1
|
Usuki Y, Abe R, Nishiguchi K, Satoh T, Aono H, Nogawa T, Futamura Y, Osada H, Yoshida I, Fujita K, Mishima T, Fujita KI. Total synthesis, stereochemical assignment, and biological evaluation of opantimycin A and analogues thereof. Org Biomol Chem 2024; 22:8973-8979. [PMID: 39420781 DOI: 10.1039/d4ob01475h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Opantimycin A, a rare antimycin-class antibiotic without the macrolide core, was isolated from Streptomyces sp. RK88-1355 in 2017. In this study, we explored the total synthesis and stereochemical assignment of opantimycin A. The synthesis of all potential diastereomers has been accomplished via traceless Staudinger ligation. A comparison of the spectroscopic data of the synthesized compounds with that reported for the natural product confirmed that the absolute configuration of the natural product was (14S,17R,21R). Two analogous compounds were prepared, where the Dhb ((Z)-dehydrobutyrine) moiety was replaced with Dha (dehydroalanine) or ΔVal moieties, respectively. The inhibitory activities of these synthetic compounds against the production of the anti-inflammatory cytokine IL-6 were evaluated, and two potential candidates for further development as anti-inflammatory agents were identified.
Collapse
Affiliation(s)
- Yoshinosuke Usuki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.
| | - Ryota Abe
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.
| | - Kazuki Nishiguchi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.
| | - Tetsuya Satoh
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.
| | - Harumi Aono
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshihiko Nogawa
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yushi Futamura
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Izumi Yoshida
- Saito Laboratory, Japan Food Research Laboratories, 4-41 Saito-asagi 7-chome, Ibaraki-shi, Osaka 567-0085, Japan
| | - Kazuhiro Fujita
- Saito Laboratory, Japan Food Research Laboratories, 4-41 Saito-asagi 7-chome, Ibaraki-shi, Osaka 567-0085, Japan
| | - Takashi Mishima
- Saito Laboratory, Japan Food Research Laboratories, 4-41 Saito-asagi 7-chome, Ibaraki-shi, Osaka 567-0085, Japan
| | - Ken-Ichi Fujita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
2
|
Okuzono S, Fujii F, Setoyama D, Taira R, Shinmyo Y, Kato H, Masuda K, Yonemoto K, Akamine S, Matsushita Y, Motomura Y, Sakurai T, Kawasaki H, Han K, Kato TA, Torisu H, Kang D, Nakabeppu Y, Ohga S, Sakai Y. An N-terminal and ankyrin repeat domain interactome of Shank3 identifies the protein complex with the splicing regulator Nono in mice. Genes Cells 2024; 29:746-756. [PMID: 38964745 PMCID: PMC11447829 DOI: 10.1111/gtc.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
An autism-associated gene Shank3 encodes multiple splicing isoforms, Shank3a-f. We have recently reported that Shank3a/b-knockout mice were more susceptible to kainic acid-induced seizures than wild-type mice at 4 weeks of age. Little is known, however, about how the N-terminal and ankyrin repeat domains (NT-Ank) of Shank3a/b regulate multiple molecular signals in the developing brain. To explore the functional roles of Shank3a/b, we performed a mass spectrometry-based proteomic search for proteins interacting with GFP-tagged NT-Ank. In this study, NT-Ank was predicted to form a variety of complexes with a total of 348 proteins, in which RNA-binding (n = 102), spliceosome (n = 22), and ribosome-associated molecules (n = 9) were significantly enriched. Among them, an X-linked intellectual disability-associated protein, Nono, was identified as a NT-Ank-binding protein. Coimmunoprecipitation assays validated the interaction of Shank3 with Nono in the mouse brain. In agreement with these data, the thalamus of Shank3a/b-knockout mice aberrantly expressed splicing isoforms of autism-associated genes, Nrxn1 and Eif4G1, before and after seizures with kainic acid treatment. These data indicate that Shank3 interacts with multiple RNA-binding proteins in the postnatal brain, thereby regulating the homeostatic expression of splicing isoforms for autism-associated genes after birth.
