1
|
Shakour N, Mahdinezhad MR, Asgharzadeh F, Khazaei M, Simental-Mendía LE, Roshan NM, Sahebkar A, Hadizadeh F. Antioxidant effects of a novel pioglitazone analogue (PA9) in a rat model of diabetes: Modulation of redox homeostasis and preservation of tissue architecture. J Diabetes Complications 2024; 38:108897. [PMID: 39489911 DOI: 10.1016/j.jdiacomp.2024.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Oxygen-free radicals have been implicated in the initiation of diabetic complications. Thiazolidinediones (TZDs), known for their antidiabetic properties, also demonstrate notable antioxidant and anti-inflammatory effects. Although a recently developed imidazolyl analogue of pioglitazone (PA9) has exhibited superior glucose-lowering efficacy compared to pioglitazone, its antioxidant effects remain unexplored. Thus, the objective of this study is to evaluate the antioxidant properties of PA9 in animal models with diabetes. Rats were randomly separated into the following four groups: control, diabetic, and two groups treated orally with pioglitazone as a standard drug and PA9 for ten days. Upon completion of the experiment, tissues from the liver, heart, brain, pancreas, spleen, and kidneys were collected to assess oxidant/antioxidant markers and histological alterations. The administration of PA9 resulted in a noteworthy reduction in malondialdehyde (MDA) levels compared to the diabetic group (p < 0.05). The group receiving PA9 displayed elevated levels of three antioxidant markers, catalase (CAT), superoxide dismutase (SOD), and total thiol, in pancreatic tissue compared to diabetic rats (p < 0.05). Furthermore, increased content of CAT was evident in the heart (p < 0.05), spleen (p < 0.001), brain, and kidney tissues in the PA9-treated group, along with augmented thiol content in the spleen compared to the diabetic group. Remarkably, no significant histological changes were observed in the liver, pancreas, heart, brain, spleen, and kidneys of the PA9-treated groups relative to diabetic rats. PA9 effectively mitigates oxidative stress, modulates redox homeostasis, and shows promise in preventing diabetic complications. The proven safety profile of this analogue underscores its potential, warranting comprehensive clinical evaluation to thoroughly understand its therapeutic scope and efficacy in the management of diabetes.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Mahdinezhad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nema Mohamadian Roshan
- Department of Pathology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Lopez-Usina A, Mantilla-Cisneros C, Llerena-Velastegui J. Comprehensive Benefits of Sodium-Glucose Cotransporter 2 Inhibitors in Heart Failure With Reduced Ejection Fraction: A Literature Review. J Clin Med Res 2024; 16:449-464. [PMID: 39544327 PMCID: PMC11557505 DOI: 10.14740/jocmr6033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 11/17/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors, initially developed for type 2 diabetes, have emerged as a promising treatment for heart failure with reduced ejection fraction (HFrEF). They show significant cardiovascular benefits, including reduced cardiovascular mortality and heart failure hospitalizations. This review consolidates knowledge on the efficacy of SGLT2 inhibitors in HFrEF, focusing on their mechanisms of action, clinical benefits, and patient outcomes. To consolidate existing knowledge on the efficacy of SGLT2 inhibitors in reducing cardiovascular mortality in HFrEF, with an emphasis on pathophysiology, clinical benefits, and patient outcomes, major medical databases such as PubMed, Scopus, and Web of Science were reviewed, prioritizing research published from 2020 to 2024. Key studies and clinical trials, including DAPA-HF and EMPEROR-Reduced, were analyzed to understand the impacts of SGLT2 inhibitors on HFrEF management. The review highlights the multifaceted mechanisms by which SGLT2 inhibitors exert their cardiovascular benefits, including osmotic diuresis, natriuresis, improved myocardial energetics, and anti-inflammatory and antifibrotic effects. Clinical trials have consistently demonstrated significant reductions in cardiovascular mortality and hospitalizations among HFrEF patients treated with SGLT2 inhibitors. These benefits are observed across diverse demographic and clinical subgroups, indicating their broad applicability in clinical practice. SGLT2 inhibitors significantly advance HFrEF management, reducing cardiovascular mortality and hospitalizations. However, gaps remain in long-term outcomes, early diagnostic indicators, and mechanisms of action. Future research should address these gaps and explore personalized medicine to optimize treatment. Integrating SGLT2 inhibitors into standard HFrEF management guidelines, supported by updated policies and educational initiatives for healthcare providers, will be crucial to maximize their therapeutic potential and improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Jordan Llerena-Velastegui
- Medical School, Pontifical Catholic University of Ecuador, Quito, Ecuador
