential invasiveness, malignance, and radiosensitivity of the subtypes. A combination of a number of molecular mechanisms leads to the strong radioresistant profile of HER2-positive breast cancer, and sensitization to irradiation can be induced by multiple drugs or compounds in luminal disease and TNBC. In this review, we aimed to summarize the prognostic differences between various subtypes of breast tumors after CWBI, APBI, and HWBI, the potential reasons for drug-enhanced radiosensitivity in luminal breast tumors and TNBC, and the robust radioresistance of HER2-positive cancer. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/ugTrSMuQVI8
Collapse
Affiliation(s)
- Lin He
- Breast Center B Ward, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Yang Lv
- Department of Oncology, The PLA Navy Anqing Hospital, Anqing, Anhui Province, People's Republic of China
| | - Yuhua Song
- Breast Center B Ward, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Biyuan Zhang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| |
Collapse
|
5
|
DuRoss AN, Neufeld MJ, Rana S, Thomas CR, Sun C. Integrating nanomedicine into clinical radiotherapy regimens. Adv Drug Deliv Rev 2019; 144:35-56. [PMID: 31279729 PMCID: PMC6745263 DOI: 10.1016/j.addr.2019.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/06/2023]
Abstract
While the advancement of clinical radiotherapy was driven by technological innovations throughout the 20th century, continued improvement relies on rational combination therapies derived from biological insights. In this review, we highlight the importance of combination radiotherapy in the era of precision medicine. Specifically, we survey and summarize the areas of research where improved understanding in cancer biology will propel the field of radiotherapy forward by allowing integration of novel nanotechnology-based treatments.
Collapse
Affiliation(s)
- Allison N DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Megan J Neufeld
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Shushan Rana
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles R Thomas
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
6
|
Liu CC, Lin WW, Wu CC, Hsu SL, Wang CY, Chung JG, Chiang CS. Lauryl Gallate Induces Apoptotic Cell Death through Caspase-dependent Pathway in U87 Human Glioblastoma Cells In Vitro. In Vivo 2018; 32:1119-1127. [PMID: 30150434 PMCID: PMC6199588 DOI: 10.21873/invivo.11354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM The treatment of human glioma tumor is still an unmet medical need. Natural products are always promising resources for discovery of anticancer drugs. Lauryl gallate (LG) is one of the derivatives of gallic acid, widely present in plants, that has been shown to induce anticancer activities in many human cancer cell lines; however, it has not been studied in human glioma cell lines. Thus, the effects of LG on human glioblastoma U87 cells were investigated in the present in vitro study. MATERIALS AND METHODS Cell morphology and viability were examined by phase-contrast microscopy. Annexin V/Propidium iodide (PI) double staining were performed and assayed by flow cytometry to confirm that viable cell number reduction was due to the induction of apoptosis. Furthermore, U87 cells were exposed to LG in various concentrations and were analyzed by caspase activity assay. To further confirm that LG induced apoptotic cell death, the expression of apoptosis-associated proteins in LG-treated U87 cells was tested by western blot. RESULTS LG induced morphological changes and decreased viability in U87 cells. Annexin V/PI double staining revealed that LG induced apoptotic cell death in U87 cells in a dose-dependent manner. The increased activities of caspase-2, -3, -8 and -9 demonstrated that LG induced U87 cell apoptosis through a caspase-dependent pathway. In terms of molecular level, LG increased pro-apoptotic proteins Bax and Bak and decreased anti-apoptotic protein Bcl-2 in U87 cells. Furthermore, LG also suppressed the expression of p-Akt, Pak1, Hif-1α and Hif-2α, β-catenin and Tcf-1 in U87 cells. CONCLUSION These results suggest that LG induced apoptotic cell death via the caspase-dependent pathway in U87 cells.
Collapse
Affiliation(s)
- Chia-Chi Liu
- Department of Biochemical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Wei-Wen Lin
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
- Department of Life Science, Tunghai University, Taichung, Taiwan, R.O.C
| | - Chun-Chi Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Shih-Lan Hsu
- Department of Education & Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chi-Yen Wang
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.
- Department of Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Chi-Shiun Chiang
- Department of Biochemical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| |
Collapse
|
7
|
Wu Q, Qiu S, Yu Y, Chen W, Lin H, Lin D, Feng S, Chen R. Assessment of the radiotherapy effect for nasopharyngeal cancer using plasma surface-enhanced Raman spectroscopy technology. BIOMEDICAL OPTICS EXPRESS 2018; 9:3413-3423. [PMID: 29984106 PMCID: PMC6033578 DOI: 10.1364/boe.9.003413] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/26/2018] [Accepted: 06/11/2018] [Indexed: 05/04/2023]
Abstract
Nasopharyngeal cancer (NPC) is a malignant tumor of the head and neck, which is extremely sensitive to radiotherapy. The aim of this study is to evaluate the feasibility of a label-free nanobiosensor based on plasma surface-enhanced Raman spectroscopy (SERS) to assess the radiotherapy effect in NPC. Here, SERS measurements were performed on plasma samples from 40 pre-treatment and post-treatment NPC as well as 30 healthy volunteers. Results demonstrate that the spectral characteristic of post-treatment samples is obviously different from that of pre-treatment ones, owing to the changes of biomolecules in plasma induced by radiotherapy. Classification sensitivities of 83.3%, 61.8% and 95.1%, and specificities of 91.2%, 67.4% and 93% can be achieved for separating pre- and post-treatment samples, post-treatment and normal samples, and pre-treatment and normal samples, respectively, suggesting the great potential of plasma SERS method as a rapid and convenient tool for radiotherapy assessment and cancer screening in NPC.
Collapse
Affiliation(s)
- Qiong Wu
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou 350007, China
- These authors contributed equally to this work
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Provincial Cancer Hospital; Fujian Medical University Cancer Hospital, Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
- These authors contributed equally to this work
| | - Yun Yu
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou 350007, China
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Weiwei Chen
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Huijing Lin
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou 350007, China
| | - Duo Lin
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou 350007, China
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shangyuan Feng
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou 350007, China
| | - Rong Chen
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fuzhou 350007, China
| |
Collapse
|
8
|
Zeng D, Deng S, Sang C, Zhao J, Chen T. Rational Design of Cancer-Targeted Selenadiazole Derivative as Efficient Radiosensitizer for Precise Cancer Therapy. Bioconjug Chem 2018; 29:2039-2049. [PMID: 29771500 DOI: 10.1021/acs.bioconjchem.8b00247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Delong Zeng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shulin Deng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chengcheng Sang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jianfu Zhao
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Zhang S, Fu Y, Wang D, Wang J. Icotinib enhances lung cancer cell radiosensitivity in vitro and in vivo by inhibiting MAPK/ERK and AKT activation. Clin Exp Pharmacol Physiol 2018; 45:969-977. [PMID: 29770473 DOI: 10.1111/1440-1681.12966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/07/2018] [Accepted: 05/05/2018] [Indexed: 01/30/2023]
Abstract
Icotinib hydrochloride is a small epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that was developed by Chinese scientists. While clinical trials have revealed its efficacy in the treatment of lung cancer, very little is known about its role in enhancing radiosensitivity. In this study, we investigated the effectiveness of Icotinib in enhancing lung cancer cell radiosensitivity and have detailed its underlying molecular mechanism. The lung cancer cell line H1650 was pretreated with or without Icotinib for 24 hours before radiation, and clonogenic survival assay was performed. Cell apoptosis was also analyzed by flow cytometry, while western blotting was performed to examine the activation of EGFR and its downstream kinases in H1650 cells after Icotinib and radiation treatment. Furthermore, a xenograft animal model was established to evaluate the radiosensitivity of Icotinib in vivo and to confirm its mechanism. Our results demonstrate that pretreatment with Icotinib reduced clonogenic survival after radiation, inhibited EGFR activation, and increased radiation-induced apoptosis in H1650 cells. The phosphorylation of protein kinase B (AKT), extracellular regulated protein kinase 1/2 (ERK1/2), and EGFR was inhibited after Icotinib and radiation combination treatment in vitro and in vivo compared with individual treatments. Combination treatment also affected the expression of the DNA repair protein H2A histone family member X (γ-H2AX). In conclusion, our results reveal that Icotinib enhances radiosensitivity in lung cancers in vitro and in vivo and the mechanism of this may involve blocking the EGFR-AKT and MAPK-ERK pathways and limiting DNA repair.