Collapse
Affiliation(s)
- Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Do Y, Yagi M, Hirai H, Miki K, Fukahori Y, Setoyama D, Yamamoto M, Furukawa T, Kunisaki Y, Kang D, Uchiumi T. Cardiomyocyte-specific deletion of the mitochondrial transporter Abcb10 causes cardiac dysfunction via lysosomal-mediated ferroptosis. Biosci Rep 2024; 44:BSR20231992. [PMID: 38655715 PMCID: PMC11088307 DOI: 10.1042/bsr20231992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Heart function is highly dependent on mitochondria, which not only produce energy but also regulate many cellular functions. Therefore, mitochondria are important therapeutic targets in heart failure. Abcb10 is a member of the ABC transporter superfamily located in the inner mitochondrial membrane and plays an important role in haemoglobin synthesis, biliverdin transport, antioxidant stress, and stabilization of the iron transporter mitoferrin-1. However, the mechanisms underlying the impairment of mitochondrial transporters in the heart remain poorly understood. Here, we generated mice with cardiomyocyte-specific loss of Abcb10. The Abcb10 knockouts exhibited progressive worsening of cardiac fibrosis, increased cardiovascular risk markers and mitochondrial structural abnormalities, suggesting that the pathology of heart failure is related to mitochondrial dysfunction. As the mitochondrial dysfunction was observed early but mildly, other factors were considered. We then observed increased Hif1α expression, decreased NAD synthase expression, and reduced NAD+ levels, leading to lysosomal dysfunction. Analysis of ABCB10 knockdown HeLa cells revealed accumulation of Fe2+ and lipid peroxides in lysosomes, leading to ferroptosis. Lipid peroxidation was suppressed by treatment with iron chelators, suggesting that lysosomal iron accumulation is involved in ferroptosis. We also observed that Abcb10 knockout cardiomyocytes exhibited increased ROS production, iron accumulation, and lysosomal hypertrophy. Our findings suggest that Abcb10 is required for the maintenance of cardiac function and reveal a novel pathophysiology of chronic heart failure related to lysosomal function and ferroptosis.
Collapse
Affiliation(s)
- Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Haruka Hirai
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukina Fukahori
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tatsuhiko Furukawa
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Yagi M, Do Y, Hirai H, Miki K, Toshima T, Fukahori Y, Setoyama D, Abe C, Nabeshima YI, Kang D, Uchiumi T. Improving lysosomal ferroptosis with NMN administration protects against heart failure. Life Sci Alliance 2023; 6:e202302116. [PMID: 37793777 PMCID: PMC10551641 DOI: 10.26508/lsa.202302116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Myocardial mitochondria are primary sites of myocardial energy metabolism. Mitochondrial disorders are associated with various cardiac diseases. We previously showed that mice with cardiomyocyte-specific knockout of the mitochondrial translation factor p32 developed heart failure from dilated cardiomyopathy. Mitochondrial translation defects cause not only mitochondrial dysfunction but also decreased nicotinamide adenine dinucleotide (NAD+) levels, leading to impaired lysosomal acidification and autophagy. In this study, we investigated whether nicotinamide mononucleotide (NMN) administration, which compensates for decreased NAD+ levels, improves heart failure because of mitochondrial dysfunction. NMN administration reduced damaged lysosomes and improved autophagy, thereby reducing heart failure and extending the lifespan in p32cKO mice. We found that lysosomal damage due to mitochondrial dysfunction induced ferroptosis, involving the accumulation of iron in lysosomes and lipid peroxide. The ameliorative effects of NMN supplementation were found to strongly affect lysosomal function rather than mitochondrial function, particularly lysosome-mediated ferroptosis. NMN supplementation can improve lysosomal, rather than mitochondrial, function and prevent chronic heart failure.
