1
|
Liang Y, Kong Y, Rao M, Zhou X, Li C, Meng Y, Chen Y, Li H, Luo Z. Inhibition of ESCRT-independent extracellular vesicles biogenesis suppresses enterovirus 71 replication and pathogenesis in mice. Int J Biol Macromol 2024; 267:131453. [PMID: 38588842 DOI: 10.1016/j.ijbiomac.2024.131453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Enterovirus 71 (EV71) causes hand-foot-and-mouth disease (HFMD), neurological complications, and even fatalities in infants. Clinically, the increase of extracellular vesicles (EVs) in EV71 patients' serum was highly associated with the severity of HFMD. EV71 boosts EVs biogenesis in an endosomal sorting complex required for transport (ESCRT)-dependent manner to facilitate viral replication. Yet, the impact of EVs-derived from ESCRT-independent pathway on EV71 replication and pathogenesis is highly concerned. Here, we assessed the effects of EV71-induced EVs from ESCRT-independent pathway on viral replication and pathogenesis by GW4869, a neutral sphingomyelinase inhibitor. Detailly, in EV71-infected mice, blockade of the biogenesis of tissue-derived EVs in the presence of GW4869 restored body weight loss, attenuated clinical scores, and improved survival rates. Furthermore, GW4869 dampens EVs biogenesis to reduce viral load and pathogenesis in multiple tissues of EV71-infected mice. Consistently, GW4869 treatment in a human intestinal epithelial HT29 cells decreased the biogenesis of EVs, in which the progeny EV71 particle was cloaked, leading to the reduction of viral infection and replication. Collectively, GW4869 inhibits EV71-induced EVs in an ESCRT-independent pathway and ultimately suppresses EV71 replication and pathogenesis. Our study provides a novel strategy for the development of therapeutic agents in the treatment for EV71-associated HFMD.
Collapse
Affiliation(s)
- Yicong Liang
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yue Kong
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China
| | - Menglan Rao
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xing Zhou
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chengcheng Li
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi Meng
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yanxi Chen
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hongjian Li
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Bioscience and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Zhen Luo
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
2
|
Pandita S, Verma A, Kumar N. Role of miRNAs in regulating virus replication. ANIMAL GENE 2023; 30:200162. [DOI: 10.1016/j.angen.2023.200162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Song M, Bai H, Zhang P, Zhou X, Ying B. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int J Oral Sci 2023; 15:2. [PMID: 36596771 PMCID: PMC9810734 DOI: 10.1038/s41368-022-00209-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 01/05/2023] Open
Abstract
Saliva testing is a vital method for clinical applications, for its noninvasive features, richness in substances, and the huge amount. Due to its direct anatomical connection with oral, digestive, and endocrine systems, clinical usage of saliva testing for these diseases is promising. Furthermore, for other diseases that seeming to have no correlations with saliva, such as neurodegenerative diseases and psychological diseases, researchers also reckon saliva informative. Tremendous papers are being produced in this field. Updated summaries of recent literature give newcomers a shortcut to have a grasp of this topic. Here, we focused on recent research about saliva biomarkers that are derived from humans, not from other organisms. The review mostly addresses the proceedings from 2016 to 2022, to shed light on the promising usage of saliva testing in clinical diagnostics. We recap the recent advances following the category of different types of biomarkers, such as intracellular DNA, RNA, proteins and intercellular exosomes, cell-free DNA, to give a comprehensive impression of saliva biomarker testing.
Collapse
Affiliation(s)
- Mengyuan Song
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Bai
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Putting the "mi" in omics: discovering miRNA biomarkers for pediatric precision care. Pediatr Res 2023; 93:316-323. [PMID: 35906312 PMCID: PMC9884316 DOI: 10.1038/s41390-022-02206-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
In the past decade, growing interest in micro-ribonucleic acids (miRNAs) has catapulted these small, non-coding nucleic acids to the forefront of biomarker research. Advances in scientific knowledge have made it clear that miRNAs play a vital role in regulating cellular physiology throughout the human body. Perturbations in miRNA signaling have also been described in a variety of pediatric conditions-from cancer, to renal failure, to traumatic brain injury. Likewise, the number of studies across pediatric disciplines that pair patient miRNA-omics with longitudinal clinical data are growing. Analyses of these voluminous, multivariate data sets require understanding of pediatric phenotypic data, data science, and genomics. Use of machine learning techniques to aid in biomarker detection have helped decipher background noise from biologically meaningful changes in the data. Further, emerging research suggests that miRNAs may have potential as therapeutic targets for pediatric precision care. Here, we review current miRNA biomarkers of pediatric diseases and studies that have combined machine learning techniques, miRNA-omics, and patient health data to identify novel biomarkers and potential therapeutics for pediatric diseases. IMPACT: In the following review article, we summarized how recent developments in microRNA research may be coupled with machine learning techniques to advance pediatric precision care.