Collapse
Affiliation(s)
- Sen Zhang
- Department of Radiation Oncology, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yonghong Fu
- Department of Radiation Oncology, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| | - Dongjie Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Radiation Oncology, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| |
Collapse
|
10
|
Mao Y, Huang X, Shuang Z, Lin G, Wang J, Duan F, Chen J, Li S. PARP inhibitor olaparib sensitizes cholangiocarcinoma cells to radiation. Cancer Med 2018; 7:1285-1296. [PMID: 29479816 PMCID: PMC5911590 DOI: 10.1002/cam4.1318] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly malignant tumor with resistance to radiotherapy alone. Olaparib, a highly potent poly(ADP-ribose) polymerase (PARP) inhibitor, has been shown to sensitize many types of tumor to radiotherapy. However, the effect of olaparib, either as monotherapy or as combination therapy with radiotherapy, on CCA is not known, and our study aimed to explore this. To assess radiosensitization in three CCA cell lines (QBC939, HuH28 and TFK-1), viability and clonogenic assays were conducted. The absorbed radiation doses were 0 Gy, 2 Gy, 4 Gy, and 6 Gy; olaparib concentrations were 0 nmol/L, 1 nmol/L, 10 nmol/L, 100 nmol/L, 1000 nmol/L, 2500 nmol/L, 5000 nmol/L and 10 000 nmol/L. The mechanism of olaparib radiosensitization was explored by Western blotting. Immunofluorescence staining and flow cytometry were conducted to explore DNA damage and apoptosis. The radiosensitivity of CCA cells was enhanced by olaparib, which alone had little effect on the CCA cell lines without BRCA mutations. The degree of radiosensitization increased with increasing doses of olaparib by viability and clonogenic assays in vitro. Olaparib was able to enhance the effect of radiation by inhibiting PARP1, inducing DNA lesions and apoptosis. These findings emphasize the role of olaparib in the radiosensitization of CCA cells.
Collapse
Affiliation(s)
- Yize Mao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xin Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zeyu Shuang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guohe Lin
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jun Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of UltrasoundSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Fangting Duan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jianlin Chen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Shengping Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Hepatobiliary OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
11
|
Continued EGFR-TKI with concurrent radiotherapy to improve time to progression (TTP) in patients with locally progressive non-small cell lung cancer (NSCLC) after front-line EGFR-TKI treatment. Clin Transl Oncol 2017; 20:366-373. [DOI: 10.1007/s12094-017-1723-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/24/2017] [Indexed: 01/06/2023]
|
12
|
Lee CH, Shih YL, Lee MH, Au MK, Chen YL, Lu HF, Chung JG. Bufalin Induces Apoptosis of Human Osteosarcoma U-2 OS Cells through Endoplasmic Reticulum Stress, Caspase- and Mitochondria-Dependent Signaling Pathways. Molecules 2017; 22:molecules22030437. [PMID: 28287444 PMCID: PMC6155407 DOI: 10.3390/molecules22030437] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Bone cancer is one of the cancer-related diseases, and there are increased numbers of patients with bone cancer worldwide. Therefore the efficacy of treatment of bone cancer is considered extremely vital. Bufalin has been showed to have biological activities including anticancer activities in vitro and in vivo. However, the exact associated mechanisms for bufalin induced apoptosis in human bone cancer cells are still unclear. In the present study, we investigated the effect of bufalin on the cytotoxic effects in U-2 OS human osteosarcoma cells. For examining apoptotic cell deaths, we used flow cytometry assay, Annexin V/PI double staining, and TUNNEL assay. Reactive oxygen species (ROS), Ca2+, mitochondrial membrane potential (ΔΨm), and caspase-8, -9 and -3 activities were measured by flow cytometry assay. Furthermore, western blotting and a confocal laser microscopy examination were used for measuring the alterations of apoptotic associated protein expression and translocation, respectively. The results indicated that bufalin induced cell morphological changes, decreased the viable cell number, induced apoptotic cell death, and increased the apoptotic cell number, and affected apoptotic associated protein expression in U-2 OS cells. Bufalin increased apoptotic proteins such as Bak, and decreased anti-apoptotic proteins such as Bcl-2 and Bcl-x in U-2 OS cells. Furthermore, bufalin increased the protein levels of cytochrome c (Cyto c), AIF (Apoptosis inducing factor) and Endo G (Endonuclease G) in cytoplasm that were also confirmed by confocal microscopy examination. Based on those findings, bufalin induced apoptotic cell death in U-2 OS cells may be via endoplasmic reticulum (ER) stress, caspase-, and mitochondria-dependent pathways; thus, we may suggest that bufalin could be used as an anti-cancer agent for the treatment of osteosarcoma in the future, and further in vivo studies are needed.
Collapse
Affiliation(s)
- Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli Country 356, Taiwan.
| | - Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Man-Kuan Au
- Department of Orthopedics, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu 300, Taiwan.
| | - Hsu-Feng Lu
- Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan.
| |
Collapse
|
13
|
Rae C, Mairs RJ. Evaluation of the radiosensitizing potency of chemotherapeutic agents in prostate cancer cells. Int J Radiat Biol 2016; 93:194-203. [PMID: 27600766 DOI: 10.1080/09553002.2017.1231946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Despite recent advances in the treatment of metastatic prostate cancer, survival rates are low and treatment options are limited to chemotherapy and hormonal therapy. Although ionizing radiation is used to treat localized and metastatic prostate cancer, the most efficient use of radiotherapy is yet to be defined. Our purpose was to determine in vitro the potential benefit to be gained by combining radiation treatment with cytotoxic drugs. MATERIALS AND METHODS Inhibitors of DNA repair and heat shock protein 90 and an inducer of oxidative stress were evaluated in combination with X-radiation for their capacity to reduce clonogenic survival and delay the growth of multicellular tumor spheroids. RESULTS Inhibitors of the PARP DNA repair pathway, olaparib and rucaparib, and the HSP90 inhibitor 17-DMAG, enhanced the clonogenic cell kill and spheroid growth delay induced by X-radiation. However, the oxidative stress-inducing drug elesclomol failed to potentiate the effects of X-radiation. PARP inhibitors arrested cells in the G2/M phase when administered as single agents or in combination with radiation, whereas elesclomol and 17-DMAG did not affect radiation-induced cell cycle modulation. CONCLUSION These results indicate that radiotherapy of prostate cancer may be optimized by combination with inhibitors of PARP or HSP90, but not elesclomol.
