1
|
Sakalauskienė GV, Malcienė L, Stankevičius E, Radzevičienė A. Unseen Enemy: Mechanisms of Multidrug Antimicrobial Resistance in Gram-Negative ESKAPE Pathogens. Antibiotics (Basel) 2025; 14:63. [PMID: 39858349 PMCID: PMC11762671 DOI: 10.3390/antibiotics14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Multidrug antimicrobial resistance (AMR) represents a formidable challenge in the therapy of infectious diseases, triggered by the particularly concerning gram-negative Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. Designated as a "priority" in 2017, these bacteria continue to pose a significant threat in 2024, particularly during the worldwide SARS-CoV-2 pandemic, where coinfections with ESKAPE members contributed to worsened patient outcomes. The declining effectiveness of current treatments against these pathogens has led to an increased disease burden and an increase in mortality rates globally. This review explores the sophisticated mechanisms driving AMR in gram-negative ESKAPE bacteria, focusing on Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter spp. Key bacterial mechanisms contributing to resistance include limitations in drug uptake, production of antibiotic-degrading enzymes, alterations in drug target sites, and enhanced drug efflux systems. Comprehending these pathways is vital for formulating innovative therapeutic strategies and tackling the ongoing threat posed by these resistant pathogens.
Collapse
Affiliation(s)
- Giedrė Valdonė Sakalauskienė
- Institute of Physiology and Pharmacology, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.M.); (E.S.); (A.R.)
| | | | | | | |
Collapse
|
2
|
Cheng CW, Lee SY, Chen TY, Chen CC, Tsai HT, Huang HH, Yuann JMP, Liang JY. Photodynamic and Antibacterial Assessment of Gold Nanoparticles Mediated by Gold (III) Chloride Trihydrate and Sodium Citrate under Alkaline Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3157. [PMID: 38998240 PMCID: PMC11242887 DOI: 10.3390/ma17133157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Sodium citrate (SC) is sensitive to violet light illumination (VLI) and acts as a weak reductant. Conversely, gold (III) chloride trihydrate (GC) often acts as an oxidant in a redox reaction. In this study, the influences of colored light on the production of gold nanoparticles (AuNPs) in a mixture of gold (III) ions and citrate via VLI and the antibacterial photodynamic inactivation (aPDI) of Escherichia coli (E. coli) are determined under alkaline conditions. The diameter of AuNPs is within the range of 3-15 nm, i.e., their mean diameter is 9 nm; when citrate is mixed with gold (III) ions under VLI, AuNPs are formed via an electron transfer process. Additionally, GC mixed with SC (GCSC) inhibits E. coli more effectively under VLI than it does under blue, green, or red light. GCSC and SC are shown to inhibit E. coli populations by 4.67 and 1.12 logs, respectively, via VLI at 10 W/m2 for 60 min under alkaline conditions. GCSC-treated E. coli has a more significant photolytic effect on anionic superoxide radical (O2•-) formation under VLI, as more O2•- is formed within E. coli if the GCSC-treated samples are subjected to VLI. The O2•- exhibits a greater effect in a solution of GCSC than that shown by SC alone under VLI treatment. Gold (III) ions in a GCSC system appear to act as an oxidant by facilitating the electron transfer from citrate under VLI and the formation of AuNPs and O2•- via GCSC photolysis under alkaline conditions. As such, the photolysis of GCSC under VLI is a useful process that can be applied to aPDI.
Collapse
Affiliation(s)
- Chien-Wei Cheng
- Department of Biotechnology, Ming Chuan University, Taoyuan City 33343, Taiwan; (C.-W.C.); (T.-Y.C.); (C.-C.C.)
| | - Shwu-Yuan Lee
- Department of Tourism and Leisure, Hsing Wu University, New Taipei City 24452, Taiwan;
| | - Tang-Yu Chen
- Department of Biotechnology, Ming Chuan University, Taoyuan City 33343, Taiwan; (C.-W.C.); (T.-Y.C.); (C.-C.C.)
| | - Ching-Chuan Chen
- Department of Biotechnology, Ming Chuan University, Taoyuan City 33343, Taiwan; (C.-W.C.); (T.-Y.C.); (C.-C.C.)
| | - Hsien-Tsung Tsai
- Tea and Beverage Research Station, Taoyuan City 32654, Taiwan; (H.-T.T.); (H.-H.H.)
| | - Hsuan-Han Huang
- Tea and Beverage Research Station, Taoyuan City 32654, Taiwan; (H.-T.T.); (H.-H.H.)
| | - Jeu-Ming P. Yuann
- Department of Biotechnology, Ming Chuan University, Taoyuan City 33343, Taiwan; (C.-W.C.); (T.-Y.C.); (C.-C.C.)
| | - Ji-Yuan Liang
- Department of Biotechnology, Ming Chuan University, Taoyuan City 33343, Taiwan; (C.-W.C.); (T.-Y.C.); (C.-C.C.)