Collapse
|
5
|
Ruan Z, Liang Y, Chen Z, Yin J, Li C, Pan P, Zhang Q, Wu J, Luo Z. Enterovirus 71 non-structural protein 3A hijacks vacuolar protein sorting 25 to boost exosome biogenesis to facilitate viral replication. Front Microbiol 2022; 13:1024899. [PMID: 36274707 PMCID: PMC9581156 DOI: 10.3389/fmicb.2022.1024899] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Human enterovirus 71 (EV71) is one of the major agents of the hand, foot, and mouth disease (HFMD), and occasionally causes severe neurological complications. There is clinical evidence that EV71 infection increases the exosomes in the serum of severe HFMD patients, suggesting a role of exosomes in EV71 pathogenesis. However, the relationship between exosomes and EV71 replication remains elusive. In this study, we initially found that EV71 infection elevated exosome biogenesis in the cultured cells. Among EV71 non-structural proteins, we identified EV71 3A, but not 3B, constitutively promoted exosome secretion. In detail, EV71 3A protein interacted with vacuolar protein sorting 25 (VPS25), while knock-down of VPS25 reduced EV71 3A protein- and EV71-induced exosome production. Further studies revealed VPS25 located on exosomes and its expression correlated to the exosome production. During EV71 infection, knock-down of VPS25 decreased exosome biogenesis to attenuate viral replication. Consistently, GW4869, an exosome inhibitor, exerted an obviously antiviral activity against EV71 replication companied with the decrease of exosome secretion or formation. These findings suggest the binding of EV71 3A and VPS25 benefited exosome biogenesis, thereby boosting viral replication. This study uncovers a novel mechanism underlying EV71-mediated exosomes in the regulation of viral replication, which provides potential anti-viral strategies against the EV71 infection and transmission in HFMD.
Collapse
Affiliation(s)
- Zhihui Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yicong Liang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zicong Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jialing Yin
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Chengcheng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- Jianguo Wu,
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- *Correspondence: Zhen Luo,
| |
Collapse
|
6
|
Paolini A, Baldassarre A, Bruno SP, Felli C, Muzi C, Ahmadi Badi S, Siadat SD, Sarshar M, Masotti A. Improving the Diagnostic Potential of Extracellular miRNAs Coupled to Multiomics Data by Exploiting the Power of Artificial Intelligence. Front Microbiol 2022; 13:888414. [PMID: 35756065 PMCID: PMC9218639 DOI: 10.3389/fmicb.2022.888414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, the clinical use of extracellular miRNAs as potential biomarkers of disease has increasingly emerged as a new and powerful tool. Serum, urine, saliva and stool contain miRNAs that can exert regulatory effects not only in surrounding epithelial cells but can also modulate bacterial gene expression, thus acting as a “master regulator” of many biological processes. We think that in order to have a holistic picture of the health status of an individual, we have to consider comprehensively many “omics” data, such as miRNAs profiling form different parts of the body and their interactions with cells and bacteria. Moreover, Artificial Intelligence (AI) and Machine Learning (ML) algorithms coupled to other multiomics data (i.e., big data) could help researchers to classify better the patient’s molecular characteristics and drive clinicians to identify personalized therapeutic strategies. Here, we highlight how the integration of “multiomic” data (i.e., miRNAs profiling and microbiota signature) with other omics (i.e., metabolomics, exposomics) analyzed by AI algorithms could improve the diagnostic and prognostic potential of specific biomarkers of disease.
