1
|
Faa G, Messana I, Coni P, Piras M, Pichiri G, Piludu M, Iavarone F, Desiderio C, Vento G, Tirone C, Manconi B, Olianas A, Contini C, Cabras T, Castagnola M. Thymosin β 4 and β 10 Expression in Human Organs during Development: A Review. Cells 2024; 13:1115. [PMID: 38994967 PMCID: PMC11240739 DOI: 10.3390/cells13131115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024] Open
Abstract
This review summarizes the results of a series of studies performed by our group with the aim to define the expression levels of thymosin β4 and thymosin β10 over time, starting from fetal development to different ages after birth, in different human organs and tissues. The first section describes the proteomics investigations performed on whole saliva from preterm newborns and gingival crevicular fluid, which revealed to us the importance of these acidic peptides and their multiple functions. These findings inspired us to start an in-depth investigation mainly based on immunochemistry to establish the distribution of thymosin β4 and thymosin β10 in different organs from adults and fetuses at different ages (after autopsy), and therefore to obtain suggestions on the functions of β-thymosins in health and disease. The functions of β-thymosins emerging from these studies, for instance, those performed during carcinogenesis, add significant details that could help to resolve the nowadays so-called "β-thymosin enigma", i.e., the potential molecular role played by these two pleiotropic peptides during human development.
Collapse
Affiliation(s)
- Gavino Faa
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Monserrato, Italy; (G.F.); (P.C.); (M.P.); (G.P.); (C.C.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Roma, Italy; (I.M.); (C.D.)
| | - Pierpaolo Coni
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Monserrato, Italy; (G.F.); (P.C.); (M.P.); (G.P.); (C.C.)
| | - Monica Piras
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Monserrato, Italy; (G.F.); (P.C.); (M.P.); (G.P.); (C.C.)
| | - Giuseppina Pichiri
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Monserrato, Italy; (G.F.); (P.C.); (M.P.); (G.P.); (C.C.)
| | - Marco Piludu
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09042 Cagliari, Italy;
| | - Federica Iavarone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy;
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Facoltà di Medicina e Chirurgia, Università Cattolica Sacro Cuore, 00168 Roma, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Roma, Italy; (I.M.); (C.D.)
| | - Giovanni Vento
- Unità Operativa Complessa di Neonatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.V.); (C.T.)
- Divisione di Neonatologia, Dipartimento per la Salute della Donna e del Bambino, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Chiara Tirone
- Unità Operativa Complessa di Neonatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.V.); (C.T.)
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione Biomedica, Università di Cagliari, 09042 Monserrato, Italy; (B.M.); (A.O.); (T.C.)
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione Biomedica, Università di Cagliari, 09042 Monserrato, Italy; (B.M.); (A.O.); (T.C.)
| | - Cristina Contini
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Monserrato, Italy; (G.F.); (P.C.); (M.P.); (G.P.); (C.C.)
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione Biomedica, Università di Cagliari, 09042 Monserrato, Italy; (B.M.); (A.O.); (T.C.)
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, Fondazione Santa Lucia IRCCS, 00179 Roma, Italy
| |
Collapse
|
2
|
Li Z, Huang F, Chen L, Huang T, Cai YD. Identifying In Vitro Cultured Human Hepatocytes Markers with Machine Learning Methods Based on Single-Cell RNA-Seq Data. Front Bioeng Biotechnol 2022; 10:916309. [PMID: 35706505 PMCID: PMC9189284 DOI: 10.3389/fbioe.2022.916309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/11/2022] [Indexed: 01/12/2023] Open
Abstract
Cell transplantation is an effective method for compensating for the loss of liver function and improve patient survival. However, given that hepatocytes cultivated in vitro have diverse developmental processes and physiological features, obtaining hepatocytes that can properly function in vivo is difficult. In the present study, we present an advanced computational analysis on single-cell transcriptional profiling to resolve the heterogeneity of the hepatocyte differentiation process in vitro and to mine biomarkers at different periods of differentiation. We obtained a batch of compressed and effective classification features with the Boruta method and ranked them using the Max-Relevance and Min-Redundancy method. Some key genes were identified during the in vitro culture of hepatocytes, including CD147, which not only regulates terminally differentiated cells in the liver but also affects cell differentiation. PPIA, which encodes a CD147 ligand, also appeared in the identified gene list, and the combination of the two proteins mediated multiple biological pathways. Other genes, such as TMSB10, TMEM176B, and CD63, which