Collapse
Affiliation(s)
- Colin Rae
- a Radiation Oncology , Institute of Cancer Sciences, University of Glasgow , Glasgow , UK
| | - Robert J Mairs
- a Radiation Oncology , Institute of Cancer Sciences, University of Glasgow , Glasgow , UK
| |
Collapse
|
14
|
Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 2016; 164:204-25. [PMID: 27288725 DOI: 10.1016/j.pharmthera.2016.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction of numerous signaling pathways in endothelial and mesangial cells results in exquisite control of the process of physiological angiogenesis, with a central role played by vascular endothelial growth factor receptor 2 (VEGFR-2) and its cognate ligands. However, deregulated angiogenesis participates in numerous pathological processes. Excessive activation of VEGFR-2 has been found to mediate tissue-damaging vascular changes as well as the induction of blood vessel expansion to support the growth of solid tumors. Consequently, therapeutic intervention aimed at inhibiting the VEGFR-2 pathway has become a mainstay of treatment in cancer and retinal diseases. In this review, we introduce the concepts of physiological and pathological angiogenesis, the crucial role played by the VEGFR-2 pathway in these processes, and the various inhibitors of its activity that have entered the clinical practice. We primarily focus on the development of ramucirumab, the antagonist monoclonal antibody (mAb) that inhibits VEGFR-2 and has recently been approved for use in patients with gastric, colorectal, and lung cancers. We examine in-depth the pre-clinical studies using DC101, the mAb to mouse VEGFR-2, which provided a conceptual foundation for the role of VEGFR-2 in physiological and pathological angiogenesis. Finally, we discuss further clinical development of ramucirumab and the future of targeting the VEGF pathway for the treatment of cancer.
Collapse
|
15
|
Rehman MU, Jawaid P, Zhao QL, Li P, Narita K, Katoh T, Shimizu T, Kondo T. Low-dose spiruchostatin-B, a potent histone deacetylase inhibitor enhances radiation-induced apoptosis in human lymphoma U937 cells via modulation of redox signaling. Free Radic Res 2016; 50:596-610. [PMID: 27108737 DOI: 10.3109/10715762.2015.1115029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Spiruchostatin B (SP-B), is a potent histone deacetylase (HDAC) inhibitor, in addition to HDAC inhibition, the pharmacological effects of SP-B are also attributed to its ability to produce intracellular reactive oxygen species (ROS), particularly H2O2. In this study, we investigated the effects of low dose (non-toxic) SP-B on radiation-induced apoptosis in human lymphoma U937 cells in vitro. The treatment of cells with low-dose SP-B induced the acetylation of histones, however, does not induce apoptosis. Whereas, the combined treatment with SP-B and radiation significantly enhanced the radiation-induced apoptosis, suggesting the potential role of this combined treatment for future radiation therapy. Interestingly, the enhancement of apoptosis was accompanied by significant increased in the ROS generation. Pre-treatment with an antioxidant, N-acetyl-l-cysteine (NAC) significantly inhibited the enhancement of apoptosis induced by combined treatment, indicating that ROS play an essential role. It was also found that SP-B combined with radiation caused the activation of death receptor and intrinsic apoptotic pathways, via modulation of ROS-mediated signaling. Moreover, SP-B also significantly enhanced the radiation-induced apoptosis in other lymphoma cell lines such as Molt-4 and HL-60. Taken together, our findings suggest that the low-dose SP-B enhances radiation-induced apoptosis via modulation of redox signaling because of its ability to serve as an intracellular ROS generating agent, mainly (H2O2 or [Formula: see text]). This study provides further insights into the mechanism of action of SP-B with radiation and demonstrates that SP-B can be used as a future novel sensitizer for radiation therapy.
Collapse
Affiliation(s)
- Mati Ur Rehman
- a Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama , Japan
| | - Paras Jawaid
- a Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama , Japan
| | - Qing Li Zhao
- a Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama , Japan
| | - Peng Li
- a Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama , Japan
| | - Koichi Narita
- b Laboratory of Synthetic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University , Aoba-ku, Sendai , Japan
| | - Tadashi Katoh
- b Laboratory of Synthetic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University , Aoba-ku, Sendai , Japan
| | - Tadamichi Shimizu
- c Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama , Japan
| | - Takashi Kondo
- a Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama , Japan
| |
Collapse
|
16
|
Sharma A, Bender S, Zimmermann M, Riesterer O, Broggini-Tenzer A, Pruschy MN. Secretome Signature Identifies ADAM17 as Novel Target for Radiosensitization of Non-Small Cell Lung Cancer. Clin Cancer Res 2016; 22:4428-39. [PMID: 27076628 DOI: 10.1158/1078-0432.ccr-15-2449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/04/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Ionizing radiation (IR) induces intracellular signaling processes as part of a treatment-induced stress response. Here we investigate IR-induced ADAM17 activation and the role of ADAM17-shed factors for radiation resistance in non-small cell lung cancer. EXPERIMENTAL DESIGN Large-scale secretome profiling was performed using antibody arrays. Secretion kinetics of ADAM17 substrates was determined using ELISA across multiple in vitro and in vivo models of non-small cell lung cancer. Clonogenic survival and tumor xenograft assays were performed to determine radiosensitization by ADAM17 inhibition. RESULTS On the basis of a large-scale secretome screening, we investigated secretion of auto- or paracrine factors in non-small cell lung cancer in response to irradiation and discovered the ADAM17 network as a crucial mediator of resistance to IR. Irradiation induced a dose-dependent increase of furin-mediated cleavage of the ADAM17 proform to active ADAM17, which resulted in enhanced ADAM17 activity in vitro and in vivo Genetic or pharmacologic targeting of ADAM17 suppressed IR-induced shedding of secreted factors, downregulated ErbB signaling in otherwise cetuximab-resistant target cells, and enhanced IR-induced cytotoxicity. The combined treatment modality of IR with the ADAM17 inhibitor TMI-005 resulted in a supra-additive antitumor response in vivo demonstrating the potential of ADAM17 targeting in combination with radiotherapy. CONCLUSIONS Radiotherapy activates ADAM17 in non-small cell lung cancer, which results in shedding of multiple survival factors, growth factor pathway activation, and IR-induced treatment resistance. We provide a sound rationale for repositioning ADAM17 inhibitors as short-term adjuvants to improve the radiotherapy outcome of non-small cell lung cancer. Clin Cancer Res; 22(17); 4428-39. ©2016 AACR.
