1
|
Uçkan-Çetinkaya D, Haider KH. Induced Pluripotent Stem Cells in Pediatric Research and Clinical Translation. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
Karagiannis P, Inoue H. ALS, a cellular whodunit on motor neuron degeneration. Mol Cell Neurosci 2020; 107:103524. [PMID: 32629110 DOI: 10.1016/j.mcn.2020.103524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily targets motor neurons. Motor neurons from ALS patients show cytoplasmic inclusions that are reflective of an altered RNA metabolism and protein degradation. Causal gene mutations are found in all cell types even though patient motor neurons are by far the most susceptible to the degeneration. Using induced pluripotent stem cell (iPSC) technology, researchers have generated motor neurons with the same genotype as the patient including sporadic ones. They have also generated other cell types associated with the disease such as astrocytes, microglia and oligodendrocytes. These cells provide not only new insights on the mechanisms of the disease from the early stage, but also a platform for drug screening that has led to several clinical trials. This review examines the knowledge gained from iPSC studies using patient cells on the gene mutations and cellular networks in ALS and relevant experimental therapies.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| |
Collapse
|
3
|
Abstract
The meteoric rise in stem-cell-derived organoid technologies has ushered in a new era of "organoid medicine." Here we discuss how an organoid center can accelerate the translation of laboratory proof-of-principle experiments into clinical practice by developing and utilizing shared platforms for commercial and medical applications.
Collapse
|
4
|
Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev 2019; 99:79-114. [PMID: 30328784 DOI: 10.1152/physrev.00039.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of somatic cell nuclear transfer proved that somatic cells can carry the same genetic code as the zygote, and that activating parts of this code are sufficient to reprogram the cell to an early developmental state. The discovery of induced pluripotent stem cells (iPSCs) nearly half a century later provided a molecular mechanism for the reprogramming. The initial creation of iPSCs was accomplished by the ectopic expression of four specific genes (OCT4, KLF4, SOX2, and c-Myc; OSKM). iPSCs have since been acquired from a wide range of cell types and a wide range of species, suggesting a universal molecular mechanism. Furthermore, cells have been reprogrammed to iPSCs using a myriad of methods, although OSKM remains the gold standard. The sources for iPSCs are abundant compared with those for other pluripotent stem cells; thus the use of iPSCs to model the development of tissues, organs, and other systems of the body is increasing. iPSCs also, through the reprogramming of patient samples, are being used to model diseases. Moreover, in the 10 years since the first report, human iPSCs are already the basis for new cell therapies and drug discovery that have reached clinical application. In this review, we examine the generation of iPSCs and their application to disease and development.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Megumu Saito
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Jun K Yamashita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masaya Todani
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Mitsujiro Osawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshimi Yashiro
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| |
Collapse
|
5
|
Application of induced pluripotent stem cells to primary immunodeficiency diseases. Exp Hematol 2019; 71:43-50. [PMID: 30664903 DOI: 10.1016/j.exphem.2019.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
Primary immunodeficiency diseases (PIDs) are a heterogeneous group of rare immune disorders with genetic causes. Effective treatments using hematopoietic stem cells or pharmaceutical agents have been around for decades. However, for many patients, these treatment options are ineffective, partly because the rarity of these PIDs complicates the diagnosis and therapy. Induced pluripotent stem cells (iPSCs) offer a potential solution to these problems. The proliferative capacity of iPSCs allows for the preparation of a large, stable supply of hematopoietic cells with the same genome as the patient, allowing for new human cell models that can trace cellular abnormalities during the pathogenesis and lead to new drug discovery. PID models using patient iPSCs have been instrumental in identifying deviations in the development or function of several types of immune cells, revealing new molecular targets for experimental therapies. These models are only in their early stages and for the most part have recapitulated results from existing models using animals or primary cells. However, iPSC-based models are being used to study complex diseases of other organs, including those with multigenic causes, suggesting that advances in differentiation processes will expand iPSC-based models to complex PIDs as well.
Collapse
|
6
|
Karagiannis P, Nakauchi A, Yamanaka S. Bringing Induced Pluripotent Stem Cell Technology to the Bedside. JMA J 2018; 1:6-14. [PMID: 33748517 PMCID: PMC7969850 DOI: 10.31662/jmaj.2018-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) describe somatic cells that have been reprogrammed to the pluripotent state. From a scientific perspective, their discovery has provided a molecular roadmap for turning on and off cell identities, effectively allowing any cell type to have its identity changed into any other cell type. They also act as a human model for understanding the development of every cell and organ in the body. In addition, because they can be prepared from patients, iPSCs offer a unique human model for studying disease development, including many diseases that are generally diagnosed at a late stage of their development. These models have provided new insights on the pathogenesis and new targets to prevent or reverse the disease development process. Indeed, clinical studies on compounds based on drug screening hits in human iPSC disease models have begun. Because of their proliferation and differentiation capacity, iPSCs can also be used to prepare cells for transplantations, and related clinical studies using iPSC-based cell therapies are ongoing. The combination of iPSCs with other technologies or therapeutic strategies is expected to expand their medical benefits. In this review, we consider medical accomplishments based on iPSC research and future ones that can be anticipated.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ayaka Nakauchi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|