| |
Collapse
|
3
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
4
|
Wang H, Cheng K, Sun S, Wang P, Zhou Y, Sun H, Wang X, Shen H, Li S, Lin H. Controllable Assembly of Cu 2+ and Chlorin E6 for H 2 S-Activatable Recognition of Bacterial Infection and Enhanced Antibacterial Therapy. Adv Healthc Mater 2024; 13:e2302481. [PMID: 38242099 DOI: 10.1002/adhm.202302481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Antibacterial photodynamic therapy (APDT) has emerged as one of the intriguing strategies to combat bacterial resistance. However, the antibacterial efficacy of APDT is found to be severely impacted by the hydrogen sulfide (H2 S)-overproduced bacterial infection microenvironment. Herein, a multifunctional APDT platform is developed by assembling Cu2+ and chlorin e6 (Ce6), which exhibits unique H2 S-activatable fluorescence (FL) and antibacterial features. Noteworthily, the assembly conditions are crucial for achievement of Cu-Ce6 nanoassemblies (NAs) with the on-demand responsive properties. The quenched FL and photosensitization of Cu-Ce6 NAs can be selectively activated by the overexpressed H2 S in infected area, enabling specific recognition of bacterial infection and localized antibacterial therapy with minimized side effects. Significantly, amplified oxidative stress is achieved owning to the effective consumption of H2 S by Cu2+ in the NAs, leading to an enhanced APDT. The antibacterial mechanisms including broad-spectrum APDT activity of released Ce6, inherent sterilization effects of produced copper polysulfides and the accompanying disturbance of bacterial sulphide metabolism are further identified. This study may pave a new avenue for the rational design of intelligent APDT platform using minimalist biological building units and thus facilitating the clinical translation of nano-antibacterial agents.
Collapse
Affiliation(s)
- Henggang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ke Cheng
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Peng Wang
- Department of radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yonghua Zhou
- Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214122, China
| | - Haoyi Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xinxin Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hongzhe Shen
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
5
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Sammarro Silva KJ, Lima AR, Dias LD, de Souza M, Nunes Lima TH, Bagnato VS. Hydrogen peroxide preoxidation as a strategy for enhanced antimicrobial photodynamic action against methicillin-resistant Staphylococcus aureus. JOURNAL OF WATER AND HEALTH 2023; 21:1922-1932. [PMID: 38153721 PMCID: wh_2023_245 DOI: 10.2166/wh.2023.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Antimicrobial photodynamic treatment (aPDT) is a photooxidative process based on the excitation of a photosensitizer (PS) in the presence of molecular oxygen, under specific wavelengths of light. It is a promising method for advanced treatment of water and wastewater, particularly targeting disinfection challenges, such as antibiotic-resistant bacteria (ARB). Research in improved aPDT has been exploring new PS materials, and additives in general. Hydrogen peroxide (H2O2) a widely applied disinfectant, mostly in the food industry and clinical settings, present environmentally negligible residuals at the usually applied concentrations, making it friendly for the water and wastewater sectors. Here, we explored the effects of preoxidation with H2O2 followed by blue light-mediated (450 nm) aPDT using curcumin (a natural-based PS) against methicillin-resistant Staphylococcus aureus (MRSA). Results of the sequential treatment pointed to a slight hampering in aPDT efficiency at very low H2O2 concentrations, followed by an increasing cooperative effect up to a deleterious point (≥7 log10 inactivation in CFU mL-1), suggesting a synergistic interaction of preoxidation and aPDT. The increased performance in H2O2-pretreated aPDT encourages studies of optimal operational conditions for the assisted technology and describes potentials for using the described strategy to tackle the issue of ARB spread.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil E-mail:
| | - Alessandra Ramos Lima
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil
| | - Lucas Danilo Dias
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis 75083-515, GO, Brazil
| | - Mariana de Souza
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil
| | - Thalita Hellen Nunes Lima
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil
| | - Vanderlei Salvador Bagnato
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13563-120 São Carlos/SP, Brazil; Biomedical Engineering, Texas A&M University College of Engineering, 3127 TAMU, College Station, TX 77843-3127, USA
| |
Collapse
|
7
|
Celik N, Sahin F, Ruzi M, Ceylan A, Butt HJ, Onses MS. Mechanochemical Activation of Silicone for Large-Scale Fabrication of Anti-Biofouling Liquid-like Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54060-54072. [PMID: 37953492 DOI: 10.1021/acsami.3c11352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Large-scale preparation of liquid-like coatings with perfect transparency via solventless and room-temperature processes using low-cost and biocompatible materials is of tremendous interest for a broad range of applications. Here, we present a mechanochemical activation strategy for solventless grafting of poly(dimethylsiloxane) (PDMS) onto glass, silicon wafers, and ceramics. Activation is achieved via ball milling PDMS without using any solvents or additives prior to application. Ball milling results in chain scission and generation of free radicals, allowing room-temperature grafting at durations ≤1 h. The deposition of ball-milled PDMS can be facilitated by brushing or drop-casting, enabling large-scale applications. The resulting surfaces facilitate the sliding of droplets at angles <20° for liquids with surface tension ranging from 22 to 73 mN/m. An important application for public health is generating anti-biofouling coatings on sanitary ware. For example, PDMS-grafted surfaces prepared on a regular-size toilet bowl exhibit a 105-fold decrease in the attachment of bacteria from urine. These findings highlight the significant potential of mechanochemical processes for the practical preparation of liquid-like surfaces.