Collapse
Affiliation(s)
- Ashish Sharma
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland
| | - Sabine Bender
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland
| | - Martina Zimmermann
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland
| | - Oliver Riesterer
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland
| | - Angela Broggini-Tenzer
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland
| | - Martin N Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland.
| |
Collapse
|
17
|
Kostadinova A, Topouzova-Hristova T, Momchilova A, Tzoneva R, Berger MR. Antitumor Lipids--Structure, Functions, and Medical Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:27-66. [PMID: 26572975 DOI: 10.1016/bs.apcsb.2015.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels.
Collapse
Affiliation(s)
- Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Martin R Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit, Heidelberg, Germany
| |
Collapse
|
18
|
Zerp SF, Stoter TR, Hoebers FJP, van den Brekel MWM, Dubbelman R, Kuipers GK, Lafleur MVM, Slotman BJ, Verheij M. Targeting anti-apoptotic Bcl-2 by AT-101 to increase radiation efficacy: data from in vitro and clinical pharmacokinetic studies in head and neck cancer. Radiat Oncol 2015. [PMID: 26223311 PMCID: PMC4520130 DOI: 10.1186/s13014-015-0474-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pro-survival Bcl-2 family members can promote cancer development and contribute to treatment resistance. Head and neck squamous cell carcinoma (HNSCC) is frequently characterized by overexpression of anti-apoptotic Bcl-2 family members. Increased levels of these anti-apoptotic proteins have been associated with radio- and chemoresistance and poor clinical outcome. Inhibition of anti-apoptotic Bcl-2 family members therefore represents an appealing strategy to overcome resistance to anti-cancer therapies. The aim of this study was to evaluate combined effects of radiation and the pan-Bcl-2 inhibitor AT-101 in HNSCC in vitro. In addition, we determined human plasma levels of AT-101 obtained from a phase I/II trial, and compared these with the effective in vitro concentrations to substantiate therapeutic opportunities. METHODS We examined the effect of AT-101, radiation and the combination on apoptosis induction and clonogenic survival in two HNSCC cell lines that express the target proteins. Apoptosis was assessed by bis-benzimide staining to detect morphological nuclear changes and/or by propidium iodide staining and flow-cytometry analysis to quantify sub-diploid apoptotic nuclei. The type of interaction between AT-101 and radiation was evaluated by calculating the Combination Index (CI) and by performing isobolographic analysis. For the pharmacokinetic analysis, plasma AT-101 levels were measured by HPLC in blood samples collected from patients enrolled in our clinical phase I/II study. These patients with locally advanced HNSCC were treated with standard cisplatin-based chemoradiotherapy and received dose-escalating oral AT-101 in a 2-weeks daily schedule every 3 weeks. RESULTS In vitro results showed that AT-101 enhances radiation-induced apoptosis with CI's below 1.0, indicating synergy. This effect was sequence-dependent. Clonogenic survival assays demonstrated a radiosensitizing effect with a DEF37 of 1.3 at sub-apoptotic concentrations of AT-101. Pharmacokinetic analysis of patient blood samples taken between 30 min and 24 h after intake of AT-101 showed a dose-dependent increase in plasma concentration with peak levels up to 300-700 ng/ml between 1.5 and 2.5 h after intake. CONCLUSION AT-101 is a competent enhancer of radiation-induced apoptosis in HNSCC in vitro. In addition, in vitro radiosensitization was observed at clinically attainable plasma levels. These finding support further evaluation of the combination of AT-101 with radiation in Bcl-2-overexpressing tumors.
Collapse
Affiliation(s)
- Shuraila F Zerp
- Department of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T Rianne Stoter
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Frank J P Hoebers
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ria Dubbelman
- Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gitta K Kuipers
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - M Vincent M Lafleur
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Marcel Verheij
- Department of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose, the radiation dose and the integrity of the homologous recombination pathway of tumor cells. Radiother Oncol 2015; 116:358-65. [PMID: 25981132 DOI: 10.1016/j.radonc.2015.03.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE The PARP inhibitor olaparib is currently tested in clinical phase 1 trials to define safe dose levels in combination with RT. However, certain clinically relevant insights are still lacking. Here we test, while comparing to single agent activity, the olaparib dose and genetic background dependence of olaparib-mediated radiosensitization. MATERIALS AND METHODS Long-term growth inhibition and clonogenic assays were used to assess radiosensitization in BRCA2-deficient and BRCA2-complemented cells and in a panel of human head and neck squamous cell carcinoma cell lines. RESULTS The extent of radiosensitization greatly depended on the olaparib dose, the radiation dose and the homologous recombination status of cells. Olaparib concentrations that resulted in radiosensitization prevented PAR induction by irradiation. Seven hours olaparib exposures were sufficient for radiosensitization. Importantly, the radiosensitizing effects can be observed at much lower olaparib doses than the single agent effects. CONCLUSION Extrapolation of these data to the clinic suggests that low olaparib doses are sufficient to cause radiosensitization, underlining the potential of the treatment. Here we show that drug doses achieving radiosensitization can greatly differ from those achieving single agent activities, an important consideration when developing combined radiotherapy strategies with novel targeted agents.
Collapse
|
20
|
Hodzic J, Dingjan I, Maas MJ, van der Meulen-Muileman IH, de Menezes RX, Heukelom S, Verheij M, Gerritsen WR, Geldof AA, van Triest B, van Beusechem VW. A cell-based high-throughput screening assay for radiation susceptibility using automated cell counting. Radiat Oncol 2015; 10:55. [PMID: 25888875 PMCID: PMC4355372 DOI: 10.1186/s13014-015-0355-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/13/2015] [Indexed: 01/04/2023] Open
Abstract
Background Radiotherapy is one of the mainstays in the treatment for cancer, but its success can be limited due to inherent or acquired resistance. Mechanisms underlying radioresistance in various cancers are poorly understood and available radiosensitizers have shown only modest clinical benefit. There is thus a need to identify new targets and drugs for more effective sensitization of cancer cells to irradiation. Compound and RNA interference high-throughput screening technologies allow comprehensive enterprises to identify new agents and targets for radiosensitization. However, the gold standard assay to investigate radiosensitivity of cancer cells in vitro, the colony formation assay (CFA), is unsuitable for high-throughput screening. Methods We developed a new high-throughput screening method for determining radiation susceptibility. Fast and uniform irradiation of batches up to 30 microplates was achieved using a Perspex container and a clinically employed linear accelerator. The readout was done by automated counting of fluorescently stained nuclei using the Acumen eX3 laser scanning cytometer. Assay performance was compared to that of the CFA and the CellTiter-Blue homogeneous uniform-well cell viability assay. The assay was validated in a whole-genome siRNA library screening setting using PC-3 prostate cancer cells. Results On 4 different cancer cell lines, the automated cell counting assay produced radiation dose response curves that followed a linear-quadratic equation and that exhibited a better correlation to the results of the CFA than did the cell viability assay. Moreover, the cell counting assay could be used to detect radiosensitization by silencing DNA-PKcs or by adding caffeine. In a high-throughput screening setting, using 4 Gy irradiated and control PC-3 cells, the effects of DNA-PKcs siRNA and non-targeting control siRNA could be clearly discriminated. Conclusions We developed a simple assay for radiation susceptibility that can be used for high-throughput screening. This will aid the identification of molecular targets for radiosensitization, thereby contributing to improving the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Jasmina Hodzic
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1118, 1081HV, Amsterdam, The Netherlands.
