1
|
Chen T, Lin X, Lu S, Li B. V-ATPase in cancer: mechanistic insights and therapeutic potentials. Cell Commun Signal 2024; 22:613. [PMID: 39707503 DOI: 10.1186/s12964-024-01998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Vacuolar-type H+-ATPase (V-ATPase) is a crucial proton pump that plays an essential role in maintaining intracellular pH homeostasis and a variety of physiological processes. This review provides an in-depth exploration of the structural components, functional mechanisms, and regulatory modes of V-ATPase in cancer cells. Comprising two main domains, V1 and V0, V-ATPase drives the proton pump through ATP hydrolysis, sustaining the pH balance within the cell and organelles. In cancer cells, the enhanced activity of V-ATPase is closely associated with the proliferation and metastasis of tumor cells, and it promotes the growth and invasion of tumor cells by regulating pH values in the tumor microenvironment. Moreover, the interaction between V-ATPase and key metabolic regulatory factors, the mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK), impacts the metabolic state of cancer cells. The role of V-ATPase in tumor drug resistance and its regulatory mechanism in non-canonical autophagy offer new perspectives and potential targets for cancer therapy. Future research directions will focus on the specific mechanisms of action of V-ATPase in the tumor microenvironment and how to translate its inhibitors into clinical applications, providing significant scientific evidence for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, China.
| | - Xiaotan Lin
- Department of Family Planning, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Shuo Lu
- School of Basic Medicine, Guangdong Medical University, DongGuan, China
| | - Bo Li
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
2
|
Huang TX, Huang HS, Dong SW, Chen JY, Zhang B, Li HH, Zhang TT, Xie Q, Long QY, Yang Y, Huang LY, Zhao P, Bi J, Lu XF, Pan F, Zou C, Fu L. ATP6V0A1-dependent cholesterol absorption in colorectal cancer cells triggers immunosuppressive signaling to inactivate memory CD8 + T cells. Nat Commun 2024; 15:5680. [PMID: 38971819 PMCID: PMC11227557 DOI: 10.1038/s41467-024-50077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Obesity shapes anti-tumor immunity through lipid metabolism; however, the mechanisms underlying how colorectal cancer (CRC) cells utilize lipids to suppress anti-tumor immunity remain unclear. Here, we show that tumor cell-intrinsic ATP6V0A1 drives exogenous cholesterol-induced immunosuppression in CRC. ATP6V0A1 facilitates cholesterol absorption in CRC cells through RAB guanine nucleotide exchange factor 1 (RABGEF1)-dependent endosome maturation, leading to cholesterol accumulation within the endoplasmic reticulum and elevated production of 24-hydroxycholesterol (24-OHC). ATP6V0A1-induced 24-OHC upregulates TGF-β1 by activating the liver X receptor (LXR) signaling. Subsequently, the release of TGF-β1 into the tumor microenvironment by CRC cells activates the SMAD3 pathway in memory CD8+ T cells, ultimately suppressing their anti-tumor activities. Moreover, we identify daclatasvir, a clinically used anti-hepatitis C virus (HCV) drug, as an ATP6V0A1 inhibitor that can effectively enhance the memory CD8+ T cell activity and suppress tumor growth in CRC. These findings shed light on the potential for ATP6V0A1-targeted immunotherapy in CRC.
Collapse
Affiliation(s)
- Tu-Xiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Hui-Si Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Shao-Wei Dong
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Jia-Yan Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Bin Zhang
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
| | - Hua-Hui Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, Guangdong, China
| | - Tian-Tian Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Qiang Xie
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Qiao-Yun Long
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Lin-Yuan Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Pan Zhao
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
| | - Jiong Bi
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xi-Feng Lu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, Guangdong, China
| | - Chang Zou
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China.