- Research Center, Center for Health Research in Latin America (CISeAL), Quito, Ecuador
| |
Collapse
|
3
|
Pitt B, Diez J. Possible Role of Gut Microbiota Alterations in Myocardial Fibrosis and Burden of Heart Failure in Hypertensive Heart Disease. Hypertension 2024; 81:1467-1476. [PMID: 38716665 DOI: 10.1161/hypertensionaha.124.23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Epidemiological studies have revealed that hypertensive heart disease is a major risk factor for heart failure, and its heart failure burden is growing rapidly. The need to act in the face of this threat requires first an understanding of the multifactorial origin of hypertensive heart disease and second an exploration of new mechanistic pathways involved in myocardial alterations critically involved in cardiac dysfunction and failure (eg, myocardial interstitial fibrosis). Increasing evidence shows that alterations of gut microbiota composition and function (ie, dysbiosis) leading to changes in microbiota-derived metabolites and impairment of the gut barrier and immune functions may be involved in blood pressure elevation and hypertensive organ damage. In this review, we highlight recent advances in the potential contribution of gut microbiota alterations to myocardial interstitial fibrosis in hypertensive heart disease through blood pressure-dependent and blood pressure-independent mechanisms. Achievements in this field should open a new path for more comprehensive treatment of myocardial interstitial fibrosis in hypertensive heart disease and, thus, for the prevention of heart failure.
Collapse
Affiliation(s)
- Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor (B.P.)
| | - Javier Diez
- Department of Cardiovascular Diseases, Center for Applied Medical Research and School of Medicine, University of Navarra, Pamplona, Spain (J.D.)
| |
Collapse
|
4
|
Iordan L, Gaita L, Timar R, Avram V, Sturza A, Timar B. The Renoprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2i)-A Narrative Review. Int J Mol Sci 2024; 25:7057. [PMID: 39000165 PMCID: PMC11241663 DOI: 10.3390/ijms25137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a noncommunicable condition that has become a major healthcare burden across the globe, often underdiagnosed and associated with low awareness. The main cause that leads to the development of renal impairment is diabetes mellitus and, in contrast to other chronic complications such as retinopathy or neuropathy, it has been suggested that intensive glycemic control is not sufficient in preventing the development of diabetic kidney disease. Nevertheless, a novel class of antidiabetic agents, the sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown multiple renoprotective properties that range from metabolic and hemodynamic to direct renal effects, with a major impact on reducing the risk of occurrence and progression of CKD. Thus, this review aims to summarize current knowledge regarding the renoprotective mechanisms of SGLT2i and to offer a new perspective on this innovative class of antihyperglycemic drugs with proven pleiotropic beneficial effects that, after decades of no significant progress in the prevention and in delaying the decline of renal function, start a new era in the management of patients with CKD.
Collapse
Affiliation(s)
- Liana Iordan
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Romulus Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad Avram
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Sturza
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Gajewska A, Wasiak J, Sapeda N, Młynarska E, Rysz J, Franczyk B. SGLT2 Inhibitors in Kidney Diseases-A Narrative Review. Int J Mol Sci 2024; 25:4959. [PMID: 38732178 PMCID: PMC11084583 DOI: 10.3390/ijms25094959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Some of the most common conditions affecting people are kidney diseases. Among them, we distinguish chronic kidney disease and acute kidney injury. Both entities pose serious health risks, so new drugs are still being sought to treat and prevent them. In recent years, such a role has begun to be assigned to sodium-glucose cotransporter-2 (SGLT2) inhibitors. They increase the amount of glucose excreted in the urine. For this reason, they are currently used as a first-line drug in type 2 diabetes mellitus. Due to their demonstrated cardioprotective effect, they are also used in heart failure treatment. As for the renal effects of SGLT2 inhibitors, they reduce intraglomerular pressure and decrease albuminuria. This results in a slower decline in glomelular filtration rate (GFR) in patients with kidney disease. In addition, these drugs have anti-inflammatory and antifibrotic effects. In the following article, we review the evidence for the effectiveness of this group of drugs in kidney disease and their nephroprotective effect. Further research is still needed, but meta-analyses indicate SGLT2 inhibitors' efficacy in kidney disease, especially the one caused by diabetes. Development of new drugs and clinical trials on specific patient subgroups will further refine their nephroprotective effects.