Collapse
Affiliation(s)
- Alessandro Paolini
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | | | - Stefania Paola Bruno
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.,Department of Science, University Roma Tre, Rome, Italy
| | - Cristina Felli
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Chantal Muzi
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Sara Ahmadi Badi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| |
Collapse
|
7
|
Yang F, Zhang N, Chen Y, Yin J, Xu M, Cheng X, Ma R, Meng J, Du Y. Role of Non-Coding RNA in Neurological Complications Associated With Enterovirus 71. Front Cell Infect Microbiol 2022; 12:873304. [PMID: 35548469 PMCID: PMC9081983 DOI: 10.3389/fcimb.2022.873304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogenic virus that causes hand, foot, and mouth disease (HFMD). Studies have reported that EV71-induced infections including aseptic meningitis, acute flaccid paralysis, and even neurogenic pulmonary edema, can progress to severe neurological complications in infants, young children, and the immunosuppressed population. However, the mechanisms through which EV71 causes neurological diseases have not been fully explored. Non-coding RNAs (ncRNAs), are RNAs that do not code for proteins, play a key role in biological processes and disease development associated with EV71. In this review, we summarized recent advances concerning the impacts of ncRNAs on neurological diseases caused by interaction between EV71 and host, revealing the potential role of ncRNAs in pathogenesis, diagnosis and treatment of EV71-induced neurological complications.
Collapse
Affiliation(s)
- Feixiang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jiancai Yin
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Muchen Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Cheng
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ruyi Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| |
Collapse
|
8
|
Teoh SL, Das S. MicroRNAs in Various Body Fluids and its importance in Forensic Medicine. Mini Rev Med Chem 2022; 22:2332-2343. [PMID: 35240957 DOI: 10.2174/1389557522666220303141558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs which regulate gene expression. miRNAs have tissue-specific expression and are also present in various extracellular body fluids, including blood, tears, semen, vaginal fluid and urine. Additionally, expression of miRNAs in body fluids is linked to various pathological diseases, including cancer and neurodegenerative diseases. Examination of body fluids is important in forensic medicine as they serve as a valuable form of evidence. Due to its stability, miRNA offers an advantage for body fluid identification, which can be detected even after several months or from compromised samples. Identification of unique miRNA profiles for different body fluids enable the identification of these body fluid. Furthermore, miRNAs profiling can be used to estimate post-mortem interval. Various biochemical and molecular methods have been used for identification of miRNAs have shown promising results. We discuss different miRNAs as specific biomarkers and their clinical importance regarding different pathological conditions, as well as their medico-legal importance.
Collapse
Affiliation(s)
- Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
9
|
Jiang H, Zhang Z, Rao Q, Wang X, Wang M, Du T, Tang J, Long S, Zhang J, Luo J, Pan Y, Chen J, Ma J, Liu X, Fan M, Zhang T, Sun Q. The epidemiological characteristics of enterovirus infection before and after the use of enterovirus 71 inactivated vaccine in Kunming, China. Emerg Microbes Infect 2021; 10:619-628. [PMID: 33682641 PMCID: PMC8018479 DOI: 10.1080/22221751.2021.1899772] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enterovirus A71 (EV-A71) inactivated vaccines have been widely inoculated among children in Kunming City after it was approved. However, there was a large-scale outbreak of Enteroviruses (EVs) infection in Kunming, 2018. The epidemiological characteristics of HFMD and EVs were analysed during 2008–2018, which are before and three years after EV-A71 vaccine starting to use. The changes in infection spectrum were also investigated, especially for severe HFMD in 2018. The incidence of EV-A71 decreased dramatically after the EV-A71 vaccine starting use. The proportion of non-CV-A16/EV-A71 EVs positive patients raised to 77.17–85.82%, while, EV-A71 and CV-A16 only accounted for 3.41–7.24% and 6.94–19.42% in 2017 and 2018, respectively. CV-A6 was the most important causative agent in all clinical symptoms (severe HFMD, HFMD, Herpangina and fever), accounting from 42.13% to 62.33%. EV-A71 only account for 0.36–2.05%. In severe HFMD, CV-A6 (62.33%), CV-A10 (11.64%), and CV-A16 (10.96%) were the major causative agent in 2018. EV-A71 inactivated vaccine has a good protective effect against EV-A71 and induced EVs infection spectrum changefully. EV-A71 vaccine has no or insignificant cross-protection effect on CV-A6, CV-A10, and CV-A16. Herein, developing 4-valent combined vaccines is urgently needed.