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518000, Guangdong, China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
3
|
Baruah B, Dutta MP, Banerjee S, Bhattacharyya DK. EnsemBic: An effective ensemble of biclustering to identify potential biomarkers of esophageal squamous cell carcinoma. Comput Biol Chem 2024; 110:108090. [PMID: 38759483 DOI: 10.1016/j.compbiolchem.2024.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024]
Abstract
The development of functionally enriched and biologically competent biclustering algorithm is essential for extracting hidden information from massive biological datasets. This paper presents a novel biclustering ensemble called EnsemBic based on p-value, which calculates the functional similarity of genetic associations. To validate the effectiveness and robustness of EnsemBic, we apply three well-known biclustering techniques, viz. Laplace Prior, iBBiG, and xMotif to implement EnsemBic and have been compared using different leading parameters. It is observed that the EnsemBic outperforms its competing algorithms in several prominent functional and biological measures. Next, the biclusters obtained from EnsemBic are used to identify potential biomarkers of Esophageal Squamous Cell Carcinoma (ESCC) by exploring topological and biological relevance with reference to the elite genes, attained from genecards. Finally, we discover that the genes F2RL3, APPL1, CALM1, IFNGR1, LPAR1, ANGPT2, ARPC2, CGN, CLDN7, ATP6V1C2, CEACAM1, FTL, PLAU,PSMB4, and EPHB2 carry both the topological and biological significance of previously established ESCC elite genes. Therefore, we declare the aforementioned genes as potential biomarkers of ESCC.
Collapse
Affiliation(s)
- Bikash Baruah
- Dept. of Computer Science and Engineering, NIT Arunachal Pradesh, India
| | - Manash P Dutta
- Dept. of Computer Science & Information Technology, Cotton University, Guwahati, Assam, India.
| | | | - Dhruba K Bhattacharyya
- Dept. of Computer Science and Engineering, Tezpur University, School of Engineering, Tezpur, India
| |
Collapse
|
4
|
Mo S, Liu T, Zhou H, Huang J, Zhao L, Lu F, Kuang Y. ATP6V1B1 regulates ovarian cancer progression and cisplatin sensitivity through the mTOR/autophagy pathway. Mol Cell Biochem 2024:10.1007/s11010-024-05025-w. [PMID: 38735913 DOI: 10.1007/s11010-024-05025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Early detection and effective chemotherapy for ovarian cancer, a serious gynecological malignancy, require further progress. This study aimed to investigate the molecular mechanism of ATPase H+-Transporting V1 Subunit B1 (ATP6V1B1) in ovarian cancer development and chemoresistance. Our data show that ATP6V1B1 is upregulated in ovarian cancer and correlated with decreased progression-free survival. Gain- and loss-of-function experiments demonstrated that ATP6V1B1 promotes the proliferation, migration, and invasion of ovarian cancer cells in vitro, while ATP6V1B1 knockout inhibits tumor growth in vivo. In addition, knocking down ATP6V1B1 increases the sensitivity of ovarian cancer cells to cisplatin. Mechanistic studies showed that ATP6V1B1 regulates the activation of the mTOR/autophagy pathway. Overall, our study confirmed the oncogenic role of ATP6V1B1 in ovarian cancer and revealed that ATP6V1B1 promotes ovarian cancer progression via the mTOR/autophagy axis.
Collapse
Affiliation(s)
- Shien Mo
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Tingji Liu
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haiqin Zhou
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Junning Huang
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Zhao
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fangfang Lu
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Kuang
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China.
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Tan S, Yu H, Xu Y, Zhao Y, Lou G. Hypoxia-induced PPFIA4 accelerates the progression of ovarian cancer through glucose metabolic reprogramming. Med Oncol 2023; 40:272. [PMID: 37596446 DOI: 10.1007/s12032-023-02144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023]
Abstract
Dysregulated glycolysis promotes growth and metastasis, which is one of the metabolic characteristics of ovarian cancer. Based on bioinformatics analysis, liprin-alpha-4 (PPFIA4) is a gene associated with hypoxia, and we aimed to investigate the potential mechanism of PPFIA4 during the reprogramming of glucose metabolism in ovarian cancer cells. Currently, the cell viability of ovarian cancer cells under the hypoxia treatment was evaluated by CCK-8 assay, and cell migration and invasion were measured by transwell assay and western blot. The effects of hypoxia treatment on glucose uptake, lactate production, extracellular acidification rate (ECAR), adenosine triphosphate (ATP), reactive oxygen species (ROS), Nicotinamide adenine dinucleotide phosphate (NADPH) and its oxidized form NADP + , and oxygen consumption rate (OCR) in ovarian cancer cells were examined. Then PPFIA4 was identified through bioinformatic analysis, and the regulatory effects of PPFIA4 on glucose metabolic reprogramming. Our data suggested that hypoxia enhanced the migration and invasion ability of ovarian cancer cells in vitro, and promoted the glucose metabolic reprogramming of ovarian cancer cells. Ovarian cancer cell viability, migration, and invasion were inhibited after PPFIA4 knockdown. Inhibition of PPFIA4 inhibited hypoxic-induced glucose metabolic reprogramming in ovarian cancer cells. In addition, PPFIA4 was found to bind to hypoxia-inducible factor 1alpha (HIF1A), and HIF1A prominently induced PPFIA4 expression. Collectively, HIF1A mediated upregulation of PPFIA4 and promoted reprogramming of glucose metabolism in ovarian cancer cells. Therefore, PPFIA4 may be a therapeutic target for ovarian cancer intervention.