Collapse
Affiliation(s)
- Nusret Celik
- ERNAM─Erciyes University Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
- Department of Materials Science and Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Furkan Sahin
- ERNAM─Erciyes University Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Beykent University, 34398 Istanbul, Turkey
| | - Mahmut Ruzi
- ERNAM─Erciyes University Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
| | - Ahmet Ceylan
- Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Mustafa Serdar Onses
- ERNAM─Erciyes University Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
- Department of Materials Science and Engineering, Erciyes University, 38039 Kayseri, Turkey
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
8
|
Alaqeel SM, Moussa IM, Altinawi A, Almozainy M, Hashem M. Antibacterial effectiveness of photo-sonodynamic treatment by methylene blue-incorporated poly(D, L-lactide-co-glycolide) acid nanoparticles to disinfect root canals. Photodiagnosis Photodyn Ther 2023; 43:103692. [PMID: 37419191 DOI: 10.1016/j.pdpdt.2023.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
AIM This in-vitro investigation aimed to assess the antibacterial effectiveness of photo-sonodynamic treatment using methylene blue (MTB)-incorporated poly(D, L-Lactide-Co-Glycolide) acid (PLGA)-nanoparticles for the disinfection of root canals. METHODS The synthesis of PLGA nanoparticles was achieved using a solvent displacement technique. The morphological and spectral characterization of the formulated PLGA nanoparticles were carried out using scanning electron microscopy (SEM) and Transformed-Fourier infrared spectroscopy (TFIR), respectively. One hundred human premolar teeth were sterilized and then their root canals were infected with Enterococcus faecalis (E. faecalis). Later, the bacterial viability evaluation of the following 5 research groups was conducted: (a) G-1: specimens treated with a diode laser; (b) G-2: specimens treated with antimicrobial photodynamic therapy (aPDT) and 50 µg/mL of MTB-incorporated PLGA nanoparticles; (c) G-3: specimens treated with ultrasound (US); (d) G-4: specimens treated with US and 50 µg/mL of MTB-incorporated PLGA nanoparticles; and (e) G-5: control group consisting of specimens that did not undergo any treatment. RESULTS Under SEM, the nanoparticles exhibited a uniform spherical shape and were around 100 nm. The formulated nanoparticles' size was validated through zeta potential analysis utilizing dynamic light scattering (DLS). The TFIR images of both PLGA nanoparticles and MTB-incorporated PLGA nanoparticles exhibited absorption bands ranging from around 1000 to 1200/cm and nearly from 1500 to 1750/cm. The G-5 samples (control group) demonstrated the greatest viability against E. faecalis, followed by G-3 (US-conditions specimens), G-1 (diode laser-conditioned specimens), G-2 (aPDT + MTB-incorporated PLGA-nanoparticles-conditioned specimens), and G-5 (US + MTB-incorporated PLGA-nanoparticles-conditioned specimens). Significant statistical differences (p < 0.05) were observed among all research groups, including both the experimental groups and control group. CONCLUSION The combination of US via MTB-incorporated PLGA nanoparticles exhibited the most effective eradication of E. faecalis, suggestive of a promising therapeutic modality against E. faecalis for disinfecting root canals with complex and challenging anatomy.
Collapse
Affiliation(s)
- Samer M Alaqeel
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Ihab M Moussa
- Dental Biomaterials Department, College of Dentistry, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Amir Altinawi
- Biomedical Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Mayyadah Almozainy
- Restorative Dental Science Department, College of Dentistry, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Mohamed Hashem
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
9
|
Aloke C, Achilonu I. Coping with the ESKAPE pathogens: Evolving strategies, challenges and future prospects. Microb Pathog 2023; 175:105963. [PMID: 36584930 DOI: 10.1016/j.micpath.2022.105963] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Globally, the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the major cause of nosocomial infections. These pathogens are multidrug resistant, and their negative impacts have brought serious health challenges and economic burden on many countries worldwide. Thus, this narrative review exploits different emerging alternative therapeutic strategies including combination antibiotics, antimicrobial peptides ((AMPs), bacteriophage and photodynamic therapies used in the treatment of the ESKAPE pathogens, their merits, limitations, and future prospects. Our findings indicate that ESKAPE pathogens exhibit resistance to drug using different mechanisms including drug inactivation by irreversible enzyme cleavage, drug-binding site alteration, diminution in permeability of drug or drug efflux increment to reduce accumulation of drug as well as biofilms production. However, the scientific community has shown significant interest in using these novel strategies with numerous benefits although they have some limitations including but not limited to instability and toxicity of the therapeutic agents, or the host developing immune response against the therapeutic agents. Thus, comprehension of resistance mechanisms of these pathogens is necessary to further develop or modify these approaches in order to overcome these health challenges including the barriers of bacterial resistance.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa; Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria.
