1
|
Zhang W, Hong X, Xiao Y, Wang H, Zeng X. Sorafenib resistance and therapeutic strategies in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2025; 1880:189310. [PMID: 40187502 DOI: 10.1016/j.bbcan.2025.189310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal cancers globally. While surgical resection and liver transplantation offer potential cures for early-stage HCC, the majority of patients are diagnosed at advanced stages where such interventions are not viable. Sorafenib, a multi-target kinase inhibitor, has been a cornerstone in the treatment of advanced HCC since its approval in 2007. Despite its significant clinical impact, less than half of the treated patients derive long-term benefits due to the emergence of resistance and associated side effects. This review focuses on the role of sorafenib, an FDA-approved multi-target kinase inhibitor, in treating advanced HCC, discusses the mechanisms underlying its therapeutic effects and associated resistance, and explores additional therapeutic strategies being investigated to improve patient outcomes.
Collapse
Affiliation(s)
- Weijing Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaodong Zeng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| |
Collapse
|
2
|
Peng J, Liu W, Tian J, Shu Y, Zhao R, Wang Y. Non-coding RNAs as key regulators of epithelial-mesenchymal transition in breast cancer. Front Cell Dev Biol 2025; 13:1544310. [PMID: 40201201 PMCID: PMC11975958 DOI: 10.3389/fcell.2025.1544310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/06/2025] [Indexed: 04/10/2025] Open
Abstract
This study examines the critical role of non-coding RNAs (ncRNAs) in regulating epithelial-mesenchymal transition (EMT) in breast cancer, a prevalent malignancy with significant metastatic potential. EMT, wherein cancer cells acquire mesenchymal traits, is fundamental to metastasis. ncRNAs-such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)-modulate EMT by influencing gene expression and signaling pathways, affecting cancer cell migration and invasion. This review consolidates recent findings on ncRNA-mediated EMT regulation and explores their diagnostic and therapeutic potential. Specifically, miRNAs inhibit EMT-related transcription factors, while lncRNAs and circRNAs regulate gene expression through interactions with miRNAs, impacting EMT progression. Given the influence of ncRNAs on metastasis and therapeutic resistance, advancing ncRNA-based biomarkers and treatments holds promise for improving breast cancer outcomes.
Collapse
Affiliation(s)
- Jing Peng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenhui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiaju Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuncong Shu
- School of life science, Lanzhou University, Lanzhou, China
| | - Rui Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Bae W, Ra EA, Lee MH. Epigenetic regulation of reprogramming and pluripotency: insights from histone modifications and their implications for cancer stem cell therapies. Front Cell Dev Biol 2025; 13:1559183. [PMID: 40099195 PMCID: PMC11911487 DOI: 10.3389/fcell.2025.1559183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Pluripotent stem cells (PSCs) possess the extraordinary capability to differentiate into a variety of cell types. This capability is tightly regulated by epigenetic mechanisms, particularly histone modifications. Moreover, the reprogramming of somatic or fate-committed cells into induced pluripotent stem cells (iPSCs) largely relies on these modifications, such as histone methylation and acetylation of histones. While extensive research has been conducted utilizing mouse models, the significance of histone modifications in human iPSCs is gaining increasing recognition. Recent studies underscore the importance of epigenetic regulators in both the reprogramming process and the regulation of cancer stem cells (CSCs), which are pivotal in tumor initiation and the development of treatment resistance. This review elucidates the dynamic alterations in histone modifications that impact reprogramming and emphasizes the necessity for a balance between activating and repressive marks. These epigenetic marks are influenced by enzymes such as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). Furthermore, this review explores therapeutic strategies aimed at targeting these epigenetic modifications to enhance treatment efficacy in cancer while advancing the understanding of pluripotency and reprogramming. Despite promising developments in the creation of inhibitors for histone-modifying enzymes, challenges such as selectivity and therapy resistance continue to pose significant hurdles. Therefore, future endeavors must prioritize biomarker-driven approaches and gene-editing technologies to optimize the efficacy of epigenetic therapies.
Collapse
Affiliation(s)
- Woori Bae
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Eun A. Ra
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Myon Hee Lee
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| |
Collapse
|
4
|
Liaghat M, Ferdousmakan S, Mortazavi SH, Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A, Farzam F, Aziziyan F, Bakhtiyari M, Arghavani MJ, Zalpoor H, Nabi-Afjadi M. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal 2024; 22:575. [PMID: 39623377 PMCID: PMC11610171 DOI: 10.1186/s12964-024-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The intricate cellular process, known as the epithelial-mesenchymal transition (EMT), significantly influences solid tumors development. Changes in cell shape, metabolism, and gene expression linked to EMT facilitate tumor cell invasion, metastasis, drug resistance, and recurrence. So, a better understanding of the intricate processes underlying EMT and its role in tumor growth may lead to the development of novel therapeutic approaches for the treatment of solid tumors. This review article focuses on the signals that promote EMT and metabolism, the intracellular signaling pathways leading to EMT, and the network of interactions between EMT and cancer cell metabolism. Furthermore, the functions of EMT in treatment resistance, recurrence, and metastasis of solid cancers are covered. Lastly, treatment approaches that focus on intracellular signaling networks and metabolic alterations brought on by EMT will be discussed.
Collapse
Affiliation(s)
- Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | | | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Irani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Javad Arghavani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Wang W, Liu Y, Wu J. The roles of lncRNAs in the development of drug resistance of oral cancers. Biomed Pharmacother 2024; 180:117458. [PMID: 39413618 DOI: 10.1016/j.biopha.2024.117458] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Oral cancers are a significant global health concern, with a high incidence of treatment failure primarily due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression, playing pivotal roles in various cellular processes, including tumor progression and response to therapy. This review explores the multifaceted roles of lncRNAs in the development of drug resistance in oral cancers. We highlight the mechanisms by which lncRNAs modulate drug efflux, apoptosis, epithelial-mesenchymal transition (EMT), and other pathways associated with chemoresistance. Key lncRNAs implicated in resistance to commonly used chemotherapeutic agents in oral cancers are discussed, along with their potential as therapeutic targets. Understanding the involvement of lncRNAs in drug resistance mechanisms offers promising avenues for overcoming treatment barriers and improving patient outcomes. This review underscores the need for further research to elucidate the precise roles of lncRNAs in oral cancer resistance and their translation into clinical interventions.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Yi Liu
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei 434000, China.
| |
Collapse
|
6
|
Chen SL, Hu SW, Lin YY, Liao WL, Yang JJ. Boehmeria Nivea Extract (BNE-RRC) Reverses Epithelial-Mesenchymal Transition and Inhibits Anchorage-Independent Growth in Tumor Cells. Int J Mol Sci 2024; 25:9572. [PMID: 39273519 PMCID: PMC11395125 DOI: 10.3390/ijms25179572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) phenotype, identified as a significant clinical indicator in regard to cancer, manifests as a biological process wherein cells transition from having epithelial to mesenchymal characteristics. Physiologically, EMT plays a crucial role in tissue remodeling, promoting healing, repair, and responses to various types of tissue damage. This study investigated the impact of BNE-RRC on oral cancer cells (KB) and revealed its significant effects on cancer cell growth, migration, invasion, and the EMT. BNE-RRC induces the epithelial-like morphology in KB cells, effectively reversing the EMT to a mesenchymal-epithelial transition (MET). Extraordinarily, sustained culturing of cancer cells with BNE-RRC for 14 days maintains an epithelial status even after treatment withdrawal, suggesting that BNE-RRC is a potential therapeutic agent for cancer. These findings highlight the promise of BNE-RRC as a comprehensive therapeutic agent for cancer treatment that acts by inhibiting cancer cell growth, migration, and invasion while also orchestrating a reversal of the EMT process. In this study, we propose that BNE-RRC could be an effective agent for cancer treatment.