are involved in the maturation and differentiation of hepatocytes and assist different hepatic cell types in performing their roles were also identified. Then, several classifiers were trained and evaluated to obtain optimal classifiers and optimal feature subsets, using three classification algorithms (random forest, k-nearest neighbor, and decision tree) and the incremental feature selection method. The best random forest classifier with a 0.940 Matthews correlation coefficient was constructed to distinguish different hepatic cell types. Finally, classification rules were created for quantitatively describing hepatic cell types. In summary, This study provided potential targets for cell transplantation associated liver disease treatment strategies by elucidating the process and mechanism of hepatocyte development at both qualitative and quantitative levels.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Mirza MR, Sultan R, Choudhary MI, Tahir M, Larsen MR, Tariq S, Rahman SU. Label-free quantitation of the changes in salivary proteome associated with the chronic consumption of the betel nut ( Areca catechu). Mol Omics 2021; 18:123-132. [PMID: 34851339 DOI: 10.1039/d1mo00391g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Areca nut or betel nut chewing is most frequently used in Pakistan and is associated with a high risk for oral cancer. Until now, however, there has not been any research conducted on the long-term effect(s) of betel nut chewing on the saliva proteome. In the present study, initially, the changes in the saliva proteome associated with betel nut chewing were investigated. Secondly, the analysis was focused on the changes in salivary proteome with respect to prolonged usage of betel nuts. After extraction, the saliva proteins were digested into peptides and these were subsequently analyzed using mass spectrometry. Data are available via ProteomeXchange with identifier PXD029768. Label-free quantitation of saliva samples revealed a total of 12 proteins that were differentially expressed between betel nut addicts (BNAs), and the control group. The study groups were further divided into three subgroups, the BNA-1, BNA-2, and BNA-3 groups, with respect to the extent of consumption of betel nuts in terms of years. The data analysis revealed a more detailed profiling of proteins expressed after five, ten, and more than ten years of betel nut consumption. A total of 30, 17, and 22 proteins were found to be differentially expressed when divided into the BNA-1, BNA-2, and BNA-3 groups. The present study shows that the chronic usage of betel nuts leads to the expression of proteins, such as SPARC1, profilin, and SBSN, which are known to be involved in head and neck cancers.
Collapse
Affiliation(s)
- Munazza Raza Mirza
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi-75270, Pakistan.
| | - Rabia Sultan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi-75270, Pakistan.
| | - Muhammad Iqbal Choudhary
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi-75270, Pakistan. .,H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.,Department of Biochemistry, Faculty of Science, King Abdul Aziz University, Jeddah-21412, Saudi Arabia
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Saria Tariq
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi-75270, Pakistan.
| | - Saeed Ur Rahman
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
4
|
Utilizing Developmentally Essential Secreted Peptides Such as Thymosin Beta-4 to Remind the Adult Organs of Their Embryonic State-New Directions in Anti-Aging Regenerative Therapies. Cells 2021; 10:cells10061343. [PMID: 34071596 PMCID: PMC8228050 DOI: 10.3390/cells10061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
Our dream of defeating the processes of aging has occupied the curious and has challenged scientists globally for hundreds of years. The history is long, and sadly, the solution is still elusive. Our endeavors to reverse the magnitude of damaging cellular and molecular alterations resulted in only a few, yet significant advancements. Furthermore, as our lifespan increases, physicians are facing more mind-bending questions in their routine practice than ever before. Although the ultimate goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. As our initial approach to enhance the endogenous restorative capacity by delivering exogenous progenitor cells appears limited, we propose, utilizing small molecules critical during embryonic development may prove to be a powerful tool to increase regeneration and to reverse the processes associated with aging. In this review, we introduce Thymosin beta-4, a 43aa secreted peptide fulfilling our hopes and capable of numerous regenerative achievements via systemic administration in the heart. Observing the broad capacity of this small, secreted peptide, we believe it is not the only molecule which nature conceals to our benefit. Hence, the discovery and postnatal administration of developmentally relevant agents along with other approaches may result in reversing the aging process.