Collapse
Affiliation(s)
- Shu Tan
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Nangang District, Harbin City, 150081, Heilongjiang Province, China
| | - Hao Yu
- Nangang District of Heilongjiang Provincial Hospital, Harbin, China
| | - Ye Xu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Nangang District, Harbin City, 150081, Heilongjiang Province, China
| | - Yue Zhao
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Nangang District, Harbin City, 150081, Heilongjiang Province, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Nangang District, Harbin City, 150081, Heilongjiang Province, China.
| |
Collapse
|
6
|
Yi Q, Zhao Y, Xia R, Wei Q, Chao F, Zhang R, Bian P, Lv L. TRIM29 hypermethylation drives esophageal cancer progression via suppression of ZNF750. Cell Death Discov 2023; 9:191. [PMID: 37365152 DOI: 10.1038/s41420-023-01491-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Esophageal cancer (ESCA) is the seventh most frequent and deadly neoplasm. Due to the lack of early diagnosis and high invasion/metastasis, the prognosis of ESCA remains very poor. Herein, we identify skin-related signatures as the most deficient signatures in invasive ESCA, which are regulated by the transcription factor ZNF750. Of note, we find that TRIM29 level strongly correlated with the expression of many genes in the skin-related signatures, including ZNF750. TRIM29 is significantly down-regulated due to hypermethylation of its promoter in both ESCA and precancerous lesions compared to normal tissues. Low TRIM29 expression and high methylation levels of its promoter are associated with malignant progression and poor clinical outcomes in ESCA patients. Functionally, TRIM29 overexpression markedly hinders proliferation, migration, invasion, and epithelial-mesenchymal transition of esophageal cancer cells, whereas opposing results are observed when TRIM29 is silenced in vitro. In addition, TRIM29 inhibits metastasis in vivo. Mechanistically, TRIM29 downregulation suppresses the expression of the tumor suppressor ZNF750 by activating the STAT3 signaling pathway. Overall, our study demonstrates that TRIM29 expression and its promoter methylation status could be potential early diagnostic and prognostic markers. It highlights the role of the TRIM29-ZNF750 signaling axis in modulating tumorigenesis and metastasis of esophageal cancer.
Collapse
Affiliation(s)
- Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Yujia Zhao
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of education training, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ran Xia
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
| | - Qinqin Wei
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China
| | - Rui Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031, Hefei, Anhui, China
| | - Po Bian
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China.
| | - Lei Lv
- Department of Cancer Epigenetics Program, Anhui Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230031, Hefei, Anhui, China.