| | - Ilse Dingjan
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1118, 1081HV, Amsterdam, The Netherlands.
| | - Mariëlle Jp Maas
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1118, 1081HV, Amsterdam, The Netherlands.
| | - Ida H van der Meulen-Muileman
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1118, 1081HV, Amsterdam, The Netherlands.
| | - Renee X de Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, De Boelelaan 1118, 1081HV, Amsterdam, The Netherlands.
| | - Stan Heukelom
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1118, 1081HV, Amsterdam, The Netherlands.
| | - Marcel Verheij
- Department of Radiotherapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Winald R Gerritsen
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1118, 1081HV, Amsterdam, The Netherlands. .,Present address: Department of Medical Oncology, The Radboud University Medical Center, Comeniuslaan 4, 6525 HP, Nijmegen, The Netherlands.
| | - Albert A Geldof
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1118, 1081HV, Amsterdam, The Netherlands. .,Department of Urology, VU University Medical Center, De Boelelaan 1118, 1081HV, Amsterdam, The Netherlands.
| | - Baukelien van Triest
- Department of Radiotherapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Victor W van Beusechem
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1118, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Fluorine-18-deoxyglucose positron emission tomography/computed tomography with Ki67 and GLUT-1 immunohistochemistry for evaluation of the radiosensitization effect of oleanolic acid on C6 rat gliomas. Nucl Med Commun 2015; 36:21-7. [DOI: 10.1097/mnm.0000000000000211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Miot-Noirault E, Vidal A, Morlieras J, Bonazza P, Auzeloux P, Besse S, Dauplat MM, Peyrode C, Degoul F, Billotey C, Lux F, Rédini F, Tillement O, Chezal JM, Kryza D, Janier M. Small rigid platforms functionalization with quaternary ammonium: Targeting extracellular matrix of chondrosarcoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1887-95. [DOI: 10.1016/j.nano.2014.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/04/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
|
23
|
Radiation oncology in vitro: trends to improve radiotherapy through molecular targets. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461687. [PMID: 25302298 PMCID: PMC4180203 DOI: 10.1155/2014/461687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 12/17/2022]
Abstract
Much has been investigated to improve the beneficial effects of radiotherapy especially in that case where radioresistant behavior is observed. Beyond simple identification of resistant phenotype the discovery and development of specific molecular targets have demonstrated therapeutic potential in cancer treatment including radiotherapy. Alterations on transduction signaling pathway related with MAPK cascade are the main axis in cancer cellular proliferation even as cell migration and invasiveness in irradiated tumor cell lines; then, for that reason, more studies are in course focusing on, among others, DNA damage enhancement, apoptosis stimulation, and growth factors receptor blockages, showing promising in vitro results highlighting molecular targets associated with ionizing radiation as a new radiotherapy strategy to improve clinical outcome. In this review we discuss some of the main molecular targets related with tumor cell proliferation and migration as well as their potential contributions to radiation oncology improvements.
Collapse
|
24
|
Turek M, Gogal R, Saba C, Vandenplas M, Hill J, Feldhausser B, Lawrence J. Masitinib mesylate does not enhance sensitivity to radiation in three feline injection-site sarcoma cell lines under normal growth conditions. Res Vet Sci 2014; 96:304-7. [DOI: 10.1016/j.rvsc.2014.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 12/17/2013] [Accepted: 02/01/2014] [Indexed: 01/06/2023]
|
25
|
Hematulin A, Ingkaninan K, Limpeanchob N, Sagan D. Ethanolic Extract from Derris scandens Benth Mediates Radiosensitzation via Two Distinct Modes of Cell Death in Human Colon Cancer HT-29 Cells. Asian Pac J Cancer Prev 2014; 15:1871-7. [DOI: 10.7314/apjcp.2014.15.4.1871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Blockage of a miR-21/EGFR regulatory feedback loop augments anti-EGFR therapy in glioblastomas. Cancer Lett 2013; 342:139-49. [PMID: 24012640 DOI: 10.1016/j.canlet.2013.08.043] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/25/2013] [Accepted: 08/28/2013] [Indexed: 01/23/2023]
Abstract
Epidermal growth factor receptors (EGFR) expression is frequently amplified in human glioblastoma cells. Nimotuzumab, a monoclonal antibody (mAb) against EGFR, has been used globally in clinics as an anti-cancer agent. It is largely unknown whether the blockade of miR-21, a microRNA that is upregulated in glioma cells, could amplify the effects of nimotuzumab. Herein, we have demonstrated that miR-21 directly targets von Hippel-Lindau (VHL) and peroxisome-proliferator-activated receptor α (PPARα) and that miR-21 regulates EGFR/AKT signaling through VHL/β-catenin and the PPARα/AP-1 axis. Further, the expression of miR-21 is regulated by EGFR via the activation of β-catenin and AP-1. These data indicate that a feedback loop exists between miR-21 and EGFR. We also show that the combination of nimotuzumab and an inhibitor of miR-21 is superior to single-agent therapy. These results clarify a novel association between miR-21 and EGFR in the regulation of cancer cell progression.
Collapse
|
27
|
Nimotuzumab enhances the radiosensitivity of cancer cells in vitro by inhibiting radiation-induced DNA damage repair. PLoS One 2013; 8:e70727. [PMID: 23976954 PMCID: PMC3745376 DOI: 10.1371/journal.pone.0070727] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/18/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nimotuzumab is a humanized IgG1 monoclonal antibody specifically targeting EGFR. In this study, we aimed to investigate the molecular mechanisms of nimotuzumab in its effects of enhancing cancer cell radiosensitivity. PRINCIPAL FINDING Lung cancer A549 cells and breast cancer MCF-7 cells were pretreated with or without nimotuzumab for 24 h before radiation to perform the clonogenic survival assay and to analyze the cell apoptosis by flow ctyometry. γ-H2AX foci were detected by confocal microscopy to assess the effect of nimotuzumab on radiation induced DNA repair. EGFR activation was examined and the levels of DNA damage repair related proteins in A549 cells at different time point and at varying doses exposure after nimotuzumab and radiation treatment were examined by Western blot. Pretreatment with nimotuzumab reduced clonogenic survival after radiation, inhibited radiation-induced EGFR activation and increased the radiation-induced apoptosis in both A549 cells and MCF-7 cells. The foci of γ-H2AX 24 h after radiation significantly increased in nimotuzumab pretreated cells with different doses. The phosphorylation of AKT and DNA-PKcs were remarkably inhibited in the combination group at each dose point as well as time point. CONCLUSIONS Our results revealed that the possible mechanism of nimotuzumab enhancing the cancer radiosensitivity is that nimotuzumab inhibited the radiation-induced activation of DNA-PKcs through blocking the PI3K/AKT pathway, which ultimately affected the DNA DSBs repair.