Collapse
Affiliation(s)
- Shiow-Ling Chen
- Institute of Oral Sciences, College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Suh-Woan Hu
- Institute of Oral Sciences, College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yuh-Yih Lin
- Institute of Oral Sciences, College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wen-Li Liao
- Institute of Oral Sciences, College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Jaw-Ji Yang
- Institute of Oral Sciences, College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
7
|
Obaid Saleh R, Shbeer AM, Jetti R, Ahmed Robadi I, Hjazi A, Hussein Kareem A, Noori Shakir M, Qasim Alasheqi M, Alawadi A, Haslany A. Association between lncRNAs with stem cells in cancer; a particular focus on lncRNA-CSCs axis in cancer immunopathogenesis. Int Immunopharmacol 2024; 136:112306. [PMID: 38833843 DOI: 10.1016/j.intimp.2024.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
A unique population of cells known as cancer stem cells (CSCs) is essential to developing and spreading cancer. Cancer initiation, maintenance, and progression are all believed to be significantly impacted by the distinct characteristics these cells exhibit regarding self-renewal, proliferation, and differentiation. Transcriptional, post-transcriptional, and translational processes are the only steps of gene expression that lncRNAs can affect. As a result, these proteins participate in numerous biological processes, including the repair of DNA damage, inflammatory reactions, metabolic control, the survival of cells, intercellular communication, and the development and specialization of cells. Studies have indicated that lncRNAs are important for controlling the increase in the subset of CSCs contributing to cancer development. The knowledge that is currently available about lncRNAs and their critical role in maintaining the biological properties of CSCs is highlighted in this study.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ibrahim Ahmed Robadi
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Haslany
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
8
|
Eslami M, Memarsadeghi O, Davarpanah A, Arti A, Nayernia K, Behnam B. Overcoming Chemotherapy Resistance in Metastatic Cancer: A Comprehensive Review. Biomedicines 2024; 12:183. [PMID: 38255288 PMCID: PMC10812960 DOI: 10.3390/biomedicines12010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The management of metastatic cancer is complicated by chemotherapy resistance. This manuscript provides a comprehensive academic review of strategies to overcome chemotherapy resistance in metastatic cancer. The manuscript presents background information on chemotherapy resistance in metastatic cancer cells, highlighting its clinical significance and the current challenges associated with using chemotherapy to treat metastatic cancer. The manuscript delves into the molecular mechanisms underlying chemotherapy resistance in subsequent sections. It discusses the genetic alterations, mutations, and epigenetic modifications that contribute to the development of resistance. Additionally, the role of altered drug metabolism and efflux mechanisms, as well as the activation of survival pathways and evasion of cell death, are explored in detail. The strategies to overcome chemotherapy resistance are thoroughly examined, covering various approaches that have shown promise. These include combination therapy approaches, targeted therapies, immunotherapeutic strategies, and the repurposing of existing drugs. Each strategy is discussed in terms of its rationale and potential effectiveness. Strategies for early detection and monitoring of chemotherapy drug resistance, rational drug design vis-a-vis personalized medicine approaches, the role of predictive biomarkers in guiding treatment decisions, and the importance of lifestyle modifications and supportive therapies in improving treatment outcomes are discussed. Lastly, the manuscript outlines the clinical implications of the discussed strategies. It provides insights into ongoing clinical trials and emerging therapies that address chemotherapy resistance in metastatic cancer cells. The manuscript also explores the challenges and opportunities in translating laboratory findings into clinical practice and identifies potential future directions and novel therapeutic avenues. This comprehensive review provides a detailed analysis of strategies to overcome chemotherapy resistance in metastatic cancer. It emphasizes the importance of understanding the molecular mechanisms underlying resistance and presents a range of approaches for addressing this critical issue in treating metastatic cancer.
Collapse
Affiliation(s)
- Maryam Eslami
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran; (M.E.); (O.M.); (A.D.)
- International Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
| | - Omid Memarsadeghi
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran; (M.E.); (O.M.); (A.D.)
- International Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
| | - Ali Davarpanah
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran; (M.E.); (O.M.); (A.D.)
- International Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
| | - Afshin Arti
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1469669191, Iran;
| | - Karim Nayernia
- International Center for Personalized Medicine (P7Medicine), 40235 Dusseldorf, Germany
| | - Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| |
Collapse
|
9
|
Min KW, Jo MH, Song M, Lee JW, Shim MJ, Kim K, Park HB, Ha S, Mun H, Polash A, Hafner M, Cho JH, Kim D, Jeong JH, Ko S, Hohng S, Kang SU, Yoon JH. Mature microRNA-binding protein QKI promotes microRNA-mediated gene silencing. RNA Biol 2024; 21:1-15. [PMID: 38372062 PMCID: PMC10878027 DOI: 10.1080/15476286.2024.2314846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Myung Hyun Jo
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Minseok Song
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Lee
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Min Ji Shim
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Kyungmin Kim
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Hyun Bong Park
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Shinwon Ha
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
| | - Ahsan Polash
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Dongsan Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ji-Hoon Jeong
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Sungchul Hohng
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
| |
Collapse
|
10
|
Katuwal NB, Kang MS, Ghosh M, Hong SD, Jeong YG, Park SM, Kim SG, Sohn J, Kim TH, Moon YW. Targeting PEG10 as a novel therapeutic approach to overcome CDK4/6 inhibitor resistance in breast cancer. J Exp Clin Cancer Res 2023; 42:325. [PMID: 38017459 PMCID: PMC10683152 DOI: 10.1186/s13046-023-02903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Breast cancer is the global leading cancer burden in women and the hormone receptor-positive (HR+) subtype is a major part of breast cancer. Though cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are highly effective therapy for HR+ subtype, acquired resistance is inevitable in most cases. Herein, we investigated the paternally expressed gene 10 (PEG10)-associated mechanism of acquired resistance to CDK4/6 inhibitors. METHODS Palbociclib-resistant cells were generated by exposing human HR+ breast cancer cell lines to palbociclib for 7-9 months. In vitro mechanistic study and in vivo xenograft assay were performed. For clinical relevance, public mRNA microarray data sets of early breast cancer were analyzed and PEG10 immunohistochemical staining was performed using pre-CDK4/6 inhibitor tumor samples. RESULTS We observed that PEG10 was significantly upregulated in palbociclib-resistant cells. Ectopic overexpression of PEG10 in parental cells caused CDK4/6 inhibitor resistance and enhanced epithelial-mesenchymal transition (EMT). On the contrary, PEG10-targeting siRNA or antisense oligonucleotides (ASOs) combined with palbociclib synergistically inhibited proliferation of palbociclib-resistant cells and growth of palbociclib-resistant xenograft in mice and suppressed EMT as well. The mechanistic study confirmed that high PEG10 expression suppressed p21, a natural CDK inhibitor, and SIAH1, a post-translational degrader of ZEB1, augmenting CDK4/6 inhibitor resistance. Then PEG10 siRNA combined with palbociclib suppressed cell cycle progression and EMT via activating p21 and SIAH1, respectively. Consequently, combined PEG10 inhibition and palbociclib overcame CDK4/6 inhibitor resistance. Furthermore, high PEG10 expression was significantly associated with a shorter recurrence-free survival (RFS) based on public mRNA expression data. In pre-CDK4/6 inhibitor treatment tissues, PEG10 positivity by IHC also showed a trend toward a shorter progression-free survival (PFS) with CDK4/6 inhibitor. These results support clinical relevance of PEG10 as a therapeutic target. CONCLUSIONS We demonstrated a novel PEG10-associated mechanism of CDK4/6 inhibitor resistance. We propose PEG10 as a promising therapeutic target for overcoming PEG10-associated resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Nar Bahadur Katuwal
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Min Sil Kang
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Mithun Ghosh
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Sa Deok Hong
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Yeong Gyu Jeong
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Seong Min Park
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Seul-Gi Kim
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei, University College of Medicine, Seoul, 03080, Korea
| | - Tae Hoen Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-Si, 13496, Republic of Korea
| | - Yong Wha Moon
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea.
| |
Collapse
|
11
|
Lu J, Kornmann M, Traub B. Role of Epithelial to Mesenchymal Transition in Colorectal Cancer. Int J Mol Sci 2023; 24:14815. [PMID: 37834263 PMCID: PMC10573312 DOI: 10.3390/ijms241914815] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a cellular reprogramming process that occurs during embryonic development and adult tissue homeostasis. This process involves epithelial cells acquiring a mesenchymal phenotype. Through EMT, cancer cells acquire properties associated with a more aggressive phenotype. EMT and its opposite, mesenchymal-epithelial transition (MET), have been described in more tumors over the past ten years, including colorectal cancer (CRC). When EMT is activated, the expression of the epithelial marker E-cadherin is decreased and the expression of the mesenchymal marker vimentin is raised. As a result, cells temporarily take on a mesenchymal phenotype, becoming motile and promoting the spread of tumor cells. Epithelial-mesenchymal plasticity (EMP) has become a hot issue in CRC because strong inducers of EMT (such as transforming growth factor β, TGF-β) can initiate EMT and regulate metastasis, microenvironment, and immune system resistance in CRC. In this review, we take into account the significance of EMT-MET in CRC and the impact of the epithelial cells' plasticity on the prognosis of CRC. The analysis of connection between EMT and colorectal cancer stem cells (CCSCs) will help to further clarify the current meager understandings of EMT. Recent advances affecting important EMT transcription factors and EMT and CCSCs are highlighted. We come to the conclusion that the regulatory network for EMT in CRC is complicated, with a great deal of crosstalk and alternate paths. More thorough research is required to more effectively connect the clinical management of CRC with biomarkers and targeted treatments associated with EMT.