Collapse
Affiliation(s)
- Hongchao Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Zhen Zhang
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Qing Rao
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Meifen Wang
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Tingyi Du
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Jiaolian Tang
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Shuying Long
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Juan Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Jia Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Jing Ma
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Xiaomei Liu
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Mao Fan
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Tiesong Zhang
- Kunming Children's Hospital, The Affiliated Children's Hospital of Kunming Medical University; Institute of Pediatric Disease Research in Yunnan, Kunming, People's Republic of China.,Yunnan Key Laboratory of Children's Major Disease Research, Kunming, People's Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| |
Collapse
|
10
|
Lin S, Yang L, Wang S, Weng B, Lin M. Bioinformatics Analysis of Key micro-RNAs and mRNAs under the Hand, Foot, and Mouth Disease Virus Infection. Pol J Microbiol 2021; 69:479-490. [PMID: 33574876 PMCID: PMC7812361 DOI: 10.33073/pjm-2020-052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
To clarify crucial key micro-RNAs and mRNAs associated with hand, foot, and mouth disease (HFMD) virus infection, we conducted this bioinformatics analysis from four GEO datasets. The following datasets were used for the analysis: GSE85829, GSE94551, GSE52780, and GSE45589. Differentially expressed genes (DEGs) were acquired, and the analysis of functional and pathway enrichment and the relative regulatory network were conducted. After screening common differentially expressed miRNAs (DE-miRNAs), five key miRNAs were acquired: miR-100-3p, miR-125a-3p, miR-1273g-3p, miR-5585-3p, and miR-671-5p. There were three common enriched GO terms between miRNA-derived prediction and mRNA-derived analysis: biosynthetic process, cytosol, and nucleoplasm. There was one common KEGG pathway, i.e., cell cycle shared between miRNA-based and mRNA-based enrichment. Using TarBase V8 in DIANA tools, we acquired 1,520 potential targets (mRNA) from the five key DE-miRNAs, among which the159 DE-mRNAs also included 11 DEGs. These common DEGs showed a PPI network mainly connected by SMC1A, SMARCC1, SF3B3, LIG1, and BRMS1L. Together, changes in five key miRNAs and 11 key mRNAs may play crucial roles in HFMD progression. A combination of these roles may benefit the early diagnosis and treatment of HFMD.
Collapse
Affiliation(s)
- Sheng Lin
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liu Yang
- Unimed Scientific Inc. Wuxi, Wuxi, China
| | - Shibiao Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Bin Weng
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Min Lin
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Min N, Ong YHB, Han AX, Ho SX, Yen EWP, Ban KHK, Maurer-Stroh S, Chong CY, Chu JJH. An epidemiological surveillance of hand foot and mouth disease in paediatric patients and in community: A Singapore retrospective cohort study, 2013-2018. PLoS Negl Trop Dis 2021; 15:e0008885. [PMID: 33566802 PMCID: PMC7901731 DOI: 10.1371/journal.pntd.0008885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/23/2021] [Accepted: 10/13/2020] [Indexed: 11/30/2022] Open
Abstract
Background While hand, foot and mouth disease (HFMD) is primarily self-resolving—soaring incidence rate of symptomatic HFMD effectuates economic burden in the Asia-Pacific region. Singapore has seen a conspicuous rise in the number of HFMD cases from 2010s. Here, we aims to identify the serology and genotypes responsible for such outbreaks in hospitals and childcare facilities. Methods We studied symptomatic paediatric HFMD cases from 2013 to 2018 in Singapore. Surveillance for subclinical enterovirus infections was also performed in childcares at the same time period. Results Genotyping 101 symptomatic HFMD samples revealed CV-A6 as the major etiological agent for recent outbreaks. We detected infections with CV-A6 (41.0%), EV-A71 (7%), CV-A16 (3.0%), coxsackievirus A2, CV-A2 (1.0%) and coxsackievirus A10, CV-A10 (1.0%). Phylogenetic analysis of local CV-A6 strains revealed a high level of heterogeneity compared against others worldwide, dissimilar to other HFMD causative enteroviruses for which the dominant strains and genotypes are highly region specific. We detected sub-clinical enterovirus infections in childcare centres; 17.1% (n = 245) tested positive for enterovirus in saliva, without HFMD indicative symptoms at the point of sample collection. Conclusions CV-A6 remained as the dominant HFMD causative strain in Singapore. Silent subclinical enteroviral infections were detected and warrant further investigations. In most cases, Hand Foot and Mouth Disease or HFMD typically manifest in mild fever along with sore throat and rashes on the body. From 2010 onwards, Singapore has seen a steady increase in the case number of HFMD reaching tens of thousands in recent years. HFMD is caused by intestinal viruses and in this study, we established with molecular surveillance methods that one of the causative serotypes, CV-A6 is the major etiological agent for HFMD in Singapore for the current decade. We discovered that circulating enterovirus, CV-A6 in Singapore share similarities in genetic make-up to those currently circulating strains found worldwide and found to be especially close to the ones in neighbouring countries. HFMD spreads from person to person, especially in high-risk areas such as childcare centers where children congregate. Therefore, we conducted saliva collections routinely from childcare centers across Singapore and found that subclinical enterovirus infections have also been prevailing in clusters, occurring silently and unnoticed.