Collapse
|
28
|
Rosenberg L, Tepper J. Present and future innovations in radiation oncology. Surg Oncol Clin N Am 2013; 22:599-618. [PMID: 23622082 DOI: 10.1016/j.soc.2013.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this article is to provide a review of innovations in radiation oncology that have been recently adopted as well as those that are likely to be adopted in the near future. Physics and engineering innovations, including image-guidance technologies and charged particle therapy, are discussed. Biologic innovations, including novel radiation sensitizers, functional imaging for use in treatment planning, and altered fractionation, are also discussed.
Collapse
Affiliation(s)
- Lewis Rosenberg
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC 27514, USA.
| | | |
Collapse
|
29
|
Hematulin A, Meethang S, Ingkaninan K, Sagan D. Derris scandens Benth extract potentiates radioresistance of Hep-2 laryngeal cancer cells. Asian Pac J Cancer Prev 2013; 13:1289-95. [PMID: 22799321 DOI: 10.7314/apjcp.2012.13.4.1289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The use of herbal products as radiosensitizers is a promising approach to increase the efficacy of radiotherapy. However, adverse effects related to the use of herbal medicine on radiotherapy are not well characterized. The present study concerns the impact of Derris scandens Benth extract on the radiosensitivity of Hep-2 laryngeal cancer cells. Pretreatment with D. scandens extract prior to gamma irradiation significantly increased clonogenic survival and decreased the proportion of radiation-induced abnormal nuclei of Hep-2 cells. Furthermore, the extract was found to enhance radiation-induced G2/M phase arrest, induce Akt activation, and increase motility of Hep-2 cells. The study thus indicated that D. scandens extract potentiates radioresistance of Hep-2 cells, further demonstrating the importance of cellular background for the adverse effect of D. scandens extract on radiation response in a laryngeal cancer cell line.
Collapse
Affiliation(s)
- Arunee Hematulin
- Department of Radiation Technology, Faculty of Allied Health Science, Naresuan University, Phitsanulok, Thailand.
| | | | | | | |
Collapse
|
30
|
Optimize radiochemotherapy in pancreatic cancer: PARP inhibitors a new therapeutic opportunity. Mol Oncol 2012; 7:308-22. [PMID: 23148997 DOI: 10.1016/j.molonc.2012.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/17/2022] Open
Abstract
Cancer cells may use PARP enzymes and Homologous Recombination to repair single and double strand breaks caused by genotoxic insults. In this study, the PARP-1 inhibitor Rucaparib was utilized to increase the sensitivity to chemoradiotherapy treatment in BRCA-2-deficient and -proficient pancreatic cancer cells. We used the pancreatic cancer cell lines, Capan-1 with mutated BRCA-2 and Panc-1, AsPC-1 and MiaPaCa-2 with BRCA-1/2 wild type. Cells were treated with Rucaparib and/or radiotherapy (4-10 Gy) plus Gemcitabine then the capability to proliferate was evaluated by colony formation, cell counting and MTT assays. Flow cytometry, immunocytochemistry and western blotting were utilized to assess cell response to Rucaparib plus irradiation. The antitumour effectiveness of combining the PARP-1 inhibitor before, together and after radiotherapy evidenced the first as the optimal schedule in blocking cell growth. Pre-exposure to Rucaparib increased the cytotoxicity of Gemcitabine plus radiotherapy by heavily inducing the accumulation of cells in G2/M phase, impairing mitosis and finally inducing apoptosis and authophagy. The upregulation of p-Akt and downregulation of p53 were evidenced in MiaPaCa-2 which displayed replication stress features. For the first time, the rationale of using a PARP inhibitor as chemoradiosensitizer in pancreatic cancer models has been hypothesized and demonstrated.
Collapse
|
31
|
Koh PK, Faivre-Finn C, Blackhall FH, De Ruysscher D. Targeted agents in non-small cell lung cancer (NSCLC): Clinical developments and rationale for the combination with thoracic radiotherapy. Cancer Treat Rev 2012; 38:626-40. [DOI: 10.1016/j.ctrv.2011.11.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 02/07/2023]
|
32
|
van Vuurden DG, Hulleman E, Meijer OLM, Wedekind LE, Kool M, Witt H, Vandertop PW, Würdinger T, Noske DP, Kaspers GJL, Cloos J. PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget 2012; 2:984-96. [PMID: 22184287 PMCID: PMC3282104 DOI: 10.18632/oncotarget.362] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Poly ADP-ribose polymerase (PARP) is a protein involved in single strand break repair. Recently, PARP inhibitors have shown considerable promise in the treatment of several cancers, both in monotherapy and in combination with cytotoxic agents. Synthetic lethal action of PARP inhibitors has been observed in tumors with mutations in double strand break repair pathways. In addition, PARP inhibition potentially enhances sensitivity of tumor cells to DNA damaging agents, including radiotherapy. Aim of this study is to determine the radiosensitizing properties of the PARP inhibitor Olaparib in childhood medulloblastoma, ependymoma and high grade glioma (HGG). Increased PARP1 expression was observed in medulloblastoma, ependymoma and HGG, as compared to non-neoplastic brain tissue. Pediatric high grade glioma, medulloblastoma and ependymoma gene expression profiling revealed that high PARP1 expression is associated with poor prognosis. Cell growth inhibition assays with Olaparib resulted in differential sensitivity, with IC50 values ranging from 1.4 to 8.4 μM, irrespective of tumor type and PARP1 protein expression. Sensitization to radiation was observed in medulloblastoma, ependymoma and HGG cell lines with subcytotoxic concentrations of Olaparib, which coincided with persistence of double strand breaks. Combining PARP inhibitors with radiotherapy in clinical studies in childhood high grade brain tumors may improve therapeutic outcome.
Collapse
Affiliation(s)
- Dannis G van Vuurden
- Department of Pediatric Oncology / Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Radiotherapy is a mainstay of treatment, either alone for early stage tumors or combined with chemotherapy for late stage tumors. An overall 5-year survival rate of around 50% for HNSCC demonstrates that treatment is often unsuccessful. Prediction of outcome is, therefore, aimed at sparing patients from ineffective and toxic treatments on the one hand, and indicating more successful treatment modalities on the other. Both functional and genetic assays have been developed to predict intrinsic radiosensitivity, hypoxia, and repopulation rate. Few, however, have shown consistent correlations with outcome across multiple studies. Messenger RNA and microRNA profiling show promise for predicting hypoxia, whereas epidermal growth factor receptor expression combined with other measures of tumor differentiation grade shows promise for predicting repopulation rate. Intrinsic radiosensitivity assays have not proven useful to date, although development of repair protein foci assays indicates promise from preclinical studies. Assays for cancer stem cell content have shown promise in several clinical studies. In addition, 2 assays showing robustness as predictors for outcome in HNSCC are human papilloma virus status and epidermal growth factor receptor expression. Neither these nor stem cell assays, however, can as yet reliably indicate alternative and better treatments for poor prognosis patients. It would be of great value to have assays that predict the benefit for an individual from combining new molecularly targeted agents with radiotherapy to increase response, in particular those that exploit tumor mutations to provide tumor specificity. Predictive assays are being developed for detecting defects in repair pathways for single- and double-strand DNA breaks, which should allow selection of drugs targeting the appropriate backup pathway, thus exploiting the concept of synthetic lethality. This is one of the most promising areas for prediction, both currently and in the future.