Collapse
Affiliation(s)
| | | | - Benno Traub
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.L.); (M.K.)
| |
Collapse
|
12
|
Ebrahimi A, Bakhshaei Shahrebabaki P, Fouladi H, Mansoori Derakhshan S. The impact of microRNAs on the resistance of breast cancer subtypes to chemotherapy. Pathol Res Pract 2023; 249:154702. [PMID: 37562283 DOI: 10.1016/j.prp.2023.154702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Breast cancer (BC) formation is primarily influenced by genetics, epigenetics and environmental factors. Aberrant Genetics and epigenetics leads to a condition known as heterogeneity. The heterogeneity of BC can be divided into several subtypes. Among the epigenetic factors, microRNAs (miRNAs) have been shown to play a crucial role in the development and progression of malignancies. These small non-coding RNAs regulate gene expression through a variety of mechanisms, resulting in either mRNA degradation or translation repression. As miRNAs directly control many proteins, genetic anomalies affect tumor metastasis, apoptosis, proliferation, and cell transportation. Consequently, miRNA dysregulations contribute not only in cancer development but also in invasiveness, proliferation rate and more importantly, drug response. Findings mostly indicate subtype-specified identical miRNA profile in BC. Among the BC subtypes, TNBC, HER2 + and luminal are the most resistant to therapy, respectively. Therapy resistance is greatly associated with miRNA expression profile. Hence, concentration of miRNA is the first marker of its role in chemotherapy response. Overexpressed miRNAs may disrupt drug efflux transporters and decrease the drug accumulation in cell. While down-regulated miRNAs which mediate drug resistance processes are mostly correlated with poor treatment response. Moreover, other mechanisms in which miRNAs play crucial roles in chemoresistance such as cell receptor mediations, dysregulation by environmental factors, DNA defects, etc. Recently, several miRNA-based treatments have shown promising results in cancer treatment. Inhibition of up-regulated miRNAs is one of these therapeutic approaches whilst transfecting cell with down-regulated miRNAs also show promising results. Moreover, drug-resistance could also be determined while in the pre-treatment phase via expression levels of miRNAs. Therefore, miRNAs provide intriguing insights and challenges in overcoming chemoresistance. In this article, we have discussed how miRNAs regulate breast cancer subtypes-specific chemoresistance.
Collapse
Affiliation(s)
- Amir Ebrahimi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Peyman Bakhshaei Shahrebabaki
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Fouladi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran.
| |
Collapse
|
13
|
Alsayed RKME, Sheikhan KSAM, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic programing of cancer stemness by transcription factors-non-coding RNAs interactions. Semin Cancer Biol 2023; 92:74-83. [PMID: 37054905 DOI: 10.1016/j.semcancer.2023.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cancer 'stemness' is fundamental to cancer existence. It defines the ability of cancer cells to indefinitely perpetuate as well as differentiate. Cancer stem cell populations within a growing tumor also help evade the inhibitory effects of chemo- as well as radiation-therapies, in addition to playing an important role in cancer metastases. NF-κB and STAT-3 are representative transcription factors (TFs) that have long been associated with cancer stemness, thus presenting as attractive targets for cancer therapy. The growing interest in non-coding RNAs (ncRNAs) in the recent years has provided further insight into the mechanisms by which TFs influence cancer stem cell characteristics. There is evidence for a direct regulation of TFs by ncRNAs, such as, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) as well as circular RNAs (circRNAs), and vice versa. Additionally, the TF-ncRNAs regulations are often indirect, involving ncRNA-target genes or the sponging of other ncRNA species by individual ncRNAs. The information is rapidly evolving and this review provides a comprehensive review of TF-ncRNAs interactions with implications on cancer stemness and in response to therapies. Such knowledge will help uncover the many levels of tight regulations that control cancer stemness, providing novel opportunities and targets for therapy in the process.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | | | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar.
| |
Collapse
|
14
|
Yang Y, Fan X, Liu Y, Ye D, Liu C, Yang H, Su Z, Zhang Y, Liu Y. Function and Inhibition of DYRK1A: emerging roles of treating multiple human diseases. Biochem Pharmacol 2023; 212:115521. [PMID: 36990324 DOI: 10.1016/j.bcp.2023.115521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is an evolutionarily conserved protein kinase and the most studied member of the Dual-specificity tyrosine-regulated kinase (DYRK) family. It has been shown that it participates in the development of plenty of diseases, and both the low or high expression of DYRK1A protein could lead to disorder. Thus, DYRK1A is recognized as a key target for the therapy for these diseases, and the studies on natural or synthetic DYRK1A inhibitors have become more and more popular. Here, we provide a comprehensive review for DYRK1A from the structure and function of DYRK1A, the roles of DYRK1A in various types of diseases, including diabetes mellitus, neurodegenerative diseases, and kinds of cancers, and the studies of its natural and synthetic inhibitors.
Collapse
|
15
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Heterogeneity and plasticity of epithelial-mesenchymal transition (EMT) in cancer metastasis: Focusing on partial EMT and regulatory mechanisms. Cell Prolif 2023:e13423. [PMID: 36808651 DOI: 10.1111/cpr.13423] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) or mesenchymal-epithelial transition (MET) plays critical roles in cancer metastasis. Recent studies, especially those based on single-cell sequencing, have revealed that EMT is not a binary process, but a heterogeneous and dynamic disposition with intermediary or partial EMT states. Multiple double-negative feedback loops involved by EMT-related transcription factors (EMT-TFs) have been identified. These feedback loops between EMT drivers and MET drivers finely regulate the EMT transition state of the cell. In this review, the general characteristics, biomarkers and molecular mechanisms of different EMT transition states were summarized. We additionally discussed the direct and indirect roles of EMT transition state in tumour metastasis. More importantly, this article provides direct evidence that the heterogeneity of EMT is closely related to the poor prognosis in gastric cancer. Notably, a seesaw model was proposed to explain how tumour cells regulate themselves to remain in specific EMT transition states, including epithelial state, hybrid/intermediate state and mesenchymal state. Additionally, this article also provides a review of the current status, limitations and future perspectives of EMT signalling in clinical applications.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Pan Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Qiwei Guo
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
16
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
17
|
MFIDMA: A Multiple Information Integration Model for the Prediction of Drug-miRNA Associations. BIOLOGY 2022; 12:biology12010041. [PMID: 36671734 PMCID: PMC9855084 DOI: 10.3390/biology12010041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Abnormal microRNA (miRNA) functions play significant roles in various pathological processes. Thus, predicting drug-miRNA associations (DMA) may hold great promise for identifying the potential targets of drugs. However, discovering the associations between drugs and miRNAs through wet experiments is time-consuming and laborious. Therefore, it is significant to develop computational prediction methods to improve the efficiency of identifying DMA on a large scale. In this paper, a multiple features integration model (MFIDMA) is proposed to predict drug-miRNA association. Specifically, we first formulated known DMA as a bipartite graph and utilized structural deep network embedding (SDNE) to learn the topological features from the graph. Second, the Word2vec algorithm was utilized to construct the attribute features of the miRNAs and drugs. Third, two kinds of features were entered into the convolution neural network (CNN) and deep neural network (DNN) to integrate features and predict potential target miRNAs for the drugs. To evaluate the MFIDMA model, it was implemented on three different datasets under a five-fold cross-validation and achieved average AUCs of 0.9407, 0.9444 and 0.8919. In addition, the MFIDMA model showed reliable results in the case studies of Verapamil and hsa-let-7c-5p, confirming that the proposed model can also predict DMA in real-world situations. The model was effective in analyzing the neighbors and topological features of the drug-miRNA network by SDNE. The experimental results indicated that the MFIDMA is an accurate and robust model for predicting potential DMA, which is significant for miRNA therapeutics research and drug discovery.
Collapse
|
18
|
Khan SU, Fatima K, Aisha S, Hamza B, Malik F. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:12. [PMID: 36352310 DOI: 10.1007/s12032-022-01871-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Cellular ROS production participates in various cellular functions but its accumulation decides the cell fate. Malignant cells have higher levels of ROS and active antioxidant machinery, a characteristic hallmark of cancer with an outcome of activation of stress-induced pathways like autophagy. Autophagy is an intracellular catabolic process that produces alternative raw materials to meet the energy demand of cells and is influenced by the cellular redox state thus playing a definite role in cancer cell fate. Since damaged mitochondria are the main source of ROS in the cell, however, cancer cells remove them by upregulating the process of mitophagy which is known to play a decisive role in tumorigenesis and tumor progression. Chemotherapy exploits cell machinery which results in the accumulation of toxic levels of ROS in cells resulting in cell death by activating either of the pathways like apoptosis, necrosis, ferroptosis or autophagy in them. So understanding these redox and autophagy regulations offers a promising method to design and develop new cancer therapies that can be very effective and durable for years. This review will give a summary of the current therapeutic molecules targeting redox regulation and autophagy for the treatment of cancer. Further, it will highlight various challenges in developing anticancer agents due to autophagy and ROS regulation in the cell and insights into the development of future therapies.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Baseerat Hamza
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Ahmad S, Abbas M, Ullah MF, Aziz MH, Beylerli O, Alam MA, Syed MA, Uddin S, Ahmad A. Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. Semin Cancer Biol 2022; 85:155-163. [PMID: 34314819 DOI: 10.1016/j.semcancer.2021.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Cancer metastasis is a major reason for the cancer-associated deaths and a role of long non-coding RNAs (lncRNAs) in cancer metastasis is increasingly being realized. Among the many oncogenic pathways, NF-κB signalling's involvement in cancer metastasis as a key inflammation-regulatory transcription factor has been a subject of interest for long time. Accumulating data from in vitro as well as in vivo studies along with analysis of clinical cancer tissues points to regulation of NF-κB signalling by lncRNAs with implications toward the onset of cancer metastasis. LncRNAs FOXD2-AS1, KRT19P3 and the NF-κB interacting lncRNA (NKILA) associate with lymph node metastasis and poor prognosis of individual cancers. The role of epithelial-mesenchymal transition (EMT) in cancer metastasis is well known. EMT is regulated by NF-κB and regulation of NF-κB/EMT-induced metastasis by lncRNAs remains a hot topic of research with indications for such roles of lncRNAs MALAT1, SNHG15, CRNDE and AC007271.3. Among the many lncRNAs, NKILA stands out as the most investigated lncRNA for its regulation of NF-κB. This tumor suppressive lncRNA has been reported downregulated in clinical samples representing different human cancers. Mechanistically, NKILA has been consistently shown to inhibit NF-κB activation via inhibition of IκBα phosphorylation and the resulting suppression of EMT. NKILA is also a target of natural anticancer compounds. Given the importance of NF-κB as a master regulatory transcription factor, lncRNAs, as the modulators of NF-κB signaling, can provide alternate targets for metastatic cancers with constitutively active NF-κB.
