1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Ma W, Chen R, Hu T, Xing S, Zhou G, Qin X, Ren H, Zhang Z, Chen J, Niu Q. New dual-responsive fluorescent sensor for hypochlorite and cyanide sensing and its imaging application in live cells and zebrafish. Talanta 2023; 265:124910. [PMID: 37418961 DOI: 10.1016/j.talanta.2023.124910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Excessive levels of cyanide (CN-) and hypochlorite (ClO-) anions are the significant threats to the human health and the environment. Thus, great efforts have been to design and synthesize molecular sensors for the simple, instantaneous and efficient detecting environmentally and biologically important anions. Currently, developing a single molecular sensor for multi-analyte sensing is still a challenging task. In our present work, we developed a new molecular sensor (3TM) based on oligothiophene and Meldrum's acid units for detecting cyanide and hypochlorite anions in biological, environmental and food samples. The detecting ability of 3TM has been examined to various testing substances containing amino acids, reactive oxygen species, cations and anions, showing its high selectivity, excellent sensitivity, short response time (ClO-: 30 s, CN-: 100 s), and broad pH working range (4-10). The detection limits were calculated as 4.2 nM for ClO- in DMSO/H2O (1/8, v/v) solution and 6.5 nM for CN- in DMSO/H2O (1/99, v/v) solution. Sensor 3TM displayed sharp turn-on fluorescence increasement (555 nm, 435 nm) and sensitive fluorescence color changes caused by CN-/ClO-, which is ascribed to the nucleophilic addition and oxidation of ethylenic linkage by cyanide and hypochlorite, respectively. Moreover, sensor 3TM was applied for hypochlorite and cyanide detecting in real-world water, food samples and bio-imaging in live cells and zebrafish. To our knowledge, the developed 3TM sensor is the seventh single-molecular sensor for simultaneous and discriminative detecting hypochlorite and cyanide in food, biological and aqueous environments using two distinct sensing modes.
Collapse
Affiliation(s)
- Wenwen Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ruiming Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Tingting Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Shu Xing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guanglian Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Xiaoxu Qin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Huijun Ren
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhengyang Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
3
|
Suna G, Erdemir E, Gunduz S, Ozturk T, Karakuş E. Monitoring of Hypochlorite Level in Fruits, Vegetables, and Dairy Products: A BODIPY-Based Fluorescent Probe for the Rapid and Highly Selective Detection of Hypochlorite. ACS OMEGA 2023; 8:22984-22991. [PMID: 37396205 PMCID: PMC10308583 DOI: 10.1021/acsomega.3c02069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Hypochlorite/hypochlorous acid (ClO-/HOCl), among the diverse reactive oxygen species, plays a vital role in various biological processes. Besides, ClO- is widely known as a sanitizer for fruits, vegetables, and fresh-cut produce, killing bacteria and pathogens. However, excessive level of ClO- can lead to the oxidation of biomolecules such as DNA, RNA, and proteins, threatening vital organs. Therefore, reliable and effective methods are of utmost importance to monitor trace amounts of ClO-. In this work, a novel BODIPY-based fluorescent probe bearing thiophene and a malononitrile moiety (BOD-CN) was designed and constructed to efficiently detect ClO-, which exhibited distinct features such as excellent selectivity, sensitivity (LOD = 83.3 nM), and rapid response (<30 s). Importantly, the probe successfully detected ClO- in various spiked water, milk, vegetable, and fruit samples. In all, BOD-CN offers a clearly promising approach to describe the quality of ClO--added dairy products, water, fresh vegetables, and fruits.