Collapse
|
34
|
Czito BG, Willett CG. Potential Novel Drugs to Combine with Radiation in Rectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2012. [DOI: 10.1007/s11888-012-0120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Abstract
The topoisomerase I (Top 1) poison irinotecan is an important component of the modern treatment of colorectal cancer. By stabilising Top 1-DNA complexes, irinotecan generates Top 1-linked DNA single-strand breaks that can evolve into double-strand breaks and ultimately cause cell death. However, cancer cells may overcome cell killing by releasing the stalled topoisomerase from DNA termini, thereby reducing the efficacy of Top 1 poisons in clinics. Thus, understanding the DNA repair mechanisms involved in the repair of Top 1-mediated DNA damage provides a useful tool to identify potential biomarkers that predict response to this class of chemotherapy. Furthermore, targeting these pathways could enhance the therapeutic benefits of Top 1 poisons. In this review, we describe the cellular mechanisms and consequences of targeting Top 1 activity in cells. We summarise preclinical data and discuss the potential clinical utility of small-molecule inhibitors of the key proteins.
Collapse
|
36
|
Rodemann HP, Wouters BG. Frontiers in molecular radiation biology/oncology. Radiother Oncol 2011; 101:1-6. [DOI: 10.1016/j.radonc.2011.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 12/15/2022]
|
37
|
Kaur P, Hurwitz MD, Krishnan S, Asea A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers (Basel) 2011; 3:3799-823. [PMID: 24213112 PMCID: PMC3763397 DOI: 10.3390/cancers3043799] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy is used to treat approximately 50% of all cancer patients, with varying success. Radiation therapy has become an integral part of modern treatment strategies for many types of cancer in recent decades, but is associated with a risk of long-term adverse effects. Of these side effects, cardiac complications are particularly relevant since they not only adversely affect quality of life but can also be potentially life-threatening. The dose of ionizing radiation that can be given to the tumor is determined by the sensitivity of the surrounding normal tissues. Strategies to improve radiotherapy therefore aim to increase the effect on the tumor or to decrease the effects on normal tissues, which must be achieved without sensitizing the normal tissues in the first approach and without protecting the tumor in the second approach. Hyperthermia is a potent sensitizer of cell killing by ionizing radiation (IR), which can be attributed to the fact that heat is a pleiotropic damaging agent, affecting multiple cell components to varying degrees by altering protein structures, thus influencing the DNA damage response. Hyperthermia induces heat shock protein 70 (Hsp70; HSPA1A) synthesis and enhances telomerase activity. HSPA1A expression is associated with radioresistance. Inactivation of HSPA1A and telomerase increases residual DNA DSBs post IR exposure, which correlates with increased cell killing, supporting the role of HSPA1A and telomerase in IR-induced DNA damage repair. Thus, hyperthermia influences several molecular parameters involved in sensitizing tumor cells to radiation and can enhance the potential of targeted radiotherapy. Therapy-inducible vectors are useful for conditional expression of therapeutic genes in gene therapy, which is based on the control of gene expression by conventional treatment modalities. The understanding of the molecular response of cells and tissues to ionizing radiation has lead to a new appreciation of the exploitable genetic alterations in tumors and the development of treatments combining pharmacological interventions with ionizing radiation that more specifically target either tumor or normal tissue, leading to improvements in efficacy.
Collapse
Affiliation(s)
- Punit Kaur
- Department of Pathology, Scott & White Hospital and the Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA; E-Mail:
| | - Mark D. Hurwitz
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA 02115, USA; E-Mail:
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas MD Anderson Medical Center, Houston, TX 77030, USA; E-Mail:
| | - Alexzander Asea
- Department of Pathology, Scott & White Hospital and the Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: or ; Tel: +1 (254) 743-0201; Fax: +1 (254) 743-0247
| |
Collapse
|
38
|
Shimura T. Acquired radioresistance of cancer and the AKT/GSK3β/cyclin D1 overexpression cycle. JOURNAL OF RADIATION RESEARCH 2011; 52:539-544. [PMID: 21881296 DOI: 10.1269/jrr.11098] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fractionated radiotherapy (RT) is widely used in cancer therapy for its advantages in the preservation of normal tissues. However, repopulation of surviving tumor cells during fractionated RT limits the efficacy of RT. In fact, repopulating tumors often acquire radioresistance and this is the major cause of failure of RT. We have recently demonstrated that human tumor cells acquire radioresistance when exposed to fractionated radiation (FR) of X-rays every 12 hours for 1 month. The acquired radioresistance was associated with overexpression of cyclin D1, a result of a series of molecular changes; constitutive activation of DNA-PK and AKT with concomitant down-regulation of glycogen synthase kinase-3β (GSK3β) which results in suppression of cyclin D1 proteolysis. Aberrant cyclin D1 overexpression in S-phase induced DNA double strand breaks which activated DNA-PK and established the vicious cycle of cycling D1 overexpression. This overexpression of cyclin D1 is responsible for the radioresistance phenotype of long-term FR cells, since this phenotype was completely abrogated by treatment of FR cells by the API-2, an AKT inhibitor or by a Cdk4 inhibitor. Thus, targeting the AKT/GSK3β/cyclin D1/Cdk4 pathway can be an efficient modality to suppress acquired radioresistance of tumor cells. In this article, I overview the newly discovered molecular mechanisms underlying acquired radioresistance of tumor cells induced by FR, and propose a strategy for eradication of tumors using fractionated RT by overcoming tumor radioresistance.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| |
Collapse
|
39
|
Scaife L, Hodgkinson VC, Drew PJ, Lind MJ, Cawkwell L. Differential proteomics in the search for biomarkers of radiotherapy resistance. Expert Rev Proteomics 2011; 8:535-52. [PMID: 21819306 DOI: 10.1586/epr.11.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The individualization of radiotherapy treatment would be beneficial for cancer patients; however, there are no predictive biomarkers of radiotherapy resistance in routine clinical use. This article describes the body of work in this field where comparative proteomics methods have been used for the discovery of putative biomarkers associated with radiotherapy resistance. A large number of differentially expressed proteins have been reported, mostly from the study of novel radiotherapy-resistant cell lines. Here, we have assessed these putative biomarkers through the discovery, confirmation and validation phases of the biomarker pipeline, and inform the reader on the current status of proteomics-based findings. Suggested avenues for future work are discussed.