Collapse
Affiliation(s)
- Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Madiha Abbas
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Moammir H Aziz
- James H. Quillen VA Medical Center, Johnson City, TN, 37604, USA
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Majid Ali Alam
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahab Uddin
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Center, Qatar University, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
20
|
Khan MI, Ahmad A. LncRNA SNHG6 sponges miR-101 and induces tamoxifen resistance in breast cancer cells through induction of EMT. Front Oncol 2022; 12:1015428. [PMID: 36212408 PMCID: PMC9539827 DOI: 10.3389/fonc.2022.1015428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Acquired resistance is a major clinical challenge for tamoxifen-based therapy. In this study, we focused on lncRNA SNHG6 which plays a role in chemoresistance of cancer cells, but has never been investigated in the context of tamoxifen resistance. We found elevated levels of SNHG6 in tamoxifen-resistant estrogen receptor (ER)-positive MCF-7 cells (MCF7TR), relative to naïve MCF-7 cells, as well as in tamoxifen-resistant T47D cells (T47DTR), relative to naïve T47D cells, which correlated with induced vimentin, ZEB1/2 and decreased e-cadherin, thus implicating a role of EMT in SNHG6-mediated tamoxifen resistance. Downregulation of SNHG6, using specific siRNA, sensitized MCF7TR as well as T47DTR cells to tamoxifen along with markedly reduced proliferation, invasion and anchorage-independent clonogenicity. Further, SNHG6 was found to sponge and inhibit miR-101 as the endogenous expression levels of SNHG6 and miR-101 inversely correlated in paired parental and tamoxifen-resistant cells and, moreover, silencing of SNHG6 in tamoxifen-resistant cells resulted in de-repression of miR-101, along with reversal of EMT. SNHG6 expression also directly correlated with increased stem cells markers Sox2, Oct4 and EZH2. miR-101 levels, manipulated by transfections with pre/anti-miR-101 oligos, directly affected tamoxifen sensitivity of ER-positive cells with pre-miR-101 sensitizing MCF7TR and T47DTR cells to tamoxifen whereas anti-miR-101 inducing resistance of parental MCF-7 and T47D cells to tamoxifen. Further, miR-101 was found to attenuate SNHG6-mediated effects on tamoxifen resistance, EMT as well as stem cell markers, thereby making a case for SNHG6-miR-101 axis in tamoxifen resistance of ER-positive breast cancer cells. Thus, lncRNA SNHG6 is a novel modulator of tamoxifen resistance through its sponging of miR-101 and the resulting effects on EMT.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- *Correspondence: Aamir Ahmad,
| |
Collapse
|
21
|
Sadeghipour N, Kumar SU, Massoud TF, Paulmurugan R. A rationally identified panel of microRNAs targets multiple oncogenic pathways to enhance chemotherapeutic effects in glioblastoma models. Sci Rep 2022; 12:12017. [PMID: 35835978 PMCID: PMC9283442 DOI: 10.1038/s41598-022-16219-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor. Available treatments have limited success because most patients develop chemoresistance. Alternative strategies are required to improve anticancer effects of current chemotherapeutics while limiting resistance. Successful targeting of microRNAs (miRNAs) as regulators of gene expression can help reprogram GBM cells to better respond to chemotherapy. We aimed to identify a panel of miRNAs that target multiple oncogenic pathways to improve GBM therapy. We first identified differentially expressed miRNAs and tested if their target genes play central roles in GBM signaling pathways by analyzing data in the Gene Expression Omnibus and The Cancer Genome Atlas databases. We then studied the effects of different combinations of these miRNAs in GBM cells by delivering synthetic miRNAs using clinically compatible PLGA-PEG nanoparticles prior to treatment with temozolomide (TMZ) or doxorubicin (DOX). The successful miRNA panel was tested in mice bearing U87-MG cells co-treated with TMZ. We identified a panel of five miRNAs (miRNA-138, miRNA-139, miRNA-218, miRNA-490, and miRNA-21) and their oncogenic targets (CDK6, ZEB1, STAT3, TGIF2, and SMAD7) that cover four different signaling pathways (cell proliferation and apoptotic signaling, invasion and metastasis, cytokine signaling, and stemness) in GBM. We observed significant in vitro and in vivo enhancement of therapeutic efficiency of TMZ and DOX in GBM models. The proposed combination therapy using rationally selected miRNAs and chemotherapeutic drugs is effective owing to the ability of this specific miRNA panel to better target multiple genes associated with the hallmarks of cancer.
Collapse
Affiliation(s)
- Negar Sadeghipour
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
- Cellular Pathway Imaging Laboratory (CPIL), The Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sukumar Uday Kumar
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
- Cellular Pathway Imaging Laboratory (CPIL), The Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tarik F Massoud
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA.
- Cellular Pathway Imaging Laboratory (CPIL), The Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA.
- Laboratory of Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA.
- Cellular Pathway Imaging Laboratory (CPIL), The Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA.
- Cellular Pathway Imaging Laboratory (CPIL), Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
22
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
23
|
Qin W, Wang L, Tian H, Wu X, Xiao C, Pan Y, Fan M, Tai Y, Liu W, Zhang Q, Yang Y. CAF-derived exosomes transmitted Gremlin-1 promotes cancer progression and decreases the sensitivity of hepatoma cells to sorafenib. Mol Carcinog 2022; 61:764-775. [PMID: 35638711 DOI: 10.1002/mc.23416] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide because of metastasis. An increasing number of studies have reported that cancer-associated fibroblasts (CAFs) have emerged as the largest component of the stroma and play a critical role in tumor-promoting processes. However, the effects of CAFs on cancer progression and the sensitivity of hepatoma cells to sorafenib are not well characterized. Here, we identified the proteome of CAF-derived exosomes, and unveiled that exosomal Gremlin-1 derived from CAFs contributes to epithelial-mesenchymal transition (EMT) of hepatoma cells and the decrease of the sorafenib sensitivity through regulating Wnt/β-catenin and BMP signaling pathways. Compared to control subjects, the level of plasma exosomal Gremlin-1 was significantly increased in HCC patients. Further studies indicated that plasma exosomal Gremlin-1 may predict sorafenib response in HCC patients. Collectively, our findings uncover CAFs-derived Gremlin-1-rich exosomes promote EMT and decrease the sensitivity of hepatoma cells to sorafenib by Wnt/β-catenin and BMP signaling.
Collapse
Affiliation(s)
- Wei Qin
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huan Tian
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaocai Wu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cuicui Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuhang Pan
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingming Fan
- Department of Surgery Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Tai
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Wang P, Chen W, Zhang Y, Zhong Q, Li Z, Wang Y. MicroRNA-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis to prevent the epithelial-mesenchymal transition. Mol Biol Rep 2022; 49:2711-2721. [PMID: 35059968 DOI: 10.1007/s11033-021-07080-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Breast cancer is one of the most common malignant and highly heterogeneous tumors in women. MicroRNAs (miRNAs), such as miR-1246, play important roles in various types of malignant cancers, including triple-negative breast cancer (TNBC). However, the biological role of miR-1246 in TNBC has not yet been fully elucidated. In this study, we studied the role of miR-1246 in the occurrence and development of TNBC and its mechanism of action. METHODS Cell Counting Kit-8 (CCK-8), wound healing, and Transwell assays were performed to observe the effects of miR-1246 on TNBC cell proliferation, migration, and invasion, respectively. The expression of epithelial-mesenchymal transition (EMT) markers was detected by western blotting. Dual luciferase reporter assays were performed to determine whether DYRK1A is a novel target of miR-1246. In addition, an immunoprecipitation experiment was performed to verify the binding of DYRK1A to PGRN. Rescue experiments were performed to determine whether DYRK1A is a novel target of miR-1246 and whether miR-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis to prevent the epithelial-mesenchymal transition. RESULTS Our results show that miR‑1246 suppresses the proliferation, migration, and invasion of TNBC cells, DYRK1A is a novel target of miR-1246 and Importin-8 mediated miR-1246 nuclear translocation. MiR‑1246 plays a suppressive role in the regulation of the EMT of TNBC cells by targeting DYRK1A. DYRK1A mediates the metastasis of triple-negative breast cancer via activation of the EMT. We identified PGRN as a novel DYRK1A-interacting protein. Overexpression of PGRN and DYRK1A promoted cell proliferation and migration of TNBC, but this effect was reversed by co-expression of miR-1246 mimics.DYRK1A and PGRN act together to regulate the occurrence and development of breast cancer through miR-1246. CONCLUSION MiR-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis and preventing the epithelial-mesenchymal transition. The MiR-1246/DYRK1A/PGRN axis regulates TNBC progression, suggesting that MiR-1246 could be promising therapeutic targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Pan Wang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Wenju Chen
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Yaqiong Zhang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Qianyi Zhong
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Zhaoyun Li
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Yichao Wang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China.