Collapse
Affiliation(s)
- Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Toshima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukina Fukahori
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chiaki Abe
- Department of Aging Science and Medicine, Graduate School of Medicine Kyoto University Medical Innovation Center, Kyoto, Japan
| | - Yo-Ichi Nabeshima
- Department of Aging Science and Medicine, Graduate School of Medicine Kyoto University Medical Innovation Center, Kyoto, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Cortés M, Brischetto A, Martinez-Campanario MC, Ninfali C, Domínguez V, Fernández S, Celis R, Esteve-Codina A, Lozano JJ, Sidorova J, Garrabou G, Siegert AM, Enrich C, Pintado B, Morales-Ruiz M, Castro P, Cañete JD, Postigo A. Inflammatory macrophages reprogram to immunosuppression by reducing mitochondrial translation. Nat Commun 2023; 14:7471. [PMID: 37978290 PMCID: PMC10656499 DOI: 10.1038/s41467-023-42277-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
Acute inflammation can either resolve through immunosuppression or persist, leading to chronic inflammation. These transitions are driven by distinct molecular and metabolic reprogramming of immune cells. The anti-diabetic drug Metformin inhibits acute and chronic inflammation through mechanisms still not fully understood. Here, we report that the anti-inflammatory and reactive-oxygen-species-inhibiting effects of Metformin depend on the expression of the plasticity factor ZEB1 in macrophages. Using mice lacking Zeb1 in their myeloid cells and human patient samples, we show that ZEB1 plays a dual role, being essential in both initiating and resolving inflammation by inducing macrophages to transition into an immunosuppressed state. ZEB1 mediates these diverging effects in inflammation and immunosuppression by modulating mitochondrial content through activation of autophagy and inhibition of mitochondrial protein translation. During the transition from inflammation to immunosuppression, Metformin mimics the metabolic reprogramming of myeloid cells induced by ZEB1. Mechanistically, in immunosuppression, ZEB1 inhibits amino acid uptake, leading to downregulation of mTORC1 signalling and a decrease in mitochondrial translation in macrophages. These results identify ZEB1 as a driver of myeloid cell metabolic plasticity, suggesting that targeting its expression and function could serve as a strategy to modulate dysregulated inflammation and immunosuppression.
Collapse
Affiliation(s)
- Marlies Cortés
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain.
| | - Agnese Brischetto
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - M C Martinez-Campanario
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Verónica Domínguez
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC/UAM-CBMSO) Transgenesis Facility, Higher Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Sara Fernández
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Raquel Celis
- Arthritis Unit, Dept. of Rheumathology, Hospital Clínic and IDIBAPS, 08036, Barcelona, Spain
| | | | - Juan J Lozano
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
| | - Julia Sidorova
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
| | - Gloria Garrabou
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Anna-Maria Siegert
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB1 0QQ, UK
| | - Carlos Enrich
- Department of Biomedicine, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Belén Pintado
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC/UAM-CBMSO) Transgenesis Facility, Higher Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Manuel Morales-Ruiz
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
- Department of Biomedicine, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
- Department of Biochemistry and Molecular Genetics, Hospital Clínic of Barcelona and IDIBAPS, 08036, Barcelona, Spain
| | - Pedro Castro
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Juan D Cañete
- Arthritis Unit, Dept. of Rheumathology, Hospital Clínic and IDIBAPS, 08036, Barcelona, Spain
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain.
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain.
- Molecular Targets Program, Division of Oncology, Department of Medicine, J.G. Brown Cancer Center, Louisville, KY, 40202, USA.
- ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
6
|
Qin J, Zheng X, He Y, Hong Y, Liang S, Fang X. The regulation of T helper cell polarization by the diterpenoid fraction of Rhododendron molle based on the JAK/STAT signaling pathway. Front Pharmacol 2022; 13:1039441. [PMID: 36386123 PMCID: PMC9640628 DOI: 10.3389/fphar.2022.1039441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 07/21/2023] Open
Abstract