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| |
Collapse
|
10
|
Aldegheishem A, Alharthi R, Al-Qahtani YM, Soliman M, Mostafa MS, Mohsin SF, Eldwakhly E. Mechanical and antibacterial efficacy of photo-sonodynamic therapy via methylene blue-loaded nanoparticles over dental implants for treating peri-implantitis. Photodiagnosis Photodyn Ther 2022; 40:103188. [PMID: 36336320 DOI: 10.1016/j.pdpdt.2022.103188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
AIM This study aimed to evaluate the mechanical (i.e., flexural modulus [FM], flexural strength [FS], and surface roughness [Ra]) and antibacterial efficacy of photo-sonodynamic therapy via methylene blue-loaded poly(D,L-lactide-co-glycolide) nanoparticles (MB-loaded PLGA NPs) over dental implants for potential treatment of peri-implantitis. METHODS PLGA NPs were synthesized via a solvent displacement method. After the synthesis and confirmation of MB-loaded PLGA NPs via physical (Scanning Electron Microscope [SEM]) and chemical characterization (Fourier transform infrared spectroscopy [FTIR]), the mature dental biofilm of Porphyromonas gingivalis was produced over the surfaces of dental implants. Then, the bacterial viability assessment of the following five study groups was performed: group-I (diode laser treatment); group-II (PDT/MB-loaded PLGA NPs treatment; group-III (ultrasound treatment); group-IV (ultrasound/PLGA NPs-MB treatment); and group-V: control group included the samples without any treatment. Finally, the FS, FM, and Ra of the samples was assessed. RESULTS Under the SEM, the NPs were spherical homogeneous particles having round morphology ranging approximately 100 nm in size without aggregation. The FTIR spectra of PLGA NPs and MB-loaded PLGA NPs demonstrated absorption peaks at approximately 1000 cm-1 to 1200 cm-1 and around 1500 cm-1 to 1750 cm-1. The greatest level of P. gingivalis killing was exhibited by ultrasound/MB-loaded PLGA-NPs-treated samples. The FS was statistically significantly greater for control group samples than any other group (i.e., 100.28 MPa; p<0.05). The FM and Ra ranged between 3.31 and 3.58 GPa and between 0.18 and 0.20 µm without any statistically significant difference between the control and experimental groups (p>0.05), respectively. CONCLUSION Within the limitations of this study, the application of photo-sonodynamic therapy via MB-loaded PLGA NPs demonstrated the greatest antibacterial activity against P. gingivalis without deteriorating the surfaces and compromising the mechanical properties of dental implants.
Collapse
Affiliation(s)
- Alhanoof Aldegheishem
- Clinical Dental Science Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11564, Saudi Arabia.
| | - Rasha Alharthi
- Clinical Dental Science Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11564, Saudi Arabia
| | - Yasser M Al-Qahtani
- Consultant in Restorative Dentistry Department, Ministry of Health, Abha, Saudi Arabia
| | - Mai Soliman
- Clinical Dental Science Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11564, Saudi Arabia
| | - Marwa Salah Mostafa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| | - Syed Fareed Mohsin
- Department of Oral Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Qassim University, Qassim, Saudi Arabia
| | - Elzahraa Eldwakhly
- Clinical Dental Science Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11564, Saudi Arabia
| |
Collapse
|
11
|
Ribeiro M, Gomes IB, Saavedra MJ, Simões M. Photodynamic therapy and combinatory treatments for the control of biofilm-associated infections. Lett Appl Microbiol 2022; 75:548-564. [PMID: 35689422 DOI: 10.1111/lam.13762] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
The advent of antimicrobial resistance has added considerable impact to infectious diseases both in the number of infections and healthcare costs. Furthermore, the relentless emergence of multidrug-resistant bacteria, particularly in the biofilm state, has made mandatory the discovery of new alternative antimicrobial therapies that are capable to eradicate resistant bacteria and impair the development of new forms of resistance. Amongst the therapeutic strategies for treating biofilms, antimicrobial photodynamic therapy (aPDT) has shown great potential in inactivating several clinically relevant micro-organisms, including antibiotic-resistant 'priority bacteria' declared by the WHO as critical pathogens. Its antimicrobial effect is centred on the basis that harmless low-intensity light stimulates a non-toxic dye named photosensitizer, triggering the production of reactive oxygen species upon photostimulation. In addition, combination therapies of aPDT with other antimicrobial agents (e.g. antibiotics) have also drawn considerable attention, as it is a multi-target strategy. Therefore, the present review highlights the recent advances of aPDT against biofilms, also covering progress on combination therapy.
Collapse
Affiliation(s)
- M Ribeiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - I B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - M J Saavedra
- Department of Veterinary Sciences, School of Agriculture and Veterinary Science, UTAD, Vila Real, Portugal.,Centre for the Research and Technology for Agro-Environment and Biological Sciences (CITAB), UTAD, Vila Real, Portugal
| | - M Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Yuann JMP, Lee SY, He S, Wong TW, Yang MJ, Cheng CW, Huang ST, Liang JY. Effects of free radicals from doxycycline hyclate and minocycline hydrochloride under blue light irradiation on the deactivation of Staphylococcus aureus, including a methicillin-resistant strain. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112370. [PMID: 34864528 DOI: 10.1016/j.jphotobiol.2021.112370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Doxycycline hyclate (DCH) and minocycline hydrochloride (MH) are tetracycline antibiotics and broad-spectrum antimicrobial agents. The changes in DCH and MH under blue light (λ = 462 nm) irradiation in alkaline conditions (BLIA) were investigated. Deactivation caused by superoxide anion radical (O2•-) and deactivation from DCH and MH during photolysis on Staphylococcus aureus (S. aureus), including methicillin-resistant S. aureus (MRSA), were studied. DCH is relatively unstable compared to MH under BLIA. The level of O2•- generated from the MH-treated photoreaction is lower than that from DCH photolysis, and the DCH-treated photoreaction is more efficient at inactivating S. aureus and MRSA at the same radiant intensity. DCH subjected to BLIA decreased the viability of S. aureus and MRSA by 3.84 and 5.15 log, respectively. Two photolytic products of DCH (PPDs) were generated under BLIA. The mass spectra of the PPDs featured molecular ions at m/z 460.8 and 458.8. The molecular formulas of the PPDs were C21H22N2O10 and C22H24N2O9, and their exact masses were 462.44 and 460.44 g/mol, respectively. These results bolster the photolytic oxidation that leads to DCH-enhanced deactivation of S. aureus and MRSA. Photochemical treatment of DCH could be applied as a supplement in hygienic processes.