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Road, Jiaojiang District, Taizhou, 318000, Zhejiang, People's Republic of China.
| |
Collapse
|
25
|
The role of tumour microenvironment-driven miRNAs in the chemoresistance of muscle-invasive bladder cancer-a review. Urol Oncol 2022; 40:133-148. [PMID: 35246373 DOI: 10.1016/j.urolonc.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/27/2022]
Abstract
Successful treatment for muscle-invasive bladder cancer is challenged by the ability of cancer cells to resist chemotherapy. While enormous progress has been made toward understanding the divergent molecular mechanisms underlying chemoresistance, the heterogenous interplay between the bladder tumour and its microenvironment presents significant challenges in comprehending the occurrence of chemoresistance. The last decade has seen exponential interest in the exploration of microRNA (miRNA) as a tool in the management of chemoresistance. In this review, we highlight the miRNAs involved in the tumour microenvironment crosstalk that contributes to the chemoresistance in bladder cancer. Decrypting the role of miRNAs in the interplay beholds scope for future clinical translational application in managing the long-standing concerns of chemoresistance in muscle-invasive bladder cancer.
Collapse
|
26
|
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer. Biomolecules 2022; 12:biom12020284. [PMID: 35204785 PMCID: PMC8961659 DOI: 10.3390/biom12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis.
Collapse
|
27
|
Orchidaceae-Derived Anticancer Agents: A Review. Cancers (Basel) 2022; 14:cancers14030754. [PMID: 35159021 PMCID: PMC8833831 DOI: 10.3390/cancers14030754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Orchids are commonly used in folk medicine for the treatment of infections and tumors but little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. According to the published data, numerous species of orchids contain potential antitumor chemicals. Still, a relatively insignificant number of species of orchids have been tested for their bioactive properties and most of those studies were on Asian taxa. Broader research, ’including American and African species, as well as the correct identification of samples, is essential for evaluating the usefulness of orchids as a plant family with huge anticancer potential. Abstract Species of orchids, which belong to the largest family of flowering plants, are commonly used in folk medicine for the treatment of infections and tumors. However, little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. For the assessment, previous papers on the anticancer activity of Orchidaceae published since 2015 were considered. The papers were found by exploring electronic databases. According to the available data, many species of orchids contain potential antitumor chemicals. The bioactive substances in a relatively insignificant number of orchids are identified, and most studies are on Asian taxa. Broader research on American and African species and the correct identification of samples included in the experiments are essential for evaluating the usefulness of orchids as a plant family with vast anticancer potential.
Collapse
|
28
|
Dahmardeh Ghalehno A, Boustan A, Abdi H, Aganj Z, Mosaffa F, Jamialahmadi K. The Potential for Natural Products to Overcome Cancer Drug Resistance by Modulation of Epithelial-Mesenchymal Transition. Nutr Cancer 2022; 74:2686-2712. [PMID: 34994266 DOI: 10.1080/01635581.2021.2022169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The acquisition of resistance and ultimately disease relapse after initial response to chemotherapy put obstacles in the way of cancer therapy. Epithelial-mesenchymal transition (EMT) is a biologic process that epithelial cells alter to mesenchymal cells and acquire fibroblast-like properties. EMT plays a significant role in cancer metastasis, motility, and survival. Recently, emerging evidence suggested that EMT pathways are very important in making drug-resistant involved in cancer. Natural products are gradually emerging as a valuable source of safe and effective anticancer compounds. Natural products could interfere with the different processes implicated in cancer drug resistance by reversing the EMT process. In this review, we illustrate the molecular mechanisms of EMT in the emergence of cancer metastasis. We then present the role of natural compounds in the suppression of EMT pathways in different cancers to overcome cancer cell drug resistance and improve tumor chemotherapy. HighlightsDrug-resistance is one of the obstacles to cancer treatment.EMT signaling pathways have been correlated to tumor invasion, metastasis, and drug-resistance.Various studies on the relationship between EMT and resistance to chemotherapy agents were reviewed.Different anticancer natural products with EMT inhibitory properties and drug resistance reversal effects were compared.
Collapse
Affiliation(s)
- Asefeh Dahmardeh Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakimeh Abdi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Aganj
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Xia M, Zu X, Chen Z, Wen G, Zhong J. Noncoding RNAs in triple negative breast cancer: Mechanisms for chemoresistance. Cancer Lett 2021; 523:100-110. [PMID: 34601022 DOI: 10.1016/j.canlet.2021.09.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype among breast cancers with high recurrence and this condition is partly due to chemoresistance. Therefore, fully understanding the mechanism of TNBC-resistance is the key to overcoming chemoresistance, which will be an effective strategy for TNBC therapy. Various potential mechanisms involved in the chemoresistance of TNBC have been investigated and indicated that noncoding RNAs (ncRNAs) especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) take part in most TNBC resistance. The ncRNA-induced chemoresistance process is involved in the alteration of many activities. here, we mainly summarize the mechanisms of ncRNAs in the chemoresistance of TNBC and discuss the potential clinical application of ncRNAs in the treatment of TNBC, indicating that targeting ncRNAs might be a promising strategy for resensitization to chemotherapies.
Collapse
Affiliation(s)
- Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Zuyao Chen
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Gebo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
30
|
Chou CH, Wang HK, Lin YC, Tsai DH, Lu MT, Ho CT, Hseu YC, Yang HL, Way TD. Bisdemethoxycurcumin Promotes Apoptosis and Inhibits the Epithelial-Mesenchymal Transition through the Inhibition of the G-Protein-Coupled Receptor 161/Mammalian Target of Rapamycin Signaling Pathway in Triple Negative Breast Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14557-14567. [PMID: 34813306 DOI: 10.1021/acs.jafc.1c05585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triple negative breast cancer (TNBC) is one of the leading causes of cancer death in the world and lacks an effective targeted therapy. G-protein-coupled receptor 161 (GPR161) has been demonstrated to perform the functional regulations on TNBC progression and might be a potential new target for TNBC therapy. This study showed the effects of bisdemethoxycurcumin (BDMC) on GPR161 regulation, indicating that BDMC effectively inhibited GPR161 expression and downregulated GPR161-driven signaling. BDMC showed the potent inhibitory effects on TNBC proliferation through suppressing GPR161-mediated mammalian target of rapamycin (mTOR)/70 kDa ribosomal protein S6 kinase (p70S6K) activation. Besides, in this study, we discover the mechanism of GPR161-driven TNBC metastasis, linking to GPR161-mediated twist-related protein 1 (Twist1)/matrix metallopeptidase 9 (MMP9) contributing to the epithelial-mesenchymal transition (EMT). BDMC effectively repressed GPR161-mediated TNBC metastasis via inhibiting Twist1/MMP9-induced EMT. The three-dimensional invasion assay also showed that BDMC significantly inhibited TNBC invasion. The combination treatment of BDMC and rapamycin enhanced the inhibition of TNBC proliferation and metastasis through increasing the blockage of mTOR activation. Furthermore, this study also observed that BDMC activated the caspase 3/9 signaling pathway to induce TNBC apoptosis. Therefore, BDMC could be applicable to anticancer therapy, especially targeting on the GPR161-driven cancer type.