The diterpenoid fraction (DF) prepared from fruit of Rhododendron molle was shown to have potential therapeutic effects on collagen-induced arthritis (CIA) rats based on our previous studies. As a continuation of those studies, herein, a lipopolysaccharide-induced endotoxin shock mouse model was used. The results showed that 0.2 mg/ml of DF significantly increased the mouse survival rate and had an anti-inflammatory effect. Further studies showed that DF could decrease the proportion of T helper cells (Th1 and Th17), and increase the proportion of Th2 and regulatory T cells (Tregs). Enzyme-linked immunosorbent assays indicated that DF inhibited the secretion of inflammatory cytokines such as TNF-α, IL-1β, and IL-6; western blotting showed that DF significantly reduced the levels of phosphorylated STAT1 and STAT3. In vitro, DF could dose-dependently inhibit the polarization of naive CD4+ T cells to Th1 or Th17 cells. DF at 10 μg/ml could markedly decrease the expression of mRNA encoding IFN-γ and T-bet, and suppress Th1 differentiation by downregulation of the activity of STAT1 and STAT4. Meanwhile, DF at 10 μg/ml remarkably reduced the expression of mRNA encoding IL-17a, IL-17f, and RORγt, and downregulated STAT3 phosphorylation, suggesting that DF could inhibit Th17 differentiation by reducing STAT3 activation. Taken together, DF blocked the JAK/STAT signaling pathway by inhibiting STAT1 and STAT3 phosphorylation, which clarified the important role of JAK/STAT signaling pathway in anti-rheumatoid arthritis.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Fang
- *Correspondence: Shuang Liang, ; Xin Fang,
| |
Collapse
|
7
|
Tsukahara S, Shiota M, Takamatsu D, Nagakawa S, Matsumoto T, Kiyokoba R, Yagi M, Setoyama D, Noda N, Matsumoto S, Hayashi T, Contreras-Sanz A, Black PC, Inokuchi J, Kohashi K, Oda Y, Uchiumi T, Eto M, Kang D. Cancer genomic profiling identified dihydropyrimidine dehydrogenase deficiency in bladder cancer promotes sensitivity to gemcitabine. Sci Rep 2022; 12:8535. [PMID: 35595780 PMCID: PMC9122908 DOI: 10.1038/s41598-022-12528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Chemotherapy is a standard therapy for muscle-invasive bladder cancer (MIBC). However, genomic alterations associated with chemotherapy sensitivity in MIBC have not been fully explored. This study aimed to investigate the genomic landscape of MIBC in association with the response to chemotherapy and to explore the biological role of genomic alterations. Genomic alterations in MIBC were sequenced by targeted exome sequencing of 409 genes. Gene expression in MIBC tissues was analyzed by western blotting, immunohistochemistry, and RNA microarray. Cellular sensitivity to gemcitabine and gemcitabine metabolite was examined in bladder cancer cells after modulation of candidate gene. Targeted exome sequencing in 20 cases with MIBC revealed various genomic alterations including pathogenic missense mutation of DPYD gene encoding dihydropyrimidine dehydrogenase (DPD). Conversely, high DPYD and DPD expression were associated with poor response to gemcitabine-containing chemotherapy among patients with MIBC, as well as gemcitabine resistance in bladder cancer cells. DPD suppression rendered cells sensitive to gemcitabine, while DPD overexpression made cells gemcitabine-resistant through reduced activity of the cytotoxic gemcitabine metabolite difluorodeoxycytidine diphosphate. This study revealed the novel role of DPD in gemcitabine metabolism. It has been suggested that DPYD genomic alterations and DPD expression are potential predictive biomarkers in gemcitabine treatment.
Collapse
Affiliation(s)
- Shigehiro Tsukahara
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Dai Takamatsu
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Nagakawa
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kiyokoba
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nozomi Noda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Health and Science, School of Medicine, Kyushu University, Fukuoka, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
8
|
Nakashima Y, Gotoh K, Mizuguchi S, Setoyama D, Takata Y, Kanno T, Kang D. Attenuating Effect of Chlorella Extract on NLRP3 Inflammasome Activation by Mitochondrial Reactive Oxygen Species. Front Nutr 2021; 8:763492. [PMID: 34692754 PMCID: PMC8531207 DOI: 10.3389/fnut.2021.763492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the pathogenesis of a wide variety of human diseases. Although many drugs and inhibitors have been developed to treat NLRP3-associated diseases, only limited clinical data support their efficacy and safety. Chlorella, a unicellular green alga that is widely and safely used as a food supplement, contains various antioxidants. In this study, we obtained a fat-soluble extract from Chlorella (CE) and demonstrated that it reduced NLRP3 inflammasome activation by inhibiting mitochondrial reactive oxygen species and caspase-1 activation. In addition, CE supplementation attenuated lipopolysaccharide-induced interleukin 1β transcription through activation of hypoxia-inducible factor 1α in vitro and in vivo. As Chlorella is a safe and useful food supplement, it may be a practical pharmacological approach for treating NLRP3-driven diseases.