| |
Collapse
|
7
|
Li G, Huang J, Chen S, He Y, Wang Z, Peng J. High Expression of ATP6V1C2 Predicts Unfavorable Overall Survival in Patients With Colon Adenocarcinoma. Front Genet 2022; 13:930876. [PMID: 36212133 PMCID: PMC9532742 DOI: 10.3389/fgene.2022.930876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
Aims: Colon adenocarcinoma (COAD) is responsible for 90% of all colorectal cancer cases and is one of the most common causes of cancer-related deaths worldwide. ATP6V1s (cytosolic V1 domain of vacuolar adenosine triphosphatase) participate in the biological process of transporting hydrogen ions and are implicated in tumor growth and metastasis. ATP6V1C2 as a family member has been documented to associate with esophageal carcinoma and renal clear cell carcinoma, while its roles in COAD remain elusive. Methods: The expression status, potential molecular mechanism, and prognostic value of ATP6V1C2 in COAD were investigated using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. In addition, its biological roles in COAD were explored through in vitro studies. Results: ATP6V1C2 showed a significantly higher expression level in COAD compared with matched non-cancerous tissues. High expression of ATP6V1C2 predicted a shorter overall survival both in TCGA and GEO COAD datasets, and ATP6V1C2 was identified as an independent factor associated with overall survival in COAD. Bioinformatic analyses showed that high expression of ATP6V1C2 was associated with high epithelial–mesenchymal transition (EMT) score and Wnt signaling pathway was significantly enriched from differentially expressed genes between ATP6V1C2-high and -low group. We also found that high expression of ATP6V1C2 could decrease pathway activity of CD8 T effector implicated in tumor microenvironment (TME). In vitro study revealed that ATP6V1C2 knockdown resulted in aberrant expression of Wnt- and EMT-related genes and inhibited COAD cell proliferation and growth. Conclusion: This is the first study to reveal the molecular functions of ATP6V1C2 in COAD. Our study suggests that overexpressed ATP6V1C2 might promote EMT by activating Wnt signaling pathway, resulting in cancer metastasis and poor prognosis. This study paves the way for understanding potential molecular mechanisms and therapeutic perspectives in COAD.
Collapse
Affiliation(s)
- Guanghua Li
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Jiahua Huang
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Sile Chen
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Yulong He
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
- Digestive Medical Center, Sun Yat-sen University Seventh Affiliated Hospital, Shenzhen, China
- *Correspondence: Yulong He, ; Zhixiong Wang, ; Jianjun Peng,
| | - Zhixiong Wang
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
- *Correspondence: Yulong He, ; Zhixiong Wang, ; Jianjun Peng,
| | - Jianjun Peng
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
- *Correspondence: Yulong He, ; Zhixiong Wang, ; Jianjun Peng,
| |
Collapse
|
8
|
Naghsh-Nilchi A, Ebrahimi Ghahnavieh L, Dehghanian F. Construction of miRNA-lncRNA-mRNA co-expression network affecting EMT-mediated cisplatin resistance in ovarian cancer. J Cell Mol Med 2022; 26:4530-4547. [PMID: 35810383 PMCID: PMC9357632 DOI: 10.1111/jcmm.17477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial-mesenchymal transition (EMT) in this resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial-like and mesenchymal-like cells, the module identification analysis was performed using weighted gene co-expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein-protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co-expression of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non-preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co-expression pattern of the brown module's hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.
Collapse
Affiliation(s)
- Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
9
|
Qi C, Lei L, Hu J, Wang G, Liu J, Ou S. Identification of a five-gene signature deriving from the vacuolar ATPase (V-ATPase) sub-classifies gliomas and decides prognoses and immune microenvironment alterations. Cell Cycle 2022; 21:1294-1315. [PMID: 35266851 PMCID: PMC9132400 DOI: 10.1080/15384101.2022.2049157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aberrant expression of coding genes of the V-ATPase subunits has been reported in glioma patients that can activate oncogenic pathways and result in worse prognosis. However, the predictive effect of a single gene is not specific or sensitive enough. In this study, by using a series of bioinformatics analyses, we identified five coding genes (ATP6V1C2, ATP6V1G2, TCIRG1, ATP6AP1 and ATP6AP2) of the V-ATPase that were related to glioma patient prognosis. Based on the expression of these genes, glioma patients were sub-classified into different prognosis clusters, of which C1 cluster performed better prognosis; however, C2 cluster showed more malignant phenotypes with oncogenic and immune-related pathway activation. The single-cell RNA-seq data revealed that ATP6AP1, ATP6AP2, ATP6V1G2 and TCIRG1 might be cell-type potential markers. Copy number variation and DNA promoter methylation potentially