Collapse
Affiliation(s)
- Jeu-Ming P Yuann
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan
| | - Shwu-Yuan Lee
- Department of Tourism and Leisure, Hsing Wu University, New Taipei City 244012, Taiwan
| | - Sin He
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, Department of Biochemistry and Molecular Biology, College of Medicine, Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Meei-Ju Yang
- Tea Research and Extension Station, Yangmei 326011, Taiwan
| | - Chien-Wei Cheng
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan
| | - Shiuh-Tsuen Huang
- Department of Science Education and Application, National Taichung University of Education, Taichung 40306, Taiwan; Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40200, Taiwan.
| | - Ji-Yuan Liang
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan.
| |
Collapse
|
13
|
The Immunogenetic Aspects of Photodynamic Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:433-448. [DOI: 10.1007/978-3-030-92616-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Long Y, Li L, Xu T, Wu X, Gao Y, Huang J, He C, Ma T, Ma L, Cheng C, Zhao C. Hedgehog artificial macrophage with atomic-catalytic centers to combat Drug-resistant bacteria. Nat Commun 2021; 12:6143. [PMID: 34686676 PMCID: PMC8536674 DOI: 10.1038/s41467-021-26456-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
Pathogenic drug-resistant bacteria represent a threat to human health, for instance, the methicillin-resistant Staphylococcus aureus (MRSA). There is an ever-growing need to develop non-antibiotic strategies to fight bacteria without triggering drug resistance. Here, we design a hedgehog artificial macrophage with atomic-catalytic centers to combat MRSA by mimicking the “capture and killing” process of macrophages. The experimental studies and theoretical calculations reveal that the synthesized materials can efficiently capture and kill MRSA by the hedgehog topography and substantial generation of •O2− and HClO with its Fe2N6O catalytic centers. The synthesized artificial macrophage exhibits a low minimal inhibition concentration (8 μg/mL Fe-Art M with H2O2 (100 μM)) to combat MRSA and rapidly promote the healing of bacteria-infected wounds on rabbit skin. We suggest that the application of this hedgehog artificial macrophage with “capture and killing” capability and high ROS-catalytic activity will open up a promising pathway to develop antibacterial materials for bionic and non-antibiotic disinfection strategies. The increase in drug-resistant bacteria is a world-wide health issue that demands the development of alternatives to standard antibiotic treatments. In this study, the authors synthesise a hedgehog artificial macrophage with heme-mimetic catalytic centres, and peroxidase- and haloperoxidase-mimicking activities, for the treatment of methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Yanping Long
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Ling Li
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Yun Gao
- College of Biomass Science and Engineering, Textile Institute, Sichuan University, 610065, Chengdu, China
| | - Jianbo Huang
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Tian Ma
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China. .,College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, China. .,College of Chemical Engineering, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
15
|
Nikinmaa S, Podonyi A, Raivio P, Meurman J, Sorsa T, Rantala J, Kankuri E, Tauriainen T, Pätilä T. Daily Administered Dual-Light Photodynamic Therapy Provides a Sustained Antibacterial Effect on Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10101240. [PMID: 34680821 PMCID: PMC8533018 DOI: 10.3390/antibiotics10101240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 01/12/2023] Open
Abstract
New means to reduce excessive antibiotic use are urgently needed. This study tested dual-light aPDT against Staphylococcus aureus biofilm with different relative ratios of light energy with indocyanine green. We applied single-light aPDT (810 nm aPDT, 405 aBL) or dual-light aPDT (simultaneous 810 nm aPDT and 405 nm aBL), in both cases, together with the ICG photosensitizer with constant energy of 100 or 200 J/cm2. Single-dose light exposures were given after one-day, three-day, or six-day biofilm incubations. A repeated daily dose of identical light energy was applied during biofilm incubations for the three- and six-day biofilms. Using 100 J/cm2 light energy against the one-day biofilm, the dual-light aPDT consisting of more than half of aBL was the most effective. On a three-day maturated biofilm, single-dose exposure to aPDT or dual-light aPDT was more effective than aBL alone. With total light energy of 200 J/cm2, all dual-light treatments were effective. Dual-light aPDT improves the bactericidal effect on Staphylococcus aureus biofilm compared to aPDT or aBL and provides a sustained effect. An increase in the relative ratio of aBL strengthens the antibacterial effect, mainly when the treatment is repeatedly applied. Thus, the light components' energy ratio is essential with dual-light.
Collapse
Affiliation(s)
- Sakari Nikinmaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland;
- Koite Health Oy, 02150 Espoo, Finland;
| | - Anna Podonyi
- Department of Cardiac Surgery, University Hospital Southampton, Southampton SO16 6YD, Hampshire, UK;
| | - Peter Raivio
- Heart and Lung Center, Meilahti Hospital, 00290 Helsinki, Finland; (P.R.); (T.T.)
| | - Jukka Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00290 Helsinki, Finland; (J.M.); (T.S.)
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00290 Helsinki, Finland; (J.M.); (T.S.)
| | | | - Esko Kankuri
- Department of Pharmacology, University of Helsinki, 00290 Helsinki, Finland;
| | - Tuomas Tauriainen
- Heart and Lung Center, Meilahti Hospital, 00290 Helsinki, Finland; (P.R.); (T.T.)