Collapse
Affiliation(s)
- Yuya Nakashima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Research and Development, Chlorella Industry Co., Ltd., Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichi Mizuguchi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yurie Takata
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiro Kanno
- Department of Research and Development, Chlorella Industry Co., Ltd., Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Mizuguchi S, Gotoh K, Nakashima Y, Setoyama D, Takata Y, Ohga S, Kang D. Mitochondrial Reactive Oxygen Species Are Essential for the Development of Psoriatic Inflammation. Front Immunol 2021; 12:714897. [PMID: 34421919 PMCID: PMC8378889 DOI: 10.3389/fimmu.2021.714897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a common immune-mediated, chronic, inflammatory skin disease that affects approximately 2-3% of the population worldwide. Although there is increasing evidence regarding the essential roles of the interleukin (IL)-23/IL-17 axis and dendritic cell (DC)-T cell crosstalk in the development of skin inflammation, the contributions of mitochondrial function to psoriasis are unclear. In a mouse model of imiquimod (IMQ)-induced psoriasiform skin inflammation, we found that hematopoietic cell-specific genetic deletion of p32/C1qbp, a regulator of mitochondrial protein synthesis and metabolism, protects mice from IMQ-induced psoriatic inflammation. Additionally, we demonstrate that p32/C1qbp is an important regulator of IMQ-induced DC activation, both in vivo and in vitro. We also found that p32/C1qbp-deficient DCs exhibited impaired production of IL-1β, IL-23, and mitochondrial reactive oxygen species (mtROS) after IMQ stimulation. Because the inhibition of mtROS suppressed IMQ-induced DC activation and psoriatic inflammation, we presume that p32/C1qbp and mtROS can serve as therapeutic targets in psoriasis.
Collapse
Affiliation(s)
- Soichi Mizuguchi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Nakashima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yurie Takata
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Gotoh K, Takata Y, Nakashima Y, Mizuguchi S, Komori K, Kang D. Metabolic analysis of mouse bone-marrow-derived dendritic cells using an extracellular flux analyzer. STAR Protoc 2021; 2:100401. [PMID: 33851138 PMCID: PMC8039729 DOI: 10.1016/j.xpro.2021.100401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell (DC) maturation induced by Toll-like receptor (TLR) agonists requires the activation of downstream metabolic changes. Here, we provide a detailed protocol to measure glycolysis, mitochondrial respiration, and fatty acid oxidation in mouse bone-marrow-derived DCs with the Seahorse XF24 extracellular flux (XF) analyzer. XF analysis with the Seahorse bioanalyzer has become a standard method to measure bioenergetic functions in cells, and this protocol can be adapted to other immune cells. For complete information on using this protocol, please refer to Gotoh et al. (2018). Measuring energy metabolism in dendritic cells with an extracellular flux analyzer Analyzing TLR-induced glycolytic changes in dendritic cells Analyzing mitochondrial stress test and fatty acid oxidation in dendritic cells
Collapse
Affiliation(s)
- Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yurie Takata
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuya Nakashima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Soichi Mizuguchi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keishi Komori
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
11
|
Gotoh K, Kunisaki Y, Mizuguchi S, Setoyama D, Hosokawa K, Yao H, Nakashima Y, Yagi M, Uchiumi T, Semba Y, Nogami J, Akashi K, Arai F, Kang D. Mitochondrial Protein Synthesis Is Essential for Terminal Differentiation of CD45 - TER119 -Erythroid and Lymphoid Progenitors. iScience 2020; 23:101654. [PMID: 33103089 PMCID: PMC7578749 DOI: 10.1016/j.isci.2020.101654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/06/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
