1
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Tuerhong N, Yang Y, Wang C, Huang P, Li Q. Interactions between platelets and the cancer immune microenvironment. Crit Rev Oncol Hematol 2024; 199:104380. [PMID: 38718939 DOI: 10.1016/j.critrevonc.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Cancer is a leading cause of death in both China and developed countries due to its high incidence and low cure rate. Immune function is closely linked to the development and progression of tumors. Platelets, which are primarily known for their role in hemostasis, also play a crucial part in the spread and progression of tumors through their interaction with the immune microenvironment. The impact of platelets on tumor growth and metastasis depends on the type of cancer and treatment method used. This article provides an overview of the relationship between platelets and the immune microenvironment, highlighting how platelets can either protect or harm the immune response and cancer immune escape. We also explore the potential of available platelet-targeting strategies for tumor immunotherapy, as well as the promise of new platelet-targeted tumor therapy methods through further research.
Collapse
Affiliation(s)
- Nuerye Tuerhong
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou university, No. 222 South Tianshui Road, Gansu, China
| | - Peng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Samaddar S, Buckles D, Saha S, Zhang Q, Bansal A. Translating Molecular Biology Discoveries to Develop Targeted Cancer Interception in Barrett's Esophagus. Int J Mol Sci 2023; 24:11318. [PMID: 37511077 PMCID: PMC10379200 DOI: 10.3390/ijms241411318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a rapidly increasing lethal tumor. It commonly arises from a metaplastic segment known as Barrett's esophagus (BE), which delineates the at-risk population. Ample research has elucidated the pathogenesis of BE and its progression from metaplasia to invasive carcinoma; and multiple molecular pathways have been implicated in this process, presenting several points of cancer interception. Here, we explore the mechanisms of action of various agents, including proton pump inhibitors, non-steroidal anti-inflammatory drugs, metformin, and statins, and explain their roles in cancer interception. Data from the recent AspECT trial are discussed to determine how viable a multipronged approach to cancer chemoprevention would be. Further, novel concepts, such as the repurposing of chemotherapeutic drugs like dasatinib and the prevention of post-ablation BE recurrence using itraconazole, are discussed.
Collapse
Affiliation(s)
- Sohini Samaddar
- Department of Internal Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Daniel Buckles
- Department of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Souvik Saha
- Department of Internal Medicine, University of Kansas Health System, Kansas City, KS 66160, USA
| | - Qiuyang Zhang
- Center for Esophageal Diseases, Department of Medicine, Baylor University Medical Center, Dallas, TX 75246, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX 75246, USA
| | - Ajay Bansal
- Department of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Jiangang S, Nayoung K, Hongfang W, Junda L, Li C, Xuefeng B, Mingsong L. COX-2 strengthens the effects of acid and bile salts on human esophageal cells and Barrett esophageal cells. BMC Mol Cell Biol 2022; 23:19. [PMID: 35413817 PMCID: PMC9004192 DOI: 10.1186/s12860-022-00418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Aims Investigate the effect and mechanism of COX-2 on viability, intestinal metaplasia, and atypia in human esophageal squamous and Barrett esophageal cell lines. Methods Human esophageal squamous and Barrett esophageal cell lines were transfected with a COX-2 expression vector and a COX-2 siRNA, and then were treated with acid, bile salts, and a mixture of both. Cell viability, the expression of COX-2, NF-κB(p65), CDX-2, MUC2, c-myb, and BMP-4, and the morphology and microstructure of cells were then observed. Results The viability of COX-2 overexpressed cells was significantly higher than that of control cells, while the viability of COX-2 siRNA-treated cells was significantly lower than that of control cells. Intestinal metaplasia and atypia were observed in cells overexpressing COX-2. Acid, bile salts, and their mixture inhibited the viability of these two cell lines, but the inhibitory effect of the mixture was stronger than a single treatment in either. SiRNA mediated knockdown of COX-2 strengthened the antiproliferative effects of the mixture on HET-1A and BAR-T cells. The expression of p-p65, CDX-2, and BMP-4 was positively correlated with COX-2 expression, while the expression levels of p65, MUC2, and c-myb remained unchanged. Conclusion COX-2 may influence the viability, atypia, and intestinal metaplasia of human esophageal cells and Barrett esophageal cells. Activation of the p-p65, CDX-2, and BMP-4 signaling pathways by COX-2 may be part of this mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00418-5.