Collapse
|
5
|
Lu T, Lin X, Pan YH, Yang N, Ye S, Zhang Q, Wang C, Zhu R, Zhang T, Wisniewski TM, Cao Z, Ding BS, Dang S, Zhang W. ADAMTS18 Deficiency Leads to Pulmonary Hypoplasia and Bronchial Microfibril Accumulation. iScience 2020; 23:101472. [PMID: 32882513 PMCID: PMC7476315 DOI: 10.1016/j.isci.2020.101472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 07/02/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023] Open
Abstract
ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) are secreted metalloproteinases that play a major role in the assembly and degradation of the extracellular matrix (ECM). In this study, we show that ADAMTS18, produced by the epithelial cells of distal airways and mesenchymal cells in lung apex at early embryonic stages, serves as a morphogen in lung development. ADAMTS18 deficiency leads to reduced number and length of bronchi, tipped lung apexes, and dilated alveoli. These developmental defects worsen lipopolysaccharide-induced acute lung injury and bleomycin-induced lung fibrosis in adult Adamts18-deficient mice. ADAMTS18 deficiency also causes increased levels of fibrillin1 and fibrillin2, bronchial microfibril accumulation, decreased focal adhesion kinase signaling, and disruption of F-actin organization. Our findings indicate that ECM homeostasis mediated by ADAMTS18 is pivotal in airway branching morphogenesis.
Collapse
Affiliation(s)
- Tiantian Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaotian Lin
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ning Yang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shuai Ye
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Qi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Caiyun Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Rui Zhu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Tianhao Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
6
|
Rêgo MJBM, Silva Filho AF, Sobral APV, Beltrão EIC. Glycomic profile of the human parotid gland between 18th and 26th week of fetal development. J Oral Sci 2016; 58:353-60. [PMID: 27665974 DOI: 10.2334/josnusd.15-0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The formation of new and functional structural components of several organs, such as parotid glands, can be influenced by the glycocode. This study analyzed the glycobiology of parotid salivary gland tissue during fetal development using specific biochemical probes (lectins and antibodies). Eleven parotid gland samples from human fetuses were obtained from spontaneous abortions at 14-28 weeks of gestation, and tissue sections were analyzed for lectin histochemistry and immunohistochemistry. From the 18th to 26th week, Canavalia ensiformis agglutinin, wheat germ agglutinin, Ulex europaeus agglutinin-I, peanut agglutinin, Sambucus nigra agglutinin, and Vicia villosa agglutinin lectin staining were predominantly observed in the apical and/or basement membranes of the ducts and tubulo-acinar units. Moreover, the presence of galectin-1 was found in the membrane, cytoplasm, and nucleus of both structures. Conversely, Gal-3 and mucin-1 were restricted to the glandular ducts. The lectin staining pattern changed during the weeks evaluated. Nevertheless, the carbohydrate subcellular localization represented a key factor in the investigation of structural distribution profiles and possible roles of these glycans in initial parotid gland development. These findings are defined by their high biological value and provide an important base for the development of subsequent studies. (J Oral Sci 58, 353-360, 2016).
Collapse
Affiliation(s)
- Moacyr J B M Rêgo
- Laboratory of Immunomodulation and New Therapeutic Approaches, Center for Research on Therapeutic Innovation Suelly Galdino
| | | | | | | |
Collapse
|
7
|
Faa G, Messana I, Fanos V, Cabras T, Manconi B, Vento G, Iavarone F, Martelli C, Desiderio C, Castagnola M. Proteomics applied to pediatric medicine: opportunities and challenges. Expert Rev Proteomics 2016; 13:883-94. [DOI: 10.1080/14789450.2016.1221764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Cabras T, Iavarone F, Martelli C, Delfino D, Rossetti DV, Inserra I, Manconi B, Desiderio C, Messana I, Hannappel E, Faa G, Castagnola M. High-resolution mass spectrometry for thymosins detection and characterization. Expert Opin Biol Ther 2015; 15 Suppl 1:S191-201. [PMID: 26095945 DOI: 10.1517/14712598.2015.1009887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The aim of this study was to characterize β and α thymosins and their proteoforms in various tissues and bodily fluids by mass spectrometry and to look at their association with a wide variety of pathologies. METHODS A top-down proteomic platform based on high-performance liquid chromatography (HPLC) coupled to high-resolution LTQ-Orbitrap mass spectrometry (MS) was applied to the characterization of naturally occurring peptides. RESULTS In addition to thymosin β4 (Tβ4) and β10 (Tβ10), several post-translational modifications of both these peptides were identified not only in bodily fluids but also in normal and pathological tissues of different origins. The analysis of tissue specimens allowed the characterization of different C-terminal truncated forms of Tβ4 and Tβ10 together with other proteolytic fragments. The sulfoxide derivative of both Tβ4 and Tβ10 and the acetylated derivatives at lysine residues of Tβ4 were also characterized. Different proteoforms of prothymosin α, parathymosin α, thymosin α1 and thymosin α11 together with diverse proteolytic fragments were identified too. CONCLUSION The clinical and prognostic significance and the origin of these proteoforms have to be deeply investigated.