p32/C1qbp regulates mitochondrial protein synthesis and is essential for oxidative phosphorylation in mitochondria. Although dysfunction of p32/C1qbp impairs fetal development and immune responses, its role in hematopoietic differentiation remains unclear. Here, we found that mitochondrial dysfunction affected terminal differentiation of newly identified erythroid/B-lymphoid progenitors among CD45– Ter119– CD31– triple-negative cells (TNCs) in bone marrow. Hematopoietic cell-specific genetic deletion of p32/C1qbp (p32cKO) in mice caused anemia and B-lymphopenia without reduction of hematopoietic stem/progenitor cells. In addition, p32cKO mice were susceptible to hematopoietic stress with delayed recovery from anemia. p32/C1qbp-deficient CD51– TNCs exhibited impaired mitochondrial oxidation that consequently led to inactivation of mTORC1 signaling, which is essential for erythropoiesis. These findings uncover the importance of mitochondria, especially at the stage of TNCs during erythropoiesis, suggesting that dysregulation of mitochondrial protein synthesis is a cause of anemia and B-lymphopenia with an unknown pathology. p32/C1qbp is essential for development of erythrocytes and B-lymphocytes p32/C1qbp is necessary for terminal erythrocyte differentiation from CD44+ CD51– TNCs p32/C1qbp regulates mitochondrial OXPHOS and mTORC1 signaling pathway in CD51– TNCs
Collapse
Affiliation(s)
- Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Corresponding author
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine/Cancer Stem Cell Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Medicine and Biosystemic Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
- Corresponding author
| | - Soichi Mizuguchi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kentaro Hosokawa
- Department of Stem Cell Biology and Medicine/Cancer Stem Cell Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hisayuki Yao
- Department of Stem Cell Biology and Medicine/Cancer Stem Cell Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuya Nakashima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichiro Semba
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Jumpei Nogami
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine/Cancer Stem Cell Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Corresponding author
| |
Collapse
|
12
|
Kapusta P, Konieczny PS, Hohendorff J, Borys S, Totoń-Żurańska J, Kieć-Wilk BM, Wołkow PP, Malecki MT. Negative pressure wound therapy affects circulating plasma microRNAs in patients with diabetic foot ulceration. Diabetes Res Clin Pract 2020; 165:108251. [PMID: 32531327 DOI: 10.1016/j.diabres.2020.108251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
AIMS Negative pressure wound therapy (NPWT) is commonly used in diabetic foot ulceration (DFU). The molecular mechanisms of NPWT action, particularly outside of the wound site, have not been described. We assessed NPWT's effect on circulating miRNA expression levels in type 2 diabetes (T2DM) patients with DFU. METHODS We examined 34 T2DM patients treated with either NPWT (n = 24) or standard therapy (ST, n = 10). The group assignment was based on clinical criteria and local practice. Next-generation sequencing-based microRNA expression was determined on the patient's plasma collected before therapy and after 8 days. RESULTS NPWT patients were similar to the ST group in terms of age, BMI, and HbA1c level; however, they differed by mean wound area (12.6 cm2 vs. 1.1 cm2 p = 0.0005). First, we analyzed the change of miRNA after NPWT or ST and observed an upregulation of let-7f-2 only in the NPWT group. Then, we analyzed the differential expression between NPWT and ST groups, looking at possible wound size effects. We found 12 differentially expressed miRNAs in pre-treatment comparison, including let-7f-2, while in post-treatment analysis we identified 28 miRNAs. The pathway enrichment analysis suggests that identified miRNAs may be involved in wound healing, particularly through angiogenesis. CONCLUSION We found initial evidence that NPWT in T2DM patients with DFU affects miRNA expression in plasma. Additionally, some differences in plasma miRNA expression may be related to wound size.
Collapse
Affiliation(s)
- Przemysław Kapusta
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł S Konieczny
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy Hohendorff
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland; University Hospital, Krakow, Poland
| | - Sebastian Borys
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland; University Hospital, Krakow, Poland
| | - Justyna Totoń-Żurańska
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Beata M Kieć-Wilk
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland; University Hospital, Krakow, Poland
| | - Paweł P Wołkow
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland.
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland; University Hospital, Krakow, Poland.