regulate these five gene expressions. A risk score model consisted of these five genes effectively predicted glioma prognosis and was fully validated by six independent datasets. The risk scores also showed a positive correlation with immune checkpoint expression. Importantly, glioma patients with high-risk scores presented resistance to traditional treatment. We also revealed that more inhibitory immune cells infiltration and higher rates of “non-response” to immune checkpoint blockade (ICB) treatment in the high-risk score group. In conclusion, our study identified a five-gene signature from the V-ATPase that could sub-classify gliomas into different phenotypes and their abnormal expression was regulated by distinct mechanisms and accompanied with immune microenvironment alterations potentially act as a biomarker for ICB treatment.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Neurosurgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Lei
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning, China
| | - Jinqu Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shaowu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Wu X, Zhang H, Sui Z, Gao Y, Gong L, Chen C, Ma Z, Tang P, Yu Z. CXCR4 promotes the growth and metastasis of esophageal squamous cell carcinoma as a critical downstream mediator of HIF-1α. Cancer Sci 2022; 113:926-939. [PMID: 34990040 PMCID: PMC8898735 DOI: 10.1111/cas.15265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022] Open
Abstract
C–X–C motif chemokine receptor 4 (CXCR4) belongs to the CXC chemokine receptor family, which mediates the metastasis of tumor cells and promotes the malignant development of cancers. However, its biological role and regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we found that CXCR4 expression was associated with lymph node metastasis and a poor prognosis. In vitro and in vivo studies demonstrated that CXCR4 overexpression promoted ESCC cell proliferation, migration, invasion, and survival, whereas silencing CXCR4 induced the opposite effects. Mechanically, HIF‐1α transcriptionally regulates CXCR4 expression by binding to a hypoxia response element in its promoter. HIF‐1α‐induced ESCC cell migration and invasion were reversed by CXCR4 knockdown or treatment with MSX‐122, a CXCR4 antagonist. Collectively, these data revealed that the HIF‐1α/CXCR4 axis plays key roles in ESCC growth and metastasis and indicated CXCR4 as a potential target for ESCC treatment.
Collapse
Affiliation(s)
- Xianxian Wu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, 518116, China
| | - Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhilin Sui
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yongyin Gao
- Department of Cardio-pulmonary Functions, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Lei Gong
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chuangui Chen
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhao Ma
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, 518116, China
| |
Collapse
|
11
|
Chen F, Kang R, Liu J, Tang D. The V-ATPases in cancer and cell death. Cancer Gene Ther 2022; 29:1529-1541. [PMID: 35504950 PMCID: PMC9063253 DOI: 10.1038/s41417-022-00477-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane ATPases are membrane-bound enzyme complexes and ion transporters that can be divided into F-, V-, and A-ATPases according to their structure. The V-ATPases, also known as H+-ATPases, are large multi-subunit protein complexes composed of a peripheral domain (V1) responsible for the hydrolysis of ATP and a membrane-integrated domain (V0) that transports protons across plasma membrane or organelle membrane. V-ATPases play a fundamental role in maintaining pH homeostasis through lysosomal acidification and are involved in modulating various physiological and pathological processes, such as macropinocytosis, autophagy, cell invasion, and cell death (e.g., apoptosis, anoikis, alkaliptosis, ferroptosis, and lysosome-dependent cell death). In addition to participating in embryonic development, V-ATPase pathways, when dysfunctional, are implicated in human diseases, such as neurodegenerative diseases, osteopetrosis, distal renal tubular acidosis, and cancer. In this review, we summarize the structure and regulation of isoforms of V-ATPase subunits and discuss their context-dependent roles in cancer biology and cell death. Updated knowledge about V-ATPases may enable us to design new anticancer drugs or strategies.
Collapse
Affiliation(s)
- Fangquan Chen
- grid.417009.b0000 0004 1758 4591DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 China
| | - Rui Kang
- grid.267313.20000 0000 9482 7121Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jiao Liu
- grid.417009.b0000 0004 1758 4591DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120 China
| | - Daolin Tang
- grid.267313.20000 0000 9482 7121Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
12
|
Chu A, Zirngibl RA, Manolson MF. The V-ATPase a3 Subunit: Structure, Function and Therapeutic Potential of an Essential Biomolecule in Osteoclastic Bone Resorption. Int J Mol Sci 2021; 22:ijms22136934. [PMID: 34203247 PMCID: PMC8269383 DOI: 10.3390/ijms22136934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.