Collapse
Affiliation(s)
- Lucy Scaife
- Cancer Biology Proteomics Group, Postgraduate Medical Institute of the University of Hull, UK
| | | | | | | | | |
Collapse
|
40
|
Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer 2011; 105:628-39. [PMID: 21772330 PMCID: PMC3188925 DOI: 10.1038/bjc.2011.240] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
41
|
Molecular and translational radiation biology/oncology: What’s up? Radiother Oncol 2011; 99:257-61. [DOI: 10.1016/j.radonc.2011.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 01/02/2023]
|
42
|
Nuclear epidermal growth factor receptor modulates cellular radio-sensitivity by regulation of chromatin access. Radiother Oncol 2011; 99:317-22. [DOI: 10.1016/j.radonc.2011.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 01/04/2023]
|
43
|
Rengan R, Maity AM, Stevenson JP, Hahn SM. New Strategies in Non–Small Cell Lung Cancer: Improving Outcomes in Chemoradiotherapy for Locally Advanced Disease: Figure 1. Clin Cancer Res 2011; 17:4192-9. [DOI: 10.1158/1078-0432.ccr-10-2760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Abstract
Radiotherapy is used to treat approximately 50% of all cancer patients, with varying success. The dose of ionizing radiation that can be given to the tumour is determined by the sensitivity of the surrounding normal tissues. Strategies to improve radiotherapy therefore aim to increase the effect on the tumour or to decrease the effects on normal tissues. These aims must be achieved without sensitizing the normal tissues in the first approach and without protecting the tumour in the second approach. Two factors have made such approaches feasible: namely, an improved understanding of the molecular response of cells and tissues to ionizing radiation and a new appreciation of the exploitable genetic alterations in tumours. These have led to the development of treatments combining pharmacological interventions with ionizing radiation that more specifically target either tumour or normal tissue, leading to improvements in efficacy.
Collapse
Affiliation(s)
- Adrian C Begg
- Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands.
| | | | | |
Collapse
|
45
|
Chiu HW, Lin W, Ho SY, Wang YJ. Synergistic effects of arsenic trioxide and radiation in osteosarcoma cells through the induction of both autophagy and apoptosis. Radiat Res 2011; 175:547-60. [PMID: 21388295 DOI: 10.1667/rr2380.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor, occurring mainly in children and adolescents, and survival largely depends on their response to chemotherapy. However, the risk of relapse and adverse outcomes is still high. We investigated the synergistic anti-cancer effects of ionizing radiation combined with arsenic trioxide (ATO) and the mechanisms underlying apoptosis or autophagy induced by combined radiation and ATO treatment in human osteosarcoma cells. We found that exposure to radiation increased the population of HOS cells in the G(2)/M phase within 12 h in a time-dependent manner. Radiation combined with ATO induced a significantly prolonged G(2)/M arrest, consequently enhancing cell death. Furthermore, combined treatment resulted in enhanced ROS generation compared to treatment with ATO or radiation alone. The enhanced cytotoxic effect of combined treatment occurred from the increased induction of autophagy and apoptosis through inhibition of the PI3K/Akt signaling pathway in HOS cells. The combined treatment of HOS cells pretreated with Z-VAD, 3-MA or PEG-catalase resulted in a significant reduction of cytotoxicity. In addition, G(2)/M arrest and ROS generation could be involved in the underlying mechanisms. The data suggest that a combination of radiation and ATO could be a new potential therapeutic strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
| | | | | | | |
Collapse
|
46
|
|
47
|
Current world literature. Curr Opin Oncol 2011; 23:227-34. [PMID: 21307677 DOI: 10.1097/cco.0b013e328344b687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Mah LJ, Orlowski C, Ververis K, Vasireddy RS, El-Osta A, Karagiannis TC. Evaluation of the efficacy of radiation-modifying compounds using γH2AX as a molecular marker of DNA double-strand breaks. Genome Integr 2011; 2:3. [PMID: 21261999 PMCID: PMC3037297 DOI: 10.1186/2041-9414-2-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/25/2011] [Indexed: 12/23/2022] Open
Abstract
Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds.
Collapse
Affiliation(s)
- Li-Jeen Mah
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christian Orlowski
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Katherine Ververis
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Raja S Vasireddy
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia.,Epigenomic Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
49
|
Yang ES, Choi MJ, Kim JH, Choi KS, Kwon TK. Withaferin A enhances radiation-induced apoptosis in Caki cells through induction of reactive oxygen species, Bcl-2 downregulation and Akt inhibition. Chem Biol Interact 2011; 190:9-15. [PMID: 21256832 DOI: 10.1016/j.cbi.2011.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 01/16/2023]
Abstract
Withaferin A (Wit A), a natural compound derived from the medicinal plant Withania somnifera, has been reported for the anti-tumor effects, including the inhibition of tumor cell growth, metastasis and angiogenesis. In this study, we investigated the effect of Wit A on radiation-induced apoptosis in human renal cancer cells (Caki cells). Our results showed that, compared with Wit A or radiation alone, the combination of both resulted in a significant enhancement of apoptosis, showing the increase in the cleavage of caspase-3 and PARP as well as sub-G1 cell population. In addition, reactive oxygen species (ROS) generation was correlated with the enhancement of radiation-induced apoptosis by Wit A. Wit A downregulated Bcl-2 protein levels and ectopic expression of Bcl-2 in Caki cells attenuated the apoptosis induced by Wit A plus radiation. Taken together, these results indicate that Wit A enhanced radiation-induced apoptosis in Caki cells through ROS generation, down-regulation of Bcl-2 and Akt dephosphorylation. Thus, our study shows that Wit A may be used as an effective radiosensitizer in cancer therapy.
Collapse
Affiliation(s)
- Eun Sun Yang
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, South Korea
| | | | | | | | | |
Collapse
|
50
|
Abstract
With the introduction of new biologically based imaging possibilities, a higher degree of individualisation and adaptation of radiotherapy will be possible. Better knowledge of the biology of the target and its sub-volumes will enable dose prescriptions tailored to the individual patients, tissues and sub-volumes. Repeated imaging during the course of treatment will in addition enable adaptation of the treatment to cope with anatomical, as well as biological changes of the patient and of the target tissues. To translate these bright future perspectives into significant improvements in clinical outcome, advanced tools to tailor the physical dose distributions are needed. The most conformal radiotherapy technique known to mankind and clinically available today is proton therapy; in particular Intensity Modulated Proton Therapy (IMPT) with active spot scanning can not only tailor the dose to the desired target, but also effectively avoid sensitive structures in the proximity of the target to a degree far better than other conformal techniques such as Intensity Modulated Radiotherapy with photons (IMRT). The development of IMPT is now mature enough for clinical introduction on a broad scale. Proton therapy is still more expensive than conventional radiotherapy, but with the present rapid increase in the number of proton facilities worldwide and new initiatives to improve efficiency, the difference in affordability will continue to decrease and in comparison with the benefits, soon diminish even further. Contrary to what is sometimes claimed, the demands for better physical dose distributions and better avoidance of non-target tissue, has never been higher. Prolonged expected survival in many groups of patients emphasises the need to reduce late toxicities. The success of concomitant systemic therapies, with their tendency to cause higher morbidity stresses even further the increased need for subtle dose-sculpting methodologies and tools. There is no contradiction between striving for better physical dose distributions and a more biologically based approach. On the contrary, physical dose distributions are the tools to which achieve a treatment that can meet the biological demands.
Collapse
|