Collapse
Affiliation(s)
- Nyo Min
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yasmin Hui Binn Ong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alvin X. Han
- Protein Sequence Analysis Group, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Si Xian Ho
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emmerie Wong Phaik Yen
- Infectious Disease Service, Department of Pediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Kenneth Hon Kim Ban
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Protein Sequence Analysis Group, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore, Singapore, Singapore
| | - Chia Yin Chong
- Infectious Disease Service, Department of Pediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- * E-mail:
| |
Collapse
|
12
|
Tribolet L, Kerr E, Cowled C, Bean AGD, Stewart CR, Dearnley M, Farr RJ. MicroRNA Biomarkers for Infectious Diseases: From Basic Research to Biosensing. Front Microbiol 2020; 11:1197. [PMID: 32582115 PMCID: PMC7286131 DOI: 10.3389/fmicb.2020.01197] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
In the pursuit of improved diagnostic tests for infectious diseases, several classes of molecules have been scrutinized as prospective biomarkers. Small (18–22 nucleotide), non-coding RNA transcripts called microRNAs (miRNAs) have emerged as promising candidates with extensive diagnostic potential, due to their role in numerous diseases, previously established methods for quantitation and their stability within biofluids. Despite efforts to identify, characterize and apply miRNA signatures as diagnostic markers in a range of non-infectious diseases, their application in infectious disease has advanced relatively slowly. Here, we outline the benefits that miRNA biomarkers offer to the diagnosis, management, and treatment of infectious diseases. Investigation of these novel biomarkers could advance the use of personalized medicine in infectious disease treatment, which raises important considerations for validating their use as diagnostic or prognostic markers. Finally, we discuss new and emerging miRNA detection platforms, with a focus on rapid, point-of-care testing, to evaluate the benefits and obstacles of miRNA biomarkers for infectious disease.
Collapse
Affiliation(s)
- Leon Tribolet
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Emily Kerr
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Christopher Cowled
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Andrew G D Bean
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Cameron R Stewart
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Megan Dearnley
- Diagnostics, Surveillance and Response (DSR), Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Ryan J Farr
- Diagnostics, Surveillance and Response (DSR), Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| |
Collapse
|
13
|
Wang CJ, Guo HX, Han DX, Yu ZW, Zheng Y, Jiang H, Gao Y, Yuan B, Zhang JB. Pituitary tissue-specific miR-7a-5p regulates FSH expression in rat anterior adenohypophyseal cells. PeerJ 2019; 7:e6458. [PMID: 30993031 PMCID: PMC6461031 DOI: 10.7717/peerj.6458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
The follicle-stimulating hormone (FSH), which is synthesized and secreted by the anterior pituitary gland, plays an important role in regulating reproductive processes. In this study, using the TargetScan program, we predicted that microRNAs (miRNAs) regulate FSH secretion. Dual-luciferase reporter assays were performed and identified miR-7a-5p. MiR-7a-5p has been reported to regulate diverse cellular functions. However, it is unclear whether miR-7a-5p binds to mRNAs and regulates reproductive functions. Therefore, we constructed a suspension of rat anterior pituitary cells and cultured them under adaptive conditions, transfected miR-7a-5p mimics or inhibitor into the cell suspension and detected expression of the FSHb gene. The results demonstrated that miR-7a-5p downregulated FSHb expression levels, while treatment with miR-7a-5p inhibitors upregulated FSHb expression levels relative to those of negative control groups, as shown by quantitative PCR analysis. The results were confirmed with a subsequent experiment showing that FSH secretion was reduced after treatment with mimics and increased in the inhibitor groups, as shown by enzyme-linked immunosorbent assay. Our results indicated that miR-7a-5p downregulates FSHb expression levels, resulting in decreased FSH synthesis and secretion, which demonstrates the important role of miRNAs in the regulation of FSH and animal reproduction.
Collapse
Affiliation(s)
- Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Ze-Wen Yu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|