Collapse
Affiliation(s)
- Chun-Hung Chou
- Ph.D. Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Hao-Kuang Wang
- Department of Neurosurgery, E-Da Hospital/I-Shou University, Kaohsiung 84001, Taiwan
- School of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
| | - Ying-Chao Lin
- Division of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung 427, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Dai-Hua Tsai
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Meng-Tien Lu
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Tzong-Der Way
- Ph.D. Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Health and Nutrition Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
31
|
Tang Y, Chen Y, Zhang Z, Tang B, Zhou Z, Chen H. Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective. Pharmaceutics 2021; 13:pharmaceutics13122116. [PMID: 34959397 PMCID: PMC8708448 DOI: 10.3390/pharmaceutics13122116] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) are characterized by intrinsic self-renewal and tumorigenic properties, and play important roles in tumor initiation, progression, and resistance to diverse forms of anticancer therapy. Accordingly, targeting signaling pathways that are critical for CSC maintenance and biofunctions, including the Wnt, Notch, Hippo, and Hedgehog signaling cascades, remains a promising therapeutic strategy in multiple cancer types. Furthermore, advances in various cancer omics approaches have largely increased our knowledge of the molecular basis of CSCs, and provided numerous novel targets for anticancer therapy. However, the majority of recently identified targets remain ‘undruggable’ through small-molecule agents, whereas the implications of exogenous RNA interference (RNAi, including siRNA and miRNA) may make it possible to translate our knowledge into therapeutics in a timely manner. With the recent advances of nanomedicine, in vivo delivery of RNAi using elaborate nanoparticles can potently overcome the intrinsic limitations of RNAi alone, as it is rapidly degraded and has unpredictable off-target side effects. Herein, we present an update on the development of RNAi-delivering nanoplatforms in CSC-targeted anticancer therapy and discuss their potential implications in clinical trials.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| | - Haining Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| |
Collapse
|
32
|
Lee JW, Lee HY. Targeting Cancer Stem Cell Markers or Pathways: A Potential Therapeutic Strategy for Oral Cancer Treatment. Int J Stem Cells 2021; 14:386-399. [PMID: 34711702 PMCID: PMC8611309 DOI: 10.15283/ijsc21084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells with stem cell-like properties, self-renewal potential, and differentiation capacity into multiple cell types. Critical genetic alterations or aberrantly activated signaling pathways associated with drug resistance and recurrence have been observed in multiple types of CSCs. In this context, CSCs are considered to be responsible for tumor initiation, growth, progression, therapeutic resistance, and metastasis. Therefore, to effectively eradicate CSCs, tremendous efforts have been devoted to identify specific target molecules that play a critical role in regulating their distinct functions and to develop novel therapeutics, such as proteins, monoclonal antibodies, selective small molecule inhibitors, and small antisense RNA (asRNA) drugs. Similar to other CSC types, oral CSCs can be characterized by certain pluripotency-associated markers, and oral CSCs can also survive and form 3D tumor spheres in suspension culture conditions. These oral CSC-targeting therapeutics selectively suppress specific surface markers or key signaling components and subsequently inhibit the stem-like properties of oral CSCs. A large number of new therapeutic candidates have been tested, and some products are currently in the pre-clinical or clinical development phase. In the present study, we review new oral CSC-targeted therapeutic strategies and discuss the various specific CSC surface markers and key signaling components involved in the stem-like properties, growth, drug resistance, and tumorigenicity of oral CSCs.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
| | - Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, Goesan, Korea.,Division of Science Education, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
33
|
Chowdhury P, Ghosh U, Samanta K, Jaggi M, Chauhan SC, Yallapu MM. Bioactive nanotherapeutic trends to combat triple negative breast cancer. Bioact Mater 2021; 6:3269-3287. [PMID: 33778204 PMCID: PMC7970221 DOI: 10.1016/j.bioactmat.2021.02.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 02/09/2023] Open
Abstract
The management of aggressive breast cancer, particularly, triple negative breast cancer (TNBC) remains a formidable challenge, despite treatment advancement. Although newer therapies such as atezolizumab, olaparib, and sacituzumab can tackle the breast cancer prognosis and/or progression, but achieved limited survival benefit(s). The current research efforts are aimed to develop and implement strategies for improved bioavailability, targetability, reduce systemic toxicity, and enhance therapeutic outcome of FDA-approved treatment regimen. This review presents various nanoparticle technology mediated delivery of chemotherapeutic agent(s) for breast cancer treatment. This article also documents novel strategies to employ cellular and cell membrane cloaked (biomimetic) nanoparticles for effective clinical translation. These technologies offer a safe and active targeting nanomedicine for effective management of breast cancer, especially TNBC.
Collapse
Affiliation(s)
- Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Upasana Ghosh
- Department of Biomedical Engineering, School of Engineering, Rutgers University, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Kamalika Samanta
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C. Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M. Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| |
Collapse
|
34
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
35
|
Kumar U, Hu Y, Masrour N, Castellanos-Uribe M, Harrod A, May ST, Ali S, Speirs V, Coombes RC, Yagüe E. MicroRNA-495/TGF-β/FOXC1 axis regulates multidrug resistance in metaplastic breast cancer cells. Biochem Pharmacol 2021; 192:114692. [PMID: 34298004 DOI: 10.1016/j.bcp.2021.114692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/18/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Triple-negative metaplastic breast carcinoma (MBC) poses a significant treatment challenge due to lack of targeted therapies and chemotherapy resistance. We isolated a novel MBC cell line, BAS, which showed a molecular and phenotypic profile different from the only other metaplastic cell model, HS578T cells. To gain insight behind chemotherapeutic resistance, we generated doxorubicin (HS-DOX, BAS-DOX) and paclitaxel (HS-TX, BAS-TX) resistant derivatives of both cell lines. Drug sensitivity assays indicated a truly multidrug resistant (MDR) phenotype. Both BAS-DOX and BAS-TX showed up-regulation of FOXC1 and its experimental down-regulation re-sensitized cells to doxorubicin and paclitaxel. Experimental modulation of FOXC1 expression in MCF-7 and MDA-MB-231 cells corroborated its role in MDR. Genome-wide expression analyses identified gene expression signatures characterized by up-regulation of TGFB2, which encodes cytokine TGF-β2, in both BAS-DOX and BAS-TX cells. Pharmacological inhibition of the TGF-β pathway with galunisertib led to down-regulation of FOXC1 and increase in drug sensitivity in both BAS-DOX and BAS-TX cells. MicroRNA (miR) expression analyses identified high endogenous miR-495-3p levels in BAS cells that were downregulated in both BAS MDR cells. Transient expression of miR-495-3p mimic in BAS-DOX and BAS-TX cells caused downregulation of TGFB2 and FOXC1 and re-sensitized cells to doxorubicin and paclitaxel, whereas miR-495-3p inhibition in BAS cells led to increase in resistance to both drugs and up-regulation of TGFB2 and FOXC1. Together, these data suggest interplay between miR-495-3p, TGF-β2 and FOXC1 regulating MDR in MBC and open the exploration of novel therapeutic strategies.
Collapse
Affiliation(s)
- Uttom Kumar
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Yunhui Hu
- The 3(rd) Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin 300060, PR China; GeneNet Pharmaceuticals Co. Ltd., Ting Jiang Road, Bei Chen District, Tianjin, 300410, PR China
| | - Nahal Masrour
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Marcos Castellanos-Uribe
- Nottingham Arabidopsis Stock Centre, University of Nottingham, Sutton Bonington campus, Loughborough LE12 5RD, UK
| | - Alison Harrod
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Sean T May
- Nottingham Arabidopsis Stock Centre, University of Nottingham, Sutton Bonington campus, Loughborough LE12 5RD, UK
| | - Simak Ali
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Valerie Speirs
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 2XD, UK
| | - R Charles Coombes
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ernesto Yagüe
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
36
|
Sun X, Lin F, Sun W, Zhu W, Fang D, Luo L, Li S, Zhang W, Jiang L. Exosome-transmitted miRNA-335-5p promotes colorectal cancer invasion and metastasis by facilitating EMT via targeting RASA1. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:164-174. [PMID: 33767913 PMCID: PMC7960496 DOI: 10.1016/j.omtn.2021.02.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Exosomal microRNA (miRNA) secretion has been characterized as a vital factor in intercellular communication among cancer cells. However, little is known about cancer-secreted miRNAs specifically involved in metastasis of colorectal cancer (CRC). Here, we found that exosomes derived from metastatic CRC cell line SW620 promoted migration, invasion, and epithelial-mesenchymal transition (EMT) of CRC cells. The profiling of exosome miRNAs revealed that microRNA (miR)-335-5p was highly expressed in exosomes from metastatic SW620 cells compared to those derived from primary SW480 cells. miR-335-5p was transmitted from metastatic SW620 cells to CRC cells via exosomes and promoted migration, invasion, and EMT of CRC cells. Moreover, exosome-transmitted miRNA-335-5p promotes CRC cell invasion and metastasis by facilitating EMT via targeting RAS p21 protein activator 1 (RASA1). Overexpression of RASA1 abolished the promotive effects of exosomal miR-335-5p on CRC cell migration, invasion, and EMT. Collectively, our data revealed that exosomal miR-335-5p derived from metastatic CRC cells promotes CRC cell invasion and metastasis by facilitating EMT via targeting RASA1, which may serve as a potential therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Xuecheng Sun
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Feiyan Lin
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenjing Sun
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Weijian Zhu
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Daoquan Fang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lifang Luo
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shuhan Li
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenqi Zhang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
37
|
De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol 2021; 95:2279-2297. [PMID: 34003341 PMCID: PMC8241801 DOI: 10.1007/s00204-021-03063-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last decade, important clinical benefits have been achieved in cancer patients by using drug-targeting strategies. Nevertheless, drug resistance is still a major problem in most cancer therapies. Epithelial-mesenchymal plasticity (EMP) and tumour microenvironment have been described as limiting factors for effective treatment in many cancer types. Moreover, epithelial-to-mesenchymal transition (EMT) has also been associated with therapy resistance in many different preclinical models, although limited evidence has been obtained from clinical studies and clinical samples. In this review, we particularly deepen into the mechanisms of which intermediate epithelial/mesenchymal (E/M) states and its interconnection to microenvironment influence therapy resistance. We also describe how the use of bioinformatics and pharmacogenomics will help to figure out the biological impact of the EMT on drug resistance and to develop novel pharmacological approaches in the future.