Collapse
Affiliation(s)
- Shen Jiangang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Gastroenterology, Shenzhen Longhua District People' Hospital, Shenzhen, 518109, China
| | - Kang Nayoung
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wang Hongfang
- Department of Gastroenterology, Shenzhen Luohu People' Hospital, Shenzhen, 518003, China
| | - Li Junda
- Department of Gastroenterology, Shenzhen Longhua District People' Hospital, Shenzhen, 518109, China
| | - Chen Li
- Department of Gastroenterology, Shenzhen Longhua District People' Hospital, Shenzhen, 518109, China
| | - Bai Xuefeng
- Department of Pathology and Comprehensive Cancer Center, Ohio State University Medical Centre, 129 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210, USA
| | - Li Mingsong
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Wilson DJ, DuBois RN. Role of prostaglandin E2 in the progression of gastrointestinal cancer. Cancer Prev Res (Phila) 2022; 15:355-363. [PMID: 35288737 DOI: 10.1158/1940-6207.capr-22-0038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
Abstract
Chronic inflammation is a well-established risk factor for several diseases, including cancer. It influences tumor cell biology and the type and density of immune cells in the tumor microenvironment (TME), promoting cancer development. While pro-inflammatory cytokines and chemokines modulate cancer development, emerging evidence has shown that prostaglandin E2 (PGE2) is a known mediator connecting chronic inflammation to cancerization. This review highlights recent advances in our understanding of how the elevation of PGE2 production promotes gastrointestinal cancer initiation, progression, invasion, metastasis, and recurrence, including modulation of immune checkpoint signaling and the type and density of immune cells in the tumor/tissue microenvironment.
Collapse
Affiliation(s)
- David Jay Wilson
- Medical University of South Carolina, Greenville, South Carolina, United States
| | - Raymond N DuBois
- Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Wang Q, Morris RJ, Bode AM, Zhang T. Prostaglandin Pathways: Opportunities for Cancer Prevention and Therapy. Cancer Res 2021; 82:949-965. [PMID: 34949672 DOI: 10.1158/0008-5472.can-21-2297] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Because of profound effects observed in carcinogenesis, prostaglandins (PGs), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota
| | | |
Collapse
|
8
|
Wang F, Zhang L, Xu Y, Xie Y, Li S. Comprehensive Analysis and Identification of Key Driver Genes for Distinguishing Between Esophageal Adenocarcinoma and Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:676156. [PMID: 34124063 PMCID: PMC8194272 DOI: 10.3389/fcell.2021.676156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Esophageal cancer (EC) is one of the deadliest cancers in the world. However, the mechanism that drives the evolution of EC is still unclear. On this basis, we identified the key genes and molecular pathways that may be related to the progression of esophageal adenocarcinoma and squamous cell carcinoma to find potential markers or therapeutic targets. Methods: GSE26886 were obtained from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) among normal samples, EA, and squamous cell carcinoma were determined using R software. Then, potential functions of DEGs were determined using the Database for Annotation, Visualization and Integrated Discovery (DAVID). The STRING software was used to identify the most important modules in the protein-protein interaction (PPI) network. The expression levels of hub genes were confirmed using UALCAN database. Kaplan-Meier plotters were used to confirm the correlation between hub genes and outcomes in EC. Results: In this study, we identified 1,098 genes induced in esophageal adenocarcinoma (EA) and esophageal squamous cell carcinoma (ESCC), and 669 genes were reduced in EA and ESCC, suggesting that these genes may play an important role in the occurrence and development of EC tumors. Bioinformatics analysis showed that these genes were involved in cell cycle regulation and p53 and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. In addition, we identified 147 induced genes and 130 reduced genes differentially expressed in EA and ESCC. The expression of ESCC in the EA group was different from that in the control group. By PPI network analysis, we identified 10 hub genes, including GNAQ, RGS5, MAPK1, ATP1B1, HADHA, HSDL2, SLC25A20, ACOX1, SCP2, and NLN. TCGA validation showed that these genes were present in the dysfunctional samples between EC and normal samples and between EA and ESCC. Kaplan-Meier analysis showed that MAPK1, ACOX1, SCP2, and NLN were associated with overall survival in patients with ESCC and EA. Conclusions: In this study, we identified a series of DEGs between EC and normal samples and between EA and ESCC samples. We also identified 10 key genes involved in the EC process. We believe that this study may provide a new biomarker for the prognosis of EA and ESCC.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Zhang
