1
|
Delalat B, Rojas-Canales DM, Rasi Ghaemi S, Waibel M, Harding FJ, Penko D, Drogemuller CJ, Loudovaris T, Coates PTH, Voelcker NH. A Combinatorial Protein Microarray for Probing Materials Interaction with Pancreatic Islet Cell Populations. ACTA ACUST UNITED AC 2016; 5:microarrays5030021. [PMID: 27600088 PMCID: PMC5040968 DOI: 10.3390/microarrays5030021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/29/2022]
Abstract
Pancreatic islet transplantation has become a recognized therapy for insulin-dependent diabetes mellitus. During isolation from pancreatic tissue, the islet microenvironment is disrupted. The extracellular matrix (ECM) within this space not only provides structural support, but also actively signals to regulate islet survival and function. In addition, the ECM is responsible for growth factor presentation and sequestration. By designing biomaterials that recapture elements of the native islet environment, losses in islet function and number can potentially be reduced. Cell microarrays are a high throughput screening tool able to recreate a multitude of cellular niches on a single chip. Here, we present a screening methodology for identifying components that might promote islet survival. Automated fluorescence microscopy is used to rapidly identify islet derived cell interaction with ECM proteins and immobilized growth factors printed on arrays. MIN6 mouse insulinoma cells, mouse islets and, finally, human islets are progressively screened. We demonstrate the capability of the platform to identify ECM and growth factor protein candidates that support islet viability and function and reveal synergies in cell response.
Collapse
Affiliation(s)
- Bahman Delalat
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Adelaide 5095 SA, Australia.
| | - Darling M Rojas-Canales
- School of Medicine, University of Adelaide, Adelaide5005 SA, Australia.
- Centre for Clinical and Experimental Transplantation, Adelaide 5000 SA, Australia.
| | - Soraya Rasi Ghaemi
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Adelaide 5095 SA, Australia.
| | - Michaela Waibel
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy 3065 Vic, Australia.
| | - Frances J Harding
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Adelaide 5095 SA, Australia.
| | - Daniella Penko
- School of Medicine, University of Adelaide, Adelaide5005 SA, Australia.
- Centre for Clinical and Experimental Transplantation, Adelaide 5000 SA, Australia.
- Central Northern Adelaide Renal Transplantation Service, Royal Adelaide Hospital, Adelaide 5000 SA, Australia.
| | - Christopher J Drogemuller
- School of Medicine, University of Adelaide, Adelaide5005 SA, Australia.
- Centre for Clinical and Experimental Transplantation, Adelaide 5000 SA, Australia.
- Central Northern Adelaide Renal Transplantation Service, Royal Adelaide Hospital, Adelaide 5000 SA, Australia.
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy 3065 Vic, Australia.
| | - Patrick T H Coates
- School of Medicine, University of Adelaide, Adelaide5005 SA, Australia.
- Centre for Clinical and Experimental Transplantation, Adelaide 5000 SA, Australia.
- Central Northern Adelaide Renal Transplantation Service, Royal Adelaide Hospital, Adelaide 5000 SA, Australia.
| | - Nicolas H Voelcker
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Adelaide 5095 SA, Australia.
| |
Collapse
|
2
|
Juang JH, Kuo CH, Peng SJ, Tang SC. 3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration. EBioMedicine 2015; 2:109-19. [PMID: 26137552 PMCID: PMC4485478 DOI: 10.1016/j.ebiom.2015.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/25/2015] [Accepted: 01/25/2015] [Indexed: 01/26/2023] Open
Abstract
The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue. 3-D neurovascular histology with cell tracing is used to study islet transplantation. Donor islet Schwann cells and pericytes participate in graft neurovascular regeneration. Islet graft microenvironment includes Schwann cell sheath and perivascular pericytes.
Collapse
Affiliation(s)
- Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan ; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hung Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan ; Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Shih-Jung Peng
- Connectomics Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan ; Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shiue-Cheng Tang
- Connectomics Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan ; Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan ; Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|