1
|
Suemanotham N, Photcharatinnakorn P, Chantong B, Buranasinsup S, Phochantachinda S, Sakcamduang W, Reamtong O, Thiangtrongjit T, Chatchaisak D. Curcuminoid supplementation in canine diabetic mellitus and its complications using proteomic analysis. Front Vet Sci 2022; 9:1057972. [PMID: 36619946 PMCID: PMC9816143 DOI: 10.3389/fvets.2022.1057972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Inflammation and oxidative stress contribute to diabetes pathogenesis and consequences. Therapeutic approaches for canine diabetes remain a challenge. Curcumin has anti-inflammatory and anti-oxidative effects and is beneficial for humans with diabetes mellitus (DM); however, data on its impact on canine diabetes is limited. This study aimed to evaluate the potential for causing adverse effects, anti-inflammatory effects, anti-oxidative effects and proteomic patterns of curcuminoid supplementation on canine DM. Methods Altogether, 18 dogs were divided into two groups: DM (n = 6) and healthy (n = 12). Curcuminoid 250 mg was given to the DM group orally daily for 180 days. Blood and urine sample collection for hematological parameters, blood biochemistry, urinalysis, oxidative stress parameters, inflammatory markers and proteomics were performed every 6 weeks. Results and discussion Curcuminoid supplementation with standard therapy significantly decreased oxidative stress with the increased glutathione/oxidized glutathione ratio, but cytokine levels were unaffected. According to the proteomic analysis, curcuminoid altered the expression of alpha-2-HS-glycoprotein, transthyretin, apolipoprotein A-I and apolipoprotein A-IV, suggesting that curcuminoid improves insulin sensitivity and reduces cardiovascular complications. No negative impact on clinical symptoms, kidneys or liver markers was identified. This study proposed that curcuminoids might be used as a targeted antioxidant strategy as an adjunctive treatment to minimize diabetes complications in dogs.
Collapse
Affiliation(s)
- Namphung Suemanotham
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Boonrat Chantong
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Shutipen Buranasinsup
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,*Correspondence: Duangthip Chatchaisak ✉
| |
Collapse
|
2
|
Kostara CE, Karakitsou KS, Florentin M, Bairaktari ET, Tsimihodimos V. Progressive, Qualitative, and Quantitative Alterations in HDL Lipidome from Healthy Subjects to Patients with Prediabetes and Type 2 Diabetes. Metabolites 2022; 12:metabo12080683. [PMID: 35893251 PMCID: PMC9331261 DOI: 10.3390/metabo12080683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/16/2022] Open
Abstract
Prediabetes is a clinically silent, insulin-resistant state with increased risk for the development of type 2 diabetes (T2D) and cardiovascular disease (CVD). Since glucose homeostasis and lipid metabolism are highly intersected and interrelated, an in-depth characterization of qualitative and quantitative abnormalities in lipoproteins could unravel the metabolic pathways underlying the progression of prediabetes to T2D and also the proneness of these patients to developing premature atherosclerosis. We investigated the HDL lipidome in 40 patients with prediabetes and compared it to that of 40 normoglycemic individuals and 40 patients with established T2D using Nuclear Magnetic Resonance (NMR) spectroscopy. Patients with prediabetes presented significant qualitative and quantitative alterations, potentially atherogenic, in HDL lipidome compared to normoglycemic characterized by higher percentages of free cholesterol and triglycerides, whereas phospholipids were lower. Glycerophospholipids and ether glycerolipids were significantly lower in prediabetic compared to normoglycemic individuals, whereas sphingolipids were significantly higher. In prediabetes, lipids were esterified with saturated rather than unsaturated fatty acids. These changes are qualitatively similar, but quantitatively milder, than those found in patients with T2D. We conclude that the detailed characterization of the HDL lipid profile bears a potential to identify patients with subtle (but still proatherogenic) abnormalities who are at high risk for development of T2D and CVD.