Collapse
Affiliation(s)
- Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Sivan Izraely
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain.,Universidade da Coruña (UDC), Coruña, Spain
| | - Isaac P Witz
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain. .,Universidade da Coruña (UDC), Coruña, Spain.
| |
Collapse
|
38
|
Safi A, Bastami M, Delghir S, Ilkhani K, Seif F, Alivand MR. miRNAs Modulate the Dichotomy of Cisplatin Resistance or Sensitivity in Breast Cancer: An Update of Therapeutic Implications. Anticancer Agents Med Chem 2021; 21:1069-1081. [PMID: 32885760 DOI: 10.2174/1871520620666200903145939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
Cisplatin has a broad-spectrum antitumor activity and is widely used for the treatment of various malignant tumors. However, acquired or intrinsic resistance of cisplatin is a major problem for patients during the therapy. Recently, it has been reported Cancer Stem Cell (CSC)-derived drug resistance is a great challenge of tumor development and recurrence; therefore, the sensitivity of Breast Cancer Stem Cells (BCSCs) to cisplatin is of particular importance. Increasing evidence has shown that there is a relationship between cisplatin resistance/sensitivity genes and related miRNAs. It is known that dysregulation of relevant miRNAs plays a critical role in regulating target genes of cisplatin resistance/sensitivity in various pathways such as cellular uptake/efflux, Epithelial-Mesenchymal Transition (EMT), hypoxia, and apoptosis. Furthermore, the efficacy of the current chemotherapeutic drugs, including cisplatin, for providing personalized medicine, can be improved by controlling the expression of miRNAs. Thus, potential targeting of miRNAs can lead to miRNA-based therapies, which will help overcome drug resistance and develop more effective personalized anti-cancer and cotreatment strategies in breast cancer. In this review, we summarized the general understandings of miRNAregulated biological processes in breast cancer, particularly focused on the role of miRNA in cisplatin resistance/ sensitivity.
Collapse
Affiliation(s)
- Asma Safi
- Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Delghir
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Mohammad R Alivand
- Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Tang M, Yang M, He K, Li R, Chen X, Wang Y, Zhang X, Qiu T. Glycyrrhetinic acid remodels the tumor microenvironment and synergizes with doxorubicin for breast cancer treatment in a murine model. NANOTECHNOLOGY 2021; 32:185702. [PMID: 33503591 DOI: 10.1088/1361-6528/abe076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We aimed to combine glycyrrhetinic acid with doxorubicin to prepare, characterize and evaluate a drug delivery nano-system with REDOX sensitivity for the treatment of breast cancer. M-DOX-GA NPs prepared by nano sedimentation were spherical, with a particle size of 181 nm. And the maximum encapsulation efficiency and drug loading in M-DOX-GA NPs were 89.28% and 18.22%, respectively. Cytotoxicity and cellular uptake experiments of nanoparticles to KC cells, Cal-27 cells and 4T1 cells were studied by the CCK-8 method. The result indicated that M-DOX-GA NPs could accurately release the drug into the tumor cells, thus achieving the targeted release of the drug. Comparing the survival rate of the above three cells, it was found that M-DOX-GA NPs had a good tumor selectivity and had a more significant therapeutic effect on breast cancer. A 4T1-bearing mouse model was established, and the tumor inhibition rate was 77.37% after injection of nanoparticle solution for 14 d. Normal tissue H&E stained sections and TUNEL assay were verified M-DOX-GA NPs have excellent tumor suppressive effect, and can efficiently reduce the toxic side effects on normal organisms, and effectively avoided 4T1 cells metastasis. Immunofluorescence detection and Western-blot analysis figured a decline in both CUGBP1 and α-SMA, which verifying the TME remodeling induced by glycyrrhetinic acid. Collectively, the combination of doxorubicin and glycyrrhetinic acid is an effective and safe strategy for remodeling fibrotic TME by improving the therapeutic outcome for breast cancer.
Collapse
Affiliation(s)
- Mingxiu Tang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Mengjia Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Kaiyong He
- Hubei Institute for Drug Control, Wuhan University, Wuhan 430079, People's Republic of China
| | - Ran Li
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, People's Republic of China
| | - Xiaojie Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China
| | - Yaowen Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Tong Qiu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
40
|
Kumar U, Ardasheva A, Mahmud Z, Coombes RC, Yagüe E. FOXA1 is a determinant of drug resistance in breast cancer cells. Breast Cancer Res Treat 2021; 186:317-326. [PMID: 33417085 PMCID: PMC7990828 DOI: 10.1007/s10549-020-06068-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Breast cancer is one of the most commonly diagnosed cancers in women. Five subtypes of breast cancer differ in their genetic expression profiles and carry different prognostic values, with no treatments available for some types, such as triple-negative, due to the absence of genetic signatures that could otherwise be targeted by molecular therapies. Although endocrine treatments are largely successful for estrogen receptor (ER)-positive cancers, a significant proportion of patients with metastatic tumors fail to respond and acquire resistance to therapy. FOXA1 overexpression mediates endocrine therapy resistance in ER-positive breast cancer, although the regulation of chemotherapy response by FOXA1 has not been addressed previously. FOXA1, together with EP300 and RUNX1, regulates the expression of E-cadherin, and is expressed in luminal, but absent in triple-negative and basal-like breast cancers. We have previously determined that EP300 regulates drug resistance and tumor initiation capabilities in breast cancer cells. METHODS Here we describe the generation of breast cancer cell models in which FOXA1 expression has been modulated either by expression of hairpins targeting FOXA1 mRNA or overexpression plasmids. RESULTS Upon FOXA1 knockdown in luminal MCF-7 and T47D cells, we found an increase in doxorubicin and paclitaxel sensitivity as well as a decrease in anchorage independence. Conversely, upregulation of FOXA1 in basal-like MDA-MB-231 cells led to an increase in drug resistance and anchorage independence. CONCLUSION Together, these data suggest that FOXA1 plays a role in making tumors more aggressive.
Collapse
Affiliation(s)
- Uttom Kumar
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Anastasia Ardasheva
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Zimam Mahmud
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - R Charles Coombes
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ernesto Yagüe
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
41
|
Curcumin-loaded Polyethyleneimine and chitosan polymer-based Mucoadhesive liquid crystalline systems as a potential platform in the treatment of cervical Cancer. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Dong W, Yan K, Yu H, Huo L, Xian Z, Zhao Y, Li J, Zhang Y, Cao Z, Fu Y, Cong W, Dong H. Prognostic Nomogram for Sorafenib Benefit in Hepatitis B Virus-Related Hepatocellular Carcinoma After Partial Hepatectomy. Front Oncol 2021; 10:605057. [PMID: 33643907 PMCID: PMC7906076 DOI: 10.3389/fonc.2020.605057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background Predicting the long-term prognosis of individuals who experienced sorafenib treatment following partial hepatectomy due to hepatitis B virus (HBV) related hepatocellular carcinoma (HCC) is difficult. This work aims to create an effective prognostic nomogram for HBV related HCC patients who are receiving sorafenib treatment as adjuvant therapy after surgery. Methods A total of 233 HBV-related HCC patients treated with or without sorafenib following partial hepatectomy at the Eastern Hepatobiliary Surgery Hospital from 2008 to 2013 were matched with propensity score matching analysis. The optimal cut-off point of the overall survival (OS) factor level was determined by x-tile. The selection of indicators was based on clinical findings. The Cox regression model with an interaction term was employed for evaluating the predictive value. Using a multivariate Cox proportional hazards model, a nomogram was subsequently formulated to analyze 111 patients treated with sorafenib. The nomogram's discriminative ability and predictive accuracy were determined using the concordance index (C-index), calibration, and ROC curve. Results The matched sorafenib cohort of 111 patients and control cohort of 118 patients were analyzed. Subgroup analysis revealed that low GPC3, pERK, pAKT, serum AFP levels, without MVI, under 50 years old, male, TNM stage I/II and BCLC stage 0/A were significantly associated with a better OS in patients subjected to sorafenib treatment compared to those without sorafenib treatment after surgery. Multivariate analysis of the sorafenib cohort revealed GPC3, pERK, pAKT, serum AST, and BCLC stage as independent factors for OS, and all were included in the nomogram. The survival probability based on the calibration curve showed that the prediction of the nomogram was in good agreement with the actual observation. The C-index of the nomogram for predicting survival was 0.73(95% CI, 0.67-0.78). The area under the ROC curve (AUC) for the nomogram to predict the survival for 1, 3, and 5-year was 0.726, 0.816, and 0.823, respectively. Conclusion This proposed nomogram shows the potential to make a precise prediction regarding the prognosis of HBV-related HCC patients and may help to stratify patients for personalized therapy following partial hepatectomy.
Collapse
Affiliation(s)
- Wei Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Kai Yan
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Hua Yu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Lei Huo
- Department of Radiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Zhihong Xian
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Yanqing Zhao
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Jutang Li
- Department of Gynaecology and Obstetrics, Tong Ren Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yuchan Zhang
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Zhenying Cao
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Yong Fu
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China
| |
Collapse
|
43
|
Chern YJ, Tai IT. Adaptive response of resistant cancer cells to chemotherapy. Cancer Biol Med 2020; 17:842-863. [PMID: 33299639 PMCID: PMC7721100 DOI: 10.20892/j.issn.2095-3941.2020.0005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Despite advances in cancer therapeutics and the integration of personalized medicine, the development of chemoresistance in many patients remains a significant contributing factor to cancer mortality. Upon treatment with chemotherapeutics, the disruption of homeostasis in cancer cells triggers the adaptive response which has emerged as a key resistance mechanism. In this review, we summarize the mechanistic studies investigating the three major components of the adaptive response, autophagy, endoplasmic reticulum (ER) stress signaling, and senescence, in response to cancer chemotherapy. We will discuss the development of potential cancer therapeutic strategies in the context of these adaptive resistance mechanisms, with the goal of stimulating research that may facilitate the development of effective cancer therapy.