- Department of Congenital Heart Surgery and Organ Transplantation, New Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Tommi Pätilä
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland;
- Koite Health Oy, 02150 Espoo, Finland;
- Department of Congenital Heart Surgery and Organ Transplantation, New Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-427-2291; Fax: +358-94-717-4479
| |
Collapse
|
16
|
An Insight into the Role of Non-Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2020; 22:ijms22010234. [PMID: 33379392 PMCID: PMC7795024 DOI: 10.3390/ijms22010234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
The concept behind photodynamic therapy (PDT) is being successfully applied in different biomedical contexts such as cancer diseases, inactivation of microorganisms and, more recently, to improve wound healing and tissue regeneration. The effectiveness of PDT in skin treatments is associated with the role of reactive oxygen species (ROS) produced by a photosensitizer (PS), which acts as a "double agent". The release of ROS must be high enough to prevent microbial growth and, simultaneously, to accelerate the immune system response by recruiting important regenerative agents to the wound site. The growing interest in this subject is reflected by the increasing number of studies concerning the optimization of relevant experimental parameters for wound healing via PDT, namely, light features, the structure and concentration of the PS, and the wound type and location. Considering the importance of developing PSs with suitable features for this emergent topic concerning skin wound healing, in this review, a special focus on the achievements attained for each PS class, namely, of the non-porphyrinoid type, is given.
Collapse
|
17
|
Motamedifar M, Tanideh N, Mardani M, Daneshvar B, Hadadi M. Photodynamic antimicrobial chemotherapy using indocyanine green in experimentally induced intraoral ulcers in rats. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 37:115-122. [PMID: 33044743 DOI: 10.1111/phpp.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Photodynamic antimicrobial chemotherapy (PACT) is a promising modality for eradication of microorganisms from the wound. This study aimed to investigate the effectiveness of PACT using indocyanine green (ICG) for reduction of bacterial load of oral ulcers in rats and its impact on the healing process. METHODS In this experimental study, 50 adult male Sprague Dawley rats were recruited. Oral ulcers were surgically made on the left cheek mucosa, and animals were randomly assigned into five groups (n = 10). Wound site in groups 1, 2, and 3 was irrigated with the sterile saline (0.9%), chlorhexidine (CHX; 0.2%), and ICG solutions (1 mg/mL), respectively. Group 4 was exposed to laser irradiation using 810 nm diode laser on continuous-wave mode for 30 seconds (fluence: 55 J/cm2 , power: 300 mW, spot size: 4.5 mm). In group 5, PACT was performed using topical application of ICG followed by laser irradiation in the same way as the previous group. Bacterial load of oral ulcers was assessed before and after each treatment modality. Besides, rats were sacrificed on the 5th day post ulceration and histological features of healing were evaluated. RESULTS Bacterial load was significantly reduced merely in the PACT-ICG-treated group by one log (P < .0001). Animals in the PACT-ICG-treated group also showed an accelerated healing in comparison with others on the 5th day of an experiment. CONCLUSION Photodynamic antimicrobial chemotherapy using topical application of ICG has a potential to reduce the bacterial load of oral ulcers and accelerate wound repair. Therefore, it can be considered as an alternative to currently available modalities for wound management.
Collapse
Affiliation(s)
- Mohammad Motamedifar
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mardani
- Department of Oral and Maxillofacial Medicine, Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Daneshvar
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahtab Hadadi
- Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Dharmaratne P, Sapugahawatte DN, Wang B, Chan CL, Lau KM, Lau CB, Fung KP, Ng DK, Ip M. Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review. Eur J Med Chem 2020; 200:112341. [PMID: 32505848 DOI: 10.1016/j.ejmech.2020.112341] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Abstract
The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.
Collapse
Affiliation(s)
- Priyanga Dharmaratne
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | | | - Baiyan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | - Chung Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kit-Man Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Clara Bs Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kwok Pui Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; CUHK-Zhejiang University Joint Laboratory on Natural Products and Toxicology Research, China.
| | - Dennis Kp Ng
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong (SAR), China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
19
|
Pourhajibagher M, Hosseini N, Boluki E, Chiniforush N, Bahador A. Photoelimination Potential of Chitosan Nanoparticles-Indocyanine Green Complex Against the Biological Activities of Acinetobacter baumannii Strains: A Preliminary In Vitro Study in Burn Wound Infections. J Lasers Med Sci 2020; 11:187-192. [PMID: 32273961 DOI: 10.34172/jlms.2020.31] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Acinetobacter baumannii strains are important agents causing serious nosocomial infections including soft-tissue and skin infections in patients with burn wounds which have become resistant to several classes of antibiotics. Antimicrobial photodynamic therapy (aPDT) as an alternative antimicrobial procedure is suggested for the treatment of these kinds of infections. The aim of the current study is to evaluate the antibacterial and anti-biofilm efficiency of aPDT by the utilization of an improved form of indocyanine green (ICG) which is encapsulated in chitosan nanoparticles (NCs@ICG). Methods: NCs@ICG were synthesized and confirmed by the scanning electron microscope (SEM). aPDT was performed using NCs@ICG with an 810 nm wavelength of the diode laser at the fluency of 31.2 J/cm2 on 50 A. baumannii strains isolated from burn wounds. The antibacterial and antibiofilm potential of NCs@ICG-aPDT was determined via the colony forming unit (CFU)/mL and crystal violet assays, respectively. In addition, microbial biofilm degradation was evaluated by the SEM. Results: According to the results, NCs@ICG-aPDT showed a significant reduction of 93.2% on the CFU/ mL of planktonic A. baumannii strains compared to the control group (untreated group; P < 0.05). In addition, the biofilm formation of A. baumannii strains was significantly reduced by 55.3% when the bacteria were exposed to NCs@ICG-aPDT (P < 0.05). In contrast, NCs@ICG, ICG, and the diode laser alone were not able to inhibit the CFU/mL and biofilm of A. baumannii strains (P > 0.05). Based on the results of SEM images, NCs@ICG-aPDT disrupted the biofilm structure of A. baumannii strains more than other groups. Conclusion: NCs@ICG-aPDT demonstrates a promising treatment candidate for exploitation in wound infections against both planktonic and biofilm forms of A. baumannii strains.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nava Hosseini