Collapse
Affiliation(s)
- Christina E. Kostara
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece; (C.E.K.); (K.S.K.); (E.T.B.)
| | - Kiriaki S. Karakitsou
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece; (C.E.K.); (K.S.K.); (E.T.B.)
| | - Matilda Florentin
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Eleni T. Bairaktari
- Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece; (C.E.K.); (K.S.K.); (E.T.B.)
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
- Correspondence: ; Tel.: +30-2651007362
| |
Collapse
|
3
|
Haptoglobin genotypes and risk of vascular complications in a northern Chinese Han population with type 2 diabetes mellitus. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-01002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Bonilha I, Zimetti F, Zanotti I, Papotti B, Sposito AC. Dysfunctional High-Density Lipoproteins in Type 2 Diabetes Mellitus: Molecular Mechanisms and Therapeutic Implications. J Clin Med 2021; 10:2233. [PMID: 34063950 PMCID: PMC8196572 DOI: 10.3390/jcm10112233] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
High density lipoproteins (HDLs) are commonly known for their anti-atherogenic properties that include functions such as the promotion of cholesterol efflux and reverse cholesterol transport, as well as antioxidant and anti-inflammatory activities. However, because of some chronic inflammatory diseases, such as type 2 diabetes mellitus (T2DM), significant changes occur in HDLs in terms of both structure and composition. These alterations lead to the loss of HDLs' physiological functions, to transformation into dysfunctional lipoproteins, and to increased risk of cardiovascular disease (CVD). In this review, we describe the main HDL structural/functional alterations observed in T2DM and the molecular mechanisms involved in these T2DM-derived modifications. Finally, the main available therapeutic interventions targeting HDL in diabetes are discussed.
Collapse
Affiliation(s)
- Isabella Bonilha
- Atherosclerosis and Vascular Biology Laboratory (AtheroLab), Cardiology Department, State University of Campinas (Unicamp), Campinas 13084-971, Brazil;
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (I.Z.); (B.P.)
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (I.Z.); (B.P.)
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (I.Z.); (B.P.)
| | - Andrei C. Sposito
- Atherosclerosis and Vascular Biology Laboratory (AtheroLab), Cardiology Department, State University of Campinas (Unicamp), Campinas 13084-971, Brazil;
| |
Collapse
|
5
|
Pirillo A, Catapano AL, Norata GD. Biological Consequences of Dysfunctional HDL. Curr Med Chem 2019; 26:1644-1664. [PMID: 29848265 DOI: 10.2174/0929867325666180530110543] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
Abstract
Epidemiological studies have suggested an inverse correlation between high-density lipoprotein (HDL) cholesterol levels and the risk of cardiovascular disease. HDLs promote reverse cholesterol transport (RCT) and possess several putative atheroprotective functions, associated to the anti-inflammatory, anti-thrombotic and anti-oxidant properties as well as to the ability to support endothelial physiology. The assumption that increasing HDL-C levels would be beneficial on cardiovascular disease (CVD), however, has been questioned as, in most clinical trials, HDL-C-raising therapies did not result in improved cardiovascular outcomes. These findings, together with the observations from Mendelian randomization studies showing that polymorphisms mainly or solely associated with increased HDL-C levels did not decrease the risk of myocardial infarction, shift the focus from HDL-C levels toward HDL functional properties. Indeed, HDL from atherosclerotic patients not only exhibit impaired atheroprotective functions but also acquire pro-atherogenic properties and are referred to as "dysfunctional" HDL; this occurs even in the presence of normal or elevated HDL-C levels. Pharmacological approaches aimed at restoring HDL functions may therefore impact more significantly on CVD outcome than drugs used so far to increase HDL-C levels. The aim of this review is to discuss the pathological conditions leading to the formation of dysfunctional HDL and their role in atherosclerosis and beyond.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.,IRCCS Multimedica, Milan, Italy
| | - Alberico Luigi Catapano