Collapse
Affiliation(s)
- Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.G.); (J.W.); (N.S.)
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.G.); (J.W.); (N.S.)
| | - Natalia Sapeda
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.G.); (J.W.); (N.S.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.G.); (J.W.); (N.S.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.G.); (J.W.); (N.S.)
| |
Collapse
|
6
|
Jandeleit-Dahm KAM, Kankanamalage HR, Dai A, Meister J, Lopez-Trevino S, Cooper ME, Touyz RM, Kennedy CRJ, Jha JC. Endothelial NOX5 Obliterates the Reno-Protective Effect of Nox4 Deletion by Promoting Renal Fibrosis via Activation of EMT and ROS-Sensitive Pathways in Diabetes. Antioxidants (Basel) 2024; 13:396. [PMID: 38671844 PMCID: PMC11047703 DOI: 10.3390/antiox13040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic hyperglycemia induces intrarenal oxidative stress due to the excessive production of reactive oxygen species (ROS), leading to a cascade of events that contribute to the development and progression of diabetic kidney disease (DKD). NOX5, a pro-oxidant NADPH oxidase isoform, has been identified as a significant contributor to renal ROS in humans. Elevated levels of renal ROS contribute to endothelial cell dysfunction and associated inflammation, causing increased endothelial permeability, which can disrupt the renal ecosystem, leading to progressive albuminuria and renal fibrosis in DKD. This study specifically examines the contribution of endothelial cell-specific human NOX5 expression in renal pathology in a transgenic mouse model of DKD. This study additionally compares NOX5 with the previously characterized NADPH oxidase, NOX4, in terms of their relative roles in DKD. Regardless of NOX4 pathway, this study found that endothelial cell-specific expression of NOX5 exacerbates renal injury, albuminuria and fibrosis. This is attributed to the activation of the endothelial mesenchymal transition (EMT) pathway via enhanced ROS formation and the modulation of redox-sensitive factors. These findings underscore the potential therapeutic significance of NOX5 inhibition in human DKD. The study proposes that inhibiting NOX5 could be a promising approach for mitigating the progression of DKD and strengthens the case for the development of NOX5-specific inhibitors as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Karin A. M. Jandeleit-Dahm
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Aozhi Dai
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Jaroslawna Meister
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Mark E. Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Rhian M. Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H3H 2R9, Canada;
| | - Christopher R. J. Kennedy
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada;
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| |
Collapse
|
7
|
Reiter RJ, Sharma R, Chuffa LGDA, Simko F, Dominguez-Rodriguez A. Mitochondrial Melatonin: Beneficial Effects in Protecting against Heart Failure. Life (Basel) 2024; 14:88. [PMID: 38255703 PMCID: PMC10820220 DOI: 10.3390/life14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular disease is the cause of physical infirmity and thousands of deaths annually. Typically, during heart failure, cardiomyocyte mitochondria falter in terms of energy production and metabolic processing. Additionally, inflammation and the accumulation of non-contractile fibrous tissue contribute to cardiac malfunction. Melatonin, an endogenously produced molecule, experimentally reduces the initiation and progression of atherosclerotic lesions, which are often the basis of coronary artery disease. The current review critically analyzes published data related to the experimental use of melatonin to forestall coronary artery pathologies. Collectively, these studies document melatonin's anti-atherosclerotic actions in reducing LDL oxidation and triglyceride levels, lowering endothelial malfunction, limiting adhesion molecule formation, preventing macrophage polarization to the M1 pro-inflammatory phenotype, changing cellular metabolism, scavenging destructive reactive oxygen species, preventing the proliferation and invasion of arterial smooth muscle cells into the lesioned area, restricting the ingrowth of blood vessels from the vasa vasorum, and solidifying the plaque cap to reduce the chance of its rupture. Diabetic hyperglycemia, which aggravates atherosclerotic plaque formation, is also inhibited by melatonin supplementation in experimental animals. The potential value of non-toxic melatonin as a possible inhibitor of cardiac pathology in humans should be seriously considered by performing clinical trials using this multifunctional molecule.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Ramaswamy Sharma
- Applied Biomedical Sciences, School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78235, USA
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology-IBB/UNESP, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu 18618-689, São Paulo, Brazil;
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia;
| | | |
Collapse
|