Collapse
Affiliation(s)
- Yi-Jye Chern
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| |
Collapse
|
44
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
45
|
Ullah MF, Usmani S, Shah A, Abuduhier FM. Dietary molecules and experimental evidence of epigenetic influence in cancer chemoprevention: An insight. Semin Cancer Biol 2020; 83:319-334. [PMID: 33152485 DOI: 10.1016/j.semcancer.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
The world-wide rate of incidence of cancer disease has been only modestly contested by the past and current preventive and interventional strategies. Hence, the global effort towards novel ideas to contain the disease still continues. Constituents of human diets have in recent years emerged as key regulators of carcinogenesis, with studies reporting their inhibitory potential against all the three stages vis-a-vis initiation, promotion and progression. Unlike drugs which usually act on single targets, these dietary factors have an advantage of multi-targeted effects and pleiotropic action mechanisms, which are effective against cancer that manifest as a micro-evolutionary and multi-factorial disease. Since most of the cellular targets have been identified and their consumption considered relatively safe, these diet-derived agents often appear as molecules of interest in repurposing strategies. Currently, many of these molecules are being investigated for their ability to influence the aberrant alterations in cell's epigenome for epigenetic therapy against cancer. Targeting the epigenetic regulators is a new paradigm in cancer chemoprevention which acts to reverse the warped-up epigenetic alterations in a cancer cell, thereby directing it towards a normal phenotype. In this review, we discuss the significance of dietary factors and natural products as chemopreventive agents. Further, we corroborate the experimental evidence from existing literature, reflecting the ability of a series of such molecules to act as epigenetic modifiers in cancer cells, by interfering with molecular events that map the epigenetic imprints such as DNA methylation, histone acetylation and non-coding RNA mediated gene regulation.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, India
| | - Faisel M Abuduhier
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
46
|
Shayimu P, Yusufu A, Rehemutula A, Redati D, Jiapaer R, Tuerdi R. MicroRNA-377 Counteracts With Cancer Stem Cell Phenotypes and Epithelial Mesenchymal Transformation by Targeting ZEB2 in Colon Cancer. Technol Cancer Res Treat 2020; 19:1533033820967475. [PMID: 33084522 PMCID: PMC7588759 DOI: 10.1177/1533033820967475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysregulated microRNAs (miRNAs) have been implicated in the pathogenic processes of colon cancer. Epithelial mesenchymal transition (EMT) promotes metastatic progression and cancer stem cells are closely involved in colon cancer proliferation and metastasis. Functional effects of miR-377 on colon cancer stem cell phenotypes and EMT were then determined in the present study. Firstly, reduced miR-377 was found in colon cancer tissues and cell lines. Results from flow cytometry, sphere formation and western blot assays showed that miR-377 knockdown increased number of ALDH+ cells and promoted sphere formation ability. Moreover, cell migration/invasion and EMT of colon cancer cells were suppressed by miR-377 over-expression. On the contrary, miR-377 mimics caused the reversed results. ZEB2 (zinc finger E box-binding homeobox 2) was then validated as a binding target of miR-377. ZEB2 over-expression reversed the inhibitory abilities of miR-377 on cancer stem cell phenotypes, EMT, migration and invasion. In conclusion, miR-377 regulates cancer stem cell phenotypes and EMT in colon cancer cells via regulation of ZEB2, suggesting a new therapeutic strategy for colon cancer treatment.
Collapse
Affiliation(s)
- Paerhati Shayimu
- Department of Gastrointestinal Surgery, Cancer Hospital of 74790Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Aikeremu Yusufu
- Department of Gastrointestinal Surgery, Cancer Hospital of 74790Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Aizimaiti Rehemutula
- Department of Gastrointestinal Surgery, Cancer Hospital of 74790Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Darebai Redati
- B-Ultrasound Room, Cancer Hospital of 74790Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Rexida Jiapaer
- Department of Gastrointestinal Surgery, Cancer Hospital of 74790Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Rousidan Tuerdi
- Central laboratory, 74790Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
47
|
Wagle SR, Kovacevic B, Walker D, Ionescu CM, Shah U, Stojanovic G, Kojic S, Mooranian A, Al-Salami H. Alginate-based drug oral targeting using bio-micro/nano encapsulation technologies. Expert Opin Drug Deliv 2020; 17:1361-1376. [PMID: 32597249 DOI: 10.1080/17425247.2020.1789587] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Oral delivery is the most common administrated drug delivery path. However, oral administration of lipophilic drugs has some limitations: they have poor dose-response due to low and varied dissolution kinetics and oral bioavailability with sub-optimal dissolution within the aqueous gastrointestinal microenvironment. Therefore, there is a need for robust formulating methods that protect the drug until it reaches to its optimum absorption site, allowing its optimum pharmacological effects via increasing its intestinal permeation and bioavailability. AREA COVERED Herein, we provide insights on orally administered lipophilic drug delivery systems. The detailed description of the obstacles associated with the oral bioavailability of lipophilic drugs are also discussed. Following this, techniques to overcome these obstacles with much emphasis on optimal safety and efficacy are addressed. Newly designed ionic vibrational jet flow encapsulation technology has enormous growth in lipophilic drug delivery systems, which is discussed thereafter. EXPERT OPINION Researchers have shown interest in drug's encapsulation. A combination of drug-bile acid and microencapsulation methods can be one promising strategy to improve the oral delivery of lipophilic drugs. However, the most critical aspect of this approach is the selection of bile acids, polymer, and encapsulation technology.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Daniel Walker
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Umar Shah
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia.,School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University , Perth, WA, Australia
| | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad , Novi Sad, Serbia
| | - Sanja Kojic
- Faculty of Technical Sciences, University of Novi Sad , Novi Sad, Serbia
| | - Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia, Australia
| |
Collapse
|
48
|
Wang XY, Zhou YC, Wang Y, Liu YY, Wang YX, Chen DD, Fan Y. miR-149 contributes to resistance of 5-FU in gastric cancer via targeting TREM2 and regulating β-catenin pathway. Biochem Biophys Res Commun 2020; 532:329-335. [PMID: 32977944 DOI: 10.1016/j.bbrc.2020.05.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Drug resistance remains the unresolved obstacle for gastric cancer (GC) treatment. Recently more and more studies have shown that microRNAs are involved in cancer resistance and could apply to drug resistance therapy in tumors. The relationship between miR-149 and 5-fluorouracil (5-FU) resistance in GC remains unclear. Here we detected miR-149 expression in 5-FU resistance tumor tissues and cell lines, and found that miR-149 expression is upregulated in AGS/5-FU cells compared with AGS cells. Further experiments indicated that overexpression of miR-149 can alleviate 5-FU-induced apoptosis and proliferation inhibition by targeting TREM2. It was also confirmed that TREM2 regulated 5-FU resistance through β-catenin pathway. Generally speaking, our results indicated that miR-149 contributes to resistance of 5-FU in gastric cancer via targeting TREM2 and regulating β-catenin pathway.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yi-Chan Zhou
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Yan Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yun-Yun Liu
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yu-Xin Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Dan-Dan Chen
- Department of Gastroenterology, The First People's Hospital of Suqian, Su'qian, Jiangsu, 223800, China
| | - Yu Fan
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China.
| |
Collapse
|
49
|
Ge T, Liu T, Guo L, Chen Z, Lou G. MicroRNA-302 represses epithelial-mesenchymal transition and cisplatin resistance by regulating ATAD2 in ovarian carcinoma. Exp Cell Res 2020; 396:112241. [PMID: 32835657 DOI: 10.1016/j.yexcr.2020.112241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an important contributor to drug resistance in ovarian cancer. The aims of this study were to explore the potential role of the miR-302 cluster in modulating EMT and cisplatin resistance in ovarian cancer. We used qRT-PCR and western blotting to show that miR-302 expression was lower in chemoresistant than in chemosensitive cells, and miR-302 was upregulated in chemosensitive, but not chemoresistant ovarian cancer cells in response to cisplatin treatment. We identified ATAD2 as a target of miR-302 and showed that ectopic expression of miR-302 increased cisplatin sensitivity and inhibited EMT and the invasiveness of cisplatin-resistant cells in vitro by targeting ATAD2. Knockdown of ATAD2 restored cisplatin sensitivity and reversed EMT/metastasis in cisplatin-resistant cells, as shown by western blotting and invasion/migration assays. The effect of miR-302 overexpression on EMT and invasiveness was mediated by the modulation of β-catenin nuclear expression. Immunofluorescence analysis showed that ATAD2 overexpression reversed the miR-302-induced downregulation of nuclear β-catenin in cisplatin resistant cells. A xenograft tumor model was used to show that miR-302 increases the antitumor effect of cisplatin in vivo. Taken together, these results identify a potential regulatory axis involving miR-302 and ATAD2 with a role in chemoresistance, indicating that activation of miR-302 or inactivation of ATAD2 could serve as a novel approach to reverse cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
- Tingting Ge
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianbo Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liyuan Guo
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhuo Chen
- Department of Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
50
|
Victorelli FD, Cardoso VMDO, Ferreira NN, Calixto GMF, Fontana CR, Baltazar F, Gremião MPD, Chorilli M. Chick embryo chorioallantoic membrane as a suitable in vivo model to evaluate drug delivery systems for cancer treatment: A review. Eur J Pharm Biopharm 2020; 153:273-284. [PMID: 32580050 DOI: 10.1016/j.ejpb.2020.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
|