Collapse
|
13
|
Galenkamp KMO, Commisso C. The Golgi as a "Proton Sink" in Cancer. Front Cell Dev Biol 2021; 9:664295. [PMID: 34055797 PMCID: PMC8155353 DOI: 10.3389/fcell.2021.664295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer cells exhibit increased glycolytic flux and adenosine triphosphate (ATP) hydrolysis. These processes increase the acidic burden on the cells through the production of lactate and protons. Nonetheless, cancer cells can maintain an alkaline intracellular pH (pHi) relative to untransformed cells, which sets the stage for optimal functioning of glycolytic enzymes, evasion of cell death, and increased proliferation and motility. Upregulation of plasma membrane transporters allows for H+ and lactate efflux; however, recent evidence suggests that the acidification of organelles can contribute to maintenance of an alkaline cytosol in cancer cells by siphoning off protons, thereby supporting tumor growth. The Golgi is such an acidic organelle, with resting pH ranging from 6.0 to 6.7. Here, we posit that the Golgi represents a "proton sink" in cancer and delineate the proton channels involved in Golgi acidification and the ion channels that influence this process. Furthermore, we discuss ion channel regulators that can affect Golgi pH and Golgi-dependent processes that may contribute to pHi homeostasis in cancer.
Collapse
Affiliation(s)
- Koen M. O. Galenkamp
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Cosimo Commisso
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
14
|
Whitton B, Okamoto H, Rose-Zerilli M, Packham G, Crabb SJ. V-ATPase Inhibition Decreases Mutant Androgen Receptor Activity in Castrate-resistant Prostate Cancer. Mol Cancer Ther 2021; 20:739-748. [PMID: 33563753 PMCID: PMC7611189 DOI: 10.1158/1535-7163.mct-20-0662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/26/2020] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer is critically dependent on androgen receptor (AR) signaling. Despite initial responsiveness to androgen deprivation, most patients with advanced prostate cancer subsequently progress to a clinically aggressive castrate-resistant prostate cancer (CRPC) phenotype, typically associated with expression of splice-variant or mutant AR forms. Although current evidence suggests that the vacuolar-ATPase (V-ATPase), a multiprotein complex that catalyzes proton transport across intracellular and plasma membranes, influences wild-type AR function, the effect of V-ATPase inhibition on variant AR function is unknown.Inhibition of V-ATPase reduced AR function in wild-type and mutant AR luciferase reporter models. In hormone-sensitive prostate cancer cell lines (LNCaP, DuCaP) and mutant AR CRPC cell lines (22Rv1, LNCaP-F877L/T878A), V-ATPase inhibition using bafilomycin-A1 and concanamycin-A reduced AR expression, and expression of AR target genes, at mRNA and protein levels. Furthermore, combining chemical V-ATPase inhibition with the AR antagonist enzalutamide resulted in a greater reduction in AR downstream target expression than enzalutamide alone in LNCaP cells. To investigate the role of individual subunit isoforms, siRNA and CRISPR-Cas9 were used to target the V1C1 subunit in 22Rv1 cells. Whereas transfection with ATP6V1C1-targeted siRNA significantly reduced AR protein levels and function, CRISPR-Cas9-mediated V1C1 knockout showed no substantial change in AR expression, but a compensatory increase in protein levels of the alternate V1C2 isoform.Overall, these results indicate that V-ATPase dysregulation is directly linked to both hormone-responsive prostate cancer and CRPC via impact on AR function. In particular, V-ATPase inhibition can reduce AR signaling regardless of mutant AR expression.
Collapse
Affiliation(s)
- Bradleigh Whitton
- Cancer Sciences Unit, Southampton General Hospital, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Haruko Okamoto
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Matthew Rose-Zerilli
- Cancer Sciences Unit, Southampton General Hospital, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Graham Packham
- Cancer Sciences Unit, Southampton General Hospital, Southampton, United Kingdom
- Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Simon J Crabb
- Cancer Sciences Unit, Southampton General Hospital, Southampton, United Kingdom.