| |
Collapse
|
13
|
Li W, Li W, Yu J, Liu F, Zang L, Xiao X, Zhao J, Yao Q, Niu X. Fraxin inhibits lipopolysaccharide-induced inflammatory cytokines and protects against endotoxic shock in mice. Fundam Clin Pharmacol 2019; 34:91-101. [PMID: 31325387 DOI: 10.1111/fcp.12500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
Abstract
Fraxin, the effective component isolated from Cortex Fraxini, has been reported to have anti-inflammation effects. The aim of this study was to explore the effect of fraxin on lipopolysaccharide (LPS)-induced endotoxic shock in mice. We used Kunming male mice to establish the model, and we found that fraxin could improve the survival rate of the LPS-induced mice. Histopathological study showed that fraxin could mitigate the injuries in LPS-induced lung and liver tissues. The levels of tumour necrosis factor-α and interleukin-6 both in serum and lung, liver tissues, and the productions of nitric oxide (NO), aspartate transaminase and alanine transaminase in serum were decreased by fraxin. Western blot assay demonstrated that the pretreatment with fraxin could downregulate LPS-induced protein expressions of nuclear factor-kappa B (NF-κB) and NLRP3 inflammatory corpuscle signalling pathways. Overall, fraxin had protective effects on LPS-induced endotoxic shock mice and the possible mechanisms might activate through NF-κB and NLRP3 inflammatory corpuscle signalling pathways.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Wenqi Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - JinJin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Fang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Lulu Zang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Jinmeng Zhao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Qing Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Material Basis Analysis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710061, China
| |
Collapse
|
14
|
ATF4 Involvement in TLR4 and LOX-1-Induced Host Inflammatory Response to Aspergillus fumigatus Keratitis. J Ophthalmol 2018; 2018:5830202. [PMID: 30647960 PMCID: PMC6311808 DOI: 10.1155/2018/5830202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose Activating transcription factor 4 (ATF4) is induced by various stressors. Here, we investigated the expression of ATF4 in the host inflammatory response to Aspergillus fumigatus (A. fumigatus) keratitis. Methods A. fumigatus keratitis mouse models developed by intrastromal injection as well as corneal epithelium scratching were examined daily with a slit lamp microscope for corneal opacification and ulceration. Subsequent in vitro experimentation was carried out in human corneal epithelial cells (HCECs) as well as THP-1 macrophages infected with A. fumigatus. Inhibitors, including CLI-095, Poly (I), SCH772984, and SP600125, were used to assess the role of proteins like toll-like receptor 4 (TLR4), lectin-type oxidized LDL receptor 1 (LOX-1), extracellular signal-regulated kinases (ERK1/2), and c-Jun N-terminal kinase (JNK) in ATF4 expression as a response to A. fumigatus infection. This assessment was made in both mouse models and HCECs using western blot. Results Compared to the controls, ATF4 was increased in corneas from two kinds of A. fumigatus keratitis models at 3 days after infection. ATF4 expression was upregulated with A. fumigatus conidia both in HCECs and THP-1 macrophages 16 hours after stimulation. Furthermore, ATF4 expression in response to A. fumigatus infection was shown to be dependent on TLR4 and LOX-1 expression, and ERK1/2 and JNK contributed to the expression of ATF4 in response to A. fumigatus. Conclusion Our results clearly indicate that ATF4 was involved in the host antifungal immune response to A. fumigatus keratitis; expression was found to be dependent on TLR4, LOX-1 expression, and MAPKs pathway.
Collapse
|
15
|
Gotoh K, Morisaki T, Setoyama D, Sasaki K, Yagi M, Igami K, Mizuguchi S, Uchiumi T, Fukui Y, Kang D. Mitochondrial p32/C1qbp Is a Critical Regulator of Dendritic Cell Metabolism and Maturation. Cell Rep 2018; 25:1800-1815.e4. [DOI: 10.1016/j.celrep.2018.10.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/18/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
|
16
|
Analysis of Polymorphisms in the Mediator Complex Subunit 13-like (Med13L) Gene in the Context of Immune Function and Development of Experimental Arthritis. Arch Immunol Ther Exp (Warsz) 2018; 66:365-377. [PMID: 29951696 PMCID: PMC6154033 DOI: 10.1007/s00005-018-0516-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
The Mediator complex subunit 13-like (MED13L) protein is part of the multi-protein mediator complex and plays an important role in gene transcription. Polymorphisms in the MED13L gene have been linked to congenital heart anomalies and intellectual disabilities. Despite recent evidence of indirect links of MED13L to cytokine release and inflammation, impact of genetic variations in MED13L on immune cells remains unexplored. The B10.RIII and RIIIS/J mouse strains vary in susceptibility to induced experimental autoimmune disease models. From sequencing data of the two mouse strains, we identified six polymorphisms in the coding regions of Med13L. Using congenic mice, we studied the effect of these polymorphisms on immune cell development and function along with susceptibility to collagen-induced arthritis, an animal model for rheumatoid arthritis. Combining in vivo disease data, in vitro functional data, and computational analysis of the reported non-synonymous polymorphisms, we report that genetic polymorphisms in Med13L do not affect the immune phenotype in these mice and are predicted to be non-disease associated.
Collapse
|