Collapse
Affiliation(s)
- Tiziana Cabras
- Università di Cagliari, Dipartimento di Scienze della Vita e dell'Ambiente , Cagliari , Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nemolato S, Cabras T, Messana I, Gerosa C, Faa G, Castagnola M. Do β-Thymosins Play a Role in Human Nephrogenesis? CURRENT CLINICAL PATHOLOGY 2014. [DOI: 10.1007/978-1-4939-0947-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Nemolato S, Ekstrom J, Cabras T, Gerosa C, Fanni D, Di Felice E, Locci A, Messana I, Castagnola M, Faa G. Immunoreactivity for thymosin beta 4 and thymosin beta 10 in the adult rat oro-gastro-intestinal tract. Eur J Histochem 2013; 57:e17. [PMID: 23807296 PMCID: PMC3794343 DOI: 10.4081/ejh.2013.e17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/19/2013] [Accepted: 04/05/2013] [Indexed: 12/29/2022] Open
Abstract
Thymosin beta 4 (Tβ4) and thymosin beta 10 (Tβ10) are two members of the β-thymosin family, involved in multiple cellular activities in different organs in multiple animal species. Here we report the expression pattern of Tβ4 and Tβ10 in rat tissues, in the gut and in annexed glands. The two peptide were differently expressed: Tβ4 was absent in salivary glands whereas Tβ10 was expressed in parotid and in submandibular glands. Tβ4 was mildly expressed in the tongue and in the esophagus, where Tβ10 was absent. A similar expression was found in the stomach, ileum and colon mucosa. In pancreas Tβ4 reactivity was restricted to the Langerhans islet cells; Tβ4 was also detected in the exocrine cells. Both peptide were not expressed in liver cells. When the rat expression pattern in rat organs was compared to reactivity for Tβ4 and Tβ10 in humans, marked differences were found. Our data clearly indicate a species-specific expression of Tβ4 and Tβ10, characterized by the actual unpredictability of the expression of these peptides in different cells and tissues. The common high expression of Tβ4 in mast cells, both in humans and in rats, represents one of the few similarities between these two species.
Collapse
Affiliation(s)
- S Nemolato
- Istituto di Anatomia Patologica, Dipartimento di Scienze Chirurgiche, PO S. Giovanni di Dio, Università di Cagliari, 09124 Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Faa G, Nemolato S, Cabras T, Fanni D, Gerosa C, Fanari M, Locci A, Fanos V, Messana I, Castagnola M. Thymosin β4 expression reveals intriguing similarities between fetal and cancer cells. Ann N Y Acad Sci 2013; 1269:53-60. [PMID: 23045970 DOI: 10.1111/j.1749-6632.2012.06679.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Thymosin β4 (Tβ4) is highly expressed in saliva of human newborns but not in adults. Here preliminary immunohistochemical analyses on different human tissues are reported. Immunoreactivity for Tβ4 in human salivary glands show high quantities of Tβ4 before birth, followed by downregulation of expression in adulthood. In contrast, Tβ4 is detected in tumors of salivary glands, suggesting that tumor cells might utilize fetal programs, including Tβ4 synthesis. Immunohistochemical analyses in the gastrointestinal tract showed strong reactivity for Tβ4 in enterocytes during development, but weak immunostaining in mature enterocytes. In colorectal cancer, the association of a high expression of Tβ4 with epithelial-mesenchymal transition was observed. On the basis of these data, the process of epithelial-mesenchymal transition could represent the unifying process that explains the role of Tβ4 during fetal development and in cancer progression.
Collapse
Affiliation(s)
- Gavino Faa
- Department of Pathology, University Hospital San Giovanni di Dio, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|