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yue Xu
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yilin Xie
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shenglei Li
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Kunze B, Middelhoff M, Maurer HC, Agibalova T, Anand A, Bührer AM, Fang HY, Baumeister T, Steiger K, Strangmann J, Schmid RM, Wang TC, Quante M. Notch signaling drives development of Barrett's metaplasia from Dclk1-positive epithelial tuft cells in the murine gastric mucosa. Sci Rep 2021; 11:4509. [PMID: 33627749 PMCID: PMC7904766 DOI: 10.1038/s41598-021-84011-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Barrett's esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC), but its cellular origin and mechanism of neoplastic progression remain unresolved. Notch signaling, which plays a key role in regulating intestinal stem cell maintenance, has been implicated in a number of cancers. The kinase Dclk1 labels epithelial post-mitotic tuft cells at the squamo-columnar junction (SCJ), and has also been proposed to contribute to epithelial tumor growth. Here, we find that genetic activation of intracellular Notch signaling in epithelial Dclk1-positive tuft cells resulted in the accelerated development of metaplasia and dysplasia in a mouse model of BE (pL2.Dclk1.N2IC mice). In contrast, genetic ablation of Notch receptor 2 in Dclk1-positive cells delayed BE progression (pL2.Dclk1.N2fl mice), and led to increased secretory cell differentiation. The accelerated BE progression in pL2.Dclk1.N2IC mice correlated with changes to the transcriptomic landscape, most notably for the activation of oncogenic, proliferative pathways in BE tissues, in contrast to upregulated Wnt signalling in pL2.Dclk1.N2fl mice. Collectively, our data show that Notch activation in Dclk1-positive tuft cells in the gastric cardia can contribute to BE development.
Collapse
Affiliation(s)
- Bettina Kunze
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany.
| | - H Carlo Maurer
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Tatiana Agibalova
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Akanksha Anand
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Anne-Marie Bührer
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Hsin-Yu Fang
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Theresa Baumeister
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Julia Strangmann
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Timothy C Wang
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Michael Quante
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany. .,Klinik für Innere Medizin II, Gastrointestinale Onkologie, Universitätsklinikum Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Moayyedi P, El-Serag HB. Current Status of Chemoprevention in Barrett's Esophagus. Gastrointest Endosc Clin N Am 2021; 31:117-130. [PMID: 33213791 DOI: 10.1016/j.giec.2020.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Candidates for chemoprevention in Barrett's esophagus have long been suggested and there has been observational data to support many drugs, including statins, hormone replacement therapy, metformin, proton pump inhibitor therapy, and aspirin. Proton pump inhibitor therapy and aspirin are the most promising agents. Data suggest that aspirin and proton pump inhibitor therapy can decrease the risk of neoplastic progression in Barrett's esophagus. Further, the combination of aspirin and proton pump inhibitor therapy decrease all-cause mortality by approximately 33%. Future guideline groups need to evaluate the evidence rigorously, but the combination of proton pump inhibitor therapy and aspirin is promising.
Collapse
Affiliation(s)
- Paul Moayyedi
- McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Hashem B El-Serag
- Baylor College of Medicine Medical Center, McNair Campus (Clinic), 7200 Cambridge Street, 8th Floor, Suite 8B, Houston, TX 77030, USA
| |
Collapse
|