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ebrahim Boluki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Chiu WT, Tran TTV, Pan SC, Huang HK, Chen YC, Wong TW. Cystic Fibrosis Transmembrane Conductance Regulator: A Possible New Target for Photodynamic Therapy Enhances Wound Healing. Adv Wound Care (New Rochelle) 2019; 8:476-486. [PMID: 31456905 DOI: 10.1089/wound.2018.0927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022] Open
Abstract
Objective: Cell migration is an essential process in skin wound healing. Photodynamic therapy (PDT) enhances wound healing by photoactivating a photosensitizer with a specific wavelength of light. Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel expressed in multiple layers of keratinocytes. Recent studies showed that the activation of CFTR-related downstream signaling affects skin wound healing. We examined whether indocyanine green (ICG)-mediated PDT-enhanced cell migration is related to CFTR activation. Approach: The spatial and temporal expression levels of CFTR and proteins involved in focal adhesion, including focal adhesion kinase (FAK) and paxillin, were evaluated during cell migration in vitro and in vivo for wound healing. Results: ICG-PDT-conditioned medium collected from cells exposed to 5 J/cm2 near-infrared light in the presence of 100 μg/mL ICG activated CFTR and enhanced HaCaT cell migration. The expression of phosphorylated FAK Tyr861 and phosphorylated paxillin in focal adhesions was spatially and temporally regulated in parallel by ICG-PDT-conditioned medium. Curcumin, a nonspecific activator of CFTR, further increased PDT-enhanced cell migration, whereas inhibition of CFTR and FAK delayed cell migration. The involvement of CFTR in ICG-PDT-enhanced skin wound healing was confirmed in a mouse back skin wound model. Innovation: CFTR is a potential new therapeutic target in ICG-PDT to enhance wound healing. Conclusion: ICG-PDT-enhanced cell migration may be related to activation of the CFTR and FAK pathway. Conditioned medium collected from ICG-PDT may be useful for treating patients with chronic skin ulcer by regulating CFTR expression in keratinocytes.
Collapse
Affiliation(s)
- Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Thi-Tuong Vi Tran
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shin-Chen Pan
- Section of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ho-Kai Huang
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chi Chen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
21
|
V T A, Paramanantham P, S B SL, Sharan A, Syed A, Bahkali NA, Alsaedi MH, K K, Busi S. Antimicrobial photodynamic activity of toluidine blue-carbon nanotube conjugate against Pseudomonas aeruginosa and Staphylococcus aureus - Understanding the mechanism of action. Photodiagnosis Photodyn Ther 2019; 27:305-316. [PMID: 31228562 DOI: 10.1016/j.pdpdt.2019.06.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The emergence of drug-resistant bacterial strains has raised the need to develop alternative treatment modalities to combat infectious diseases. Antimicrobial photodynamic therapy (aPDT) is an alternative to conventional treatment modalities. aPDT integrates a photosensitizer, which, after exposure to light of an appropriate wavelength, leads to the generation of cytotoxic reactive oxygen species (ROS). METHODS The aim of the present study was to synthesize a toluidine blue/multiwalled carbon nanotube conjugate (TBCNT) for enhanced photoinactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Synthesized TBCNT conjugate was characterized and its antibacterial and antibiofilm activity was determined. RESULTS During TBCNT synthesis, dye loading, and entrapment efficiency of the CNT were 12.04 ± 0.55% and 48.99 ± 2.33%, respectively. The photo-destruction of planktonic cells of the test bacteria was performed by exposure to a 125 mW red laser with a wavelength of 670 nm (radiant exposure of 58.49 J/cm2) for 3 min. Photoinactivation using TBCNT resulted in a 4.91- and 5.47-log10 reduction in P. aeruginosa and S. aureus, respectively. The mechanism of this aPDT was studied by measuring intracellular ROS generation, protein leakage, and lipid peroxidation in the test bacteria after light irradiation. The antibiofilm activity of TBCNT after light exposure was 69.94% and 75.54% for P. aeruginosa and S. aureus, respectively. Photoinactivation of test bacteria treated with TBCNT reduced cell viability and exopolysaccharide production. Confocal laser-scanning microscopy revealed a significant biofilm inhibition efficacy of the TBCNT conjugate. CONCLUSION Therefore, TBCNT conjugates may be used for the eradication of P. aeruginosa and S. aureus biofilms.
Collapse
Affiliation(s)
- Anju V T
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Parasuraman Paramanantham
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Sruthil Lal S B
- Department of Physics, School of Physical, Chemical &, Applied Sciences, Pondicherry University, Puducherry, 605014, India
| | - Alok Sharan
- Department of Physics, School of Physical, Chemical &, Applied Sciences, Pondicherry University, Puducherry, 605014, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Needa A Bahkali
- Biological Sciences Department, Wagner College, 1 Campus Rd, Staten Island, NY, 10301, USA
| | - Marzouq H Alsaedi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kaviyarasu K
- UNESCO-UNISA Africa Chair in Nanoscience's/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province, South Africa.