Collapse
Affiliation(s)
- Garen Suna
- Organic
Chemistry Laboratory, Chemistry Group, The Scientific & Technological
Research Council of Turkey, National Metrology
Institute (TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
- Department
of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Eda Erdemir
- Organic
Chemistry Laboratory, Chemistry Group, The Scientific & Technological
Research Council of Turkey, National Metrology
Institute (TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
- Department
of Chemistry, Faculty of Science, Istanbul
University, 34134 Fatih, Istanbul, Turkey
| | - Simay Gunduz
- Organic
Chemistry Laboratory, Chemistry Group, The Scientific & Technological
Research Council of Turkey, National Metrology
Institute (TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
| | - Turan Ozturk
- Organic
Chemistry Laboratory, Chemistry Group, The Scientific & Technological
Research Council of Turkey, National Metrology
Institute (TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
- Department
of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Erman Karakuş
- Organic
Chemistry Laboratory, Chemistry Group, The Scientific & Technological
Research Council of Turkey, National Metrology
Institute (TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
| |
Collapse
|
4
|
Assiri MA, Waseem MT, Hamad A, Imran M, Farooq U, Shahzad SA. Ratiometric and colorimetric probes with large stokes shift for sensing of exogenous hypochlorite in potato sprouts and industrial effluents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122298. [PMID: 36603278 DOI: 10.1016/j.saa.2022.122298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Being one of the important reactive oxygen species (ROS), hypochlorite ions (ClO-) are involved in the control of several pathological and physiological processes. However, overexpression of ClO- may prompt several disorders including cancer. Therefore, two fluorescein functionalized compounds with catechol (probe 1) and 2-naphthyl (probe 2) as substituents were synthesized through Schiff base reaction to recognize ClO- in food items and industrial samples. While probe 2 exhibited turn-off fluorescent response towards ClO- with limit of detection (LOD) of 86.7 nM, structurally alike probe 1 showed excellent ratiometric response with low detection limit (36.3 nM), large Stokes shift (353 nm), and 'fast' response time (15 s). 1H NMR titration experiments favored spiroring opening of probe 1 upon the reaction with ClO-. Probe 1 was successfully utilized for the monitoring of exogenous ClO- in industrial samples. Further, fabrication of probe coated fluorescent paper strips and recognition of ClO- in sprouting potato show diverse practical applicability of our probes.
Collapse
Affiliation(s)
- Mohammed A Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Tahir Waseem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Asad Hamad
- Faculty of Pharmacy, Grand Asian University Sialkot, 51310 Punjab, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| |
Collapse
|
5
|
Liang Y, Chen Z, Liu Q, Huang H, Meng Z, Gong S, Wang Z, Wang S. A NIR BODIPY-based ratiometric fluorescent probe for HClO detection with high selectivity and sensitivity in real water samples and living zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122268. [PMID: 36580754 DOI: 10.1016/j.saa.2022.122268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Hypochlorous acid (HClO) plays an important role in many physiological and pathological activities. In this work, a novel BODIPY-based Near-infrared (NIR) ratiometric fluorescent probe BODIPY-Hyp was designed for the rapid detection of HClO. The probe BODIPY-Hyp was highly selective and sensitive for HClO with a low detection limit of 16.74 nM and short response time of less than 60 s. The probe BODIPY-Hyp in response to HClO exhibited a significant blue-shifted fluorescence emission from 700 nm to 530 nm, and its fluorescence intensity ratio (I530 nm/I700 nm) increased about 1200 times before and after adding HClO. Moreover, the reaction mechanism of BODIPY-Hyp with HClO was verified by HRMS analysis, 1H NMR titration and DFT calculations. Furthermore, BODIPY-Hyp was successfully processed into a portable test strip-based device for the detection of HClO. In addition, the probe BODIPY-Hyp could be used in real time to monitor the levels of HClO in living zebrafish larvae. In conclusion, BODIPY-Hyp has great application potential in the life and environmental sciences.
Collapse
Affiliation(s)
- Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhen Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qianting Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haiting Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Erdemir E, Suna G, Gunduz S, Şahin M, Eğlence-Bakır S, Karakuş E. Tetraphenylethylene–thiosemicarbazone based ultrafast, highly sensitive detection of hypochlorite in aqueous environments and dairy products. Anal Chim Acta 2022; 1218:340029. [DOI: 10.1016/j.aca.2022.340029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/24/2023]
|
7
|
Huang T, Yan S, Yu Y, Xue Y, Yu Y, Han C. Dual-Responsive Ratiometric Fluorescent Probe for Hypochlorite and Peroxynitrite Detection and Imaging In Vitro and In Vivo. Anal Chem 2022; 94:1415-1424. [DOI: 10.1021/acs.analchem.1c04729] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tonghui Huang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Shirong Yan
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yongbo Yu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yunsheng Xue
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yanyan Yu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|