- IRCCS Multimedica, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia
| |
Collapse
|
6
|
Davidson WS, Shah AS. High-Density Lipoprotein Subspecies in Health and Human Disease: Focus on Type 2 Diabetes. Methodist Debakey Cardiovasc J 2019; 15:55-61. [PMID: 31049150 DOI: 10.14797/mdcj-15-1-55] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Plasma cholesterol levels of high-density lipoproteins (HDL) have been associated with cardioprotection for decades. However, there is an evolving appreciation that this lipoprotein class is highly heterogeneous with regard to composition and functionality. With the advent of advanced lipid-testing techniques and methods that allow both the quantitation and recovery of individual particle populations, we are beginning to connect the functionality of HDL subspecies with chronic metabolic diseases. In this review, we examine type 2 diabetes (T2D) and explore our current understanding of how obesity, insulin resistance, and hyperglycemia affect, and may be affected by, HDL subspeciation. We discuss mechanistic aspects of how insulin resistance may alter lipoprotein profiles and how this may impact the ability of HDL to mitigate both atherosclerotic disease and diabetes itself. Finally, we call for more detailed studies examining the impact of T2D on specific HDL subspecies and their functions. If these particles can be isolated and their compositions and functions fully elucidated, it may become possible to manipulate the levels of these specific particles or target the protective functions to reduce the incidence of coronary heart disease.
Collapse
Affiliation(s)
| | - Amy S Shah
- UNIVERSITY OF CINCINNATI COLLEGE OF MEDICINE, CINCINNATI, OHIO.,CINCINNATI CHILDREN'S HOSPITAL MEDICAL CENTER, CINCINNATI, OHIO
| |
Collapse
|
7
|
Wang S, Wang J, Zhang R, Zhao A, Zheng X, Yan D, Jiang F, Jia W, Hu C, Jia W. Association between serum haptoglobin and carotid arterial functions: usefulness of a targeted metabolomics approach. Cardiovasc Diabetol 2019; 18:8. [PMID: 30634984 PMCID: PMC6329046 DOI: 10.1186/s12933-019-0808-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/03/2019] [Indexed: 01/21/2023] Open
Abstract
Background Serum haptoglobin (Hp) has been closely associated with cardio-cerebrovascular diseases. We investigated a metabolic profile associated with circulating Hp and carotid arterial functions via a targeted metabolomics approach to provide insight into potential mechanisms. Methods A total of 240 participants, including 120 patients with type 2 diabetes mellitus (T2DM) and 120 non-diabetes mellitus (non-DM) subjects were recruited in this study. Targeted metabolic profiles of serum metabolites were determined using an AbsoluteIDQ™ p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). Ultrasound of the bilateral common carotid artery was used to measure intima-media thickness and inter-adventitial diameter. Serum Hp levels were tested by enzyme-linked immunosorbent assay. Results Serum Hp levels in T2DM patients and non-DM subjects were 103.40 (72.46, 131.99) mg/dL and 100.20 (53.99, 140.66) mg/dL, respectively. Significant differences of 19 metabolites and 17 metabolites were found among serum Hp tertiles in T2DM patients and non-DM subjects, respectively (P < 0.05). Of these, phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2) was the common metabolite observed in two populations, which was associated with the serum Hp groups and lipid traits (P < 0.05). Furthermore, the metabolite ratios of two acidic amino acids, including aspartate to PC ae C32:2 (Asp/PC ae C32:2) and glutamate to PC ae C32:2 (Glu/PC ae C32:2) were correlated with serum Hp, carotid arterial functions and other biochemical index in both populations significantly (P < 0.05). Conclusions Targeted metabolomics analyses might provide a new insight into the potential mechanisms underlying the association between serum Hp and carotid arterial functions. Electronic supplementary material The online version of this article (10.1186/s12933-019-0808-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiyun Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Jie Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Dandan Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Feng Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China. .,Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, People's Republic of China.
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|