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
22
|
Indocyanine Green-Mediated Photodynamic Therapy Reduces Methicillin-Resistant Staphylococcus aureus Drug Resistance. J Clin Med 2019; 8:jcm8030411. [PMID: 30934605 PMCID: PMC6463108 DOI: 10.3390/jcm8030411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/10/2019] [Accepted: 03/21/2019] [Indexed: 02/05/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) skin-wound infections are associated with considerable morbidity and mortality. Indocyanine green (ICG), a safe and inexpensive dye used in clinical imaging, can be activated by near-infrared in photodynamic therapy (PDT) and photothermal therapy (PTT) to effectively kill MRSA. However, how this treatment affects MRSA drug sensitivity remains unknown. The drug-sensitivity phenotypes, bacterial growth rate, and cell-wall thickness of three MRSA strains were analyzed after ICG-PDT. Drug-resistant gene expressions were determined by polymerase chain reaction (PCR) and quantitative reverse transcription (qRT)-PCR. Related protein expressions were examined with immunoblotting. Drug sensitivity was further evaluated in animal models. MRSA that survived the treatment grew faster, and the cell wall became thinner compared to parental cells. These cells became more sensitive to oxacillin, which was partly related to mecA complex gene deletion. Skin necrosis caused by ICG-PDT-treated MRSA infection was smaller and healed faster than that infected with parental cells. With oxacillin therapy, no bacteria could be isolated from mouse lung tissue infected with ICG-PDT-treated MRSA. ICG-PDT drives MRSA toward an oxacillin-sensitive phenotype. It has the potential to develop into an alternative or adjuvant clinical treatment against MRSA wound infections.
Collapse
|
23
|
Chang MH, Hsiao YP, Hsu CY, Lai PS. Photo-Crosslinked Polymeric Matrix with Antimicrobial Functions for Excisional Wound Healing in Mice. NANOMATERIALS 2018; 8:nano8100791. [PMID: 30301173 PMCID: PMC6215132 DOI: 10.3390/nano8100791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 01/08/2023]
Abstract
Wound infection extends the duration of wound healing and also causes systemic infections such as sepsis, and, in severe cases, may lead to death. Early prevention of wound infection and its appropriate treatment are important. A photoreactive modified gelatin (GE-BTHE) was synthesized by gelatin and a conjugate formed from the 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA) and the 2-hydroxyethyl methacrylate (HEMA). Herein, we investigated the photocurable polymer solution (GE-BTHE mixture) containing GE-BTHE, poly(ethylene glycol) diacrylate (PEGDA), chitosan, and methylene blue (MB), with antimicrobial functions and photodynamic antimicrobial chemotherapy for wound dressing. This photocurable polymer solution was found to have fast film-forming property attributed to the photochemical reaction between GE-BTHE and PEGDA, as well as the antibacterial activity in vitro attributed to the ingredients of chitosan and MB. Our in vivo results also demonstrated that untreated wounds after 3 days had the same scab level as the GE-BTHE mixture-treated wounds after 20 s of irradiation, which indicates that the irradiated GE-BTHE mixture can be quickly transferred into artificial scabs to protect wounds from an infection that can serve as a convenient excisional wound dressing with antibacterial efficacy. Therefore, it has the potential to treat nonhealing wounds, deep burns, diabetic ulcers and a variety of mucosal wounds.
Collapse
Affiliation(s)
- Ming-Hsiang Chang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yu-Ping Hsiao
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Chia-Yen Hsu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
24
|
Effects of 462 nm Light-Emitting Diode on the Inactivation of Escherichia coli and a Multidrug-Resistant by Tetracycline Photoreaction. J Clin Med 2018; 7:jcm7090278. [PMID: 30213146 PMCID: PMC6162831 DOI: 10.3390/jcm7090278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
Abstract
The adaptability of bacterial resistance to antibiotics contributes to its high efficiency during evolution. Tetracycline (TC) is a broad-spectrum antimicrobial agent. Chromatographic analyses and mass spectrometry were used to study the effects of the light illumination of a 462 nm light-emitting diode (LED) on the conformational changes of TC in a phosphate buffer solution (PBS, pH 7.8). Especially, the inactivation of superoxide anion radicals (O2•−) and Escherichia coli (E. coli), including that of a multidrug-resistant E. coli (MDR E. coli), were investigated during the photolysis of TC. A photolysis product of TC (PPT) was generated in an alkaline solution after the illumination of a blue light. The mass spectra of PPT had characteristic ion signals in m/z 459, 445, and 249.1 Da. The PPT has the molecular formula of C22H22N2O9, and the exact mass is 458.44 g/mol. The inactivation of MDR E. coli is not significant with TC treatment. The drug-resistant ability of MDR E. coli has a less significant effect on PPT, and the changed conformation of TC retained the inactivation ability of MDR E. coli upon blue light photoreaction. With TC, illuminated by a blue light in a pH 7.8 PBS, O2•− was generated from TC photolysis, which enhanced the inactivation of E. coli and MDR E. coli. A 96.6% inactivation rate of MDR E. coli was reached with TC under 2.0 mW/cm2 blue light illumination at 25 ± 3 °C for 120 min, and the effects of the TC-treated photoreaction on MDR E. coli viability repressed the growth of MDR E. coli by 4 to 5 logs. The present study of the blue light photoreaction of TC offers a new approach to the inactivation of MDR E. coli.
Collapse
|