- Cancer Research UK Centre, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
15
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|
16
|
Zhou R, Liu D, Zhu J, Zhang T. Common gene signatures and key pathways in hypopharyngeal and esophageal squamous cell carcinoma: Evidence from bioinformatic analysis. Medicine (Baltimore) 2020; 99:e22434. [PMID: 33080677 PMCID: PMC7571924 DOI: 10.1097/md.0000000000022434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hypopharyngeal and esophageal squamous cell carcinoma (ESCC) are the most common double primary tumors with poor prognosis. Intensive work has been made to illuminate the etiology, but the common carcinogenic mechanism remains unclear. Thus, we conducted the study to seek to find the common gene signatures and key functional pathways associated with oncogenesis and treatment in hypopharyngeal squamous cell carcinoma (HSCC) and ESCC by bioinformatic analysis. METHODS Three independent datasets (GSE2379, GSE20347, and GSE75241) were screened out from the Gene Expression Omnibus (GEO) database and the overlapping differentially expressed genes (DEGs) were identified using GEO2R online platform. Subsequently, the Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis of DEGs were conducted using database for annotation, visualization and integrated discovery (DAVID). Meanwhile, the protein-protein interaction network (PPI) constructed by search tool for the retrieval of interacting genes (STRING) was visualized using Cytoscape. Afterwards, the most key module and hub genes were extracted from the PPI network using the Molecular Complex Detection plugin. Moreover, the gene expression profiling interactive analysis (GEPIA) was applied to verify the expression differences and conduct the survival analyses of hub genes. Finally, the interaction network of miRNAs and hub genes constructed by encyclopedia of RNA interactomes (ENCORI) was visualized using Cytoscape. RESULTS A total of 43 DEGs were identified, comprising 25 upregulated genes and 18 downregulated genes, which were mainly involved in the extracellular matrix-receptor interaction, collagen metabolic, epidermis development, cell adhesion, and PI3K/Akt signaling pathways. Subsequently, 12 hub genes were obtained and survival analysis demonstrated SERPINE1 and SPP1 were closely related to poor prognosis of patients with HSCC and ESCC. Finally, hsa-miR-29c-3p, hsa-miR-29a-3p, and hsa-miR-29b-3p were confirmed as the top 3 interactive miRNAs that target the most hub genes according to the interaction network of miRNAs and hub genes. CONCLUSION The common gene signatures and functional pathways identified in the study may contribute to understanding the molecular mechanisms involved in the carcinogenesis and progression of HSCC and ESCC, and provide potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
| | - Denghua Liu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | | | | |
Collapse
|
17
|
Wang J, Luo J, Sun Z, Sun F, Kong Z, Yu J. Identification of MTHFD2 as a novel prognosis biomarker in esophageal carcinoma patients based on transcriptomic data and methylation profiling. Medicine (Baltimore) 2020; 99:e22194. [PMID: 32925794 PMCID: PMC7489726 DOI: 10.1097/md.0000000000022194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an important epigenetic regulatory mechanism in esophageal carcinoma (EC) and is associated with genomic instability and carcinogenesis. In the present study, we aimed to identify tumor biomarkers for predicting prognosis of EC patients.We downloaded mRNA expression profiles and DNA methylation profiles associated with EC from the Gene Expression Omnibus database. Differentially expressed and differentially methylated genes between tumor tissues and adjacent normal tissue samples were identified. Functional enrichment analyses were performed, followed by the construction of protein-protein interaction networks. Data were validated based on methylation profiles from The Cancer Genome Atlas. Candidate genes were further verified according to survival analysis and Cox regression analysis.We uncovered multiple genes with differential expression or methylation in tumor samples compared with normal samples. After taking the intersection of 3 differential gene sets, we obtained a total of 232 overlapping genes. Functional enrichment analysis revealed that these genes are related to pathways such as "glutathione metabolism," "p53 signaling pathway," and "focal adhesion." Furthermore, 8 hub genes with inversed expression and methylation correlation were identified as candidate genes. The abnormal expression levels of MSN, PELI1, and MTHFD2 were correlated with overall survival times in EC patients (P < .05). Only MTHFD2 was significantly associated with a pathologic stage according to univariate analysis (P = .037) and multivariate analysis (P = .043).Our study identified several novel EC biomarkers with prognostic value by integrated analysis of transcriptomic data and methylation profiles. MTHFD2 could serve as an independent biomarker for predicting prognosis and pathological stages of EC.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
- Center for Medical Physics, Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Fei Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Ze Kong
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Jingping Yu
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
- Center for Medical Physics, Nanjing Medical University, Changzhou, Jiangsu Province, China
| |
Collapse
|
18
|
Hraběta J, Belhajová M, Šubrtová H, Merlos Rodrigo MA, Heger Z, Eckschlager T. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition. Int J Mol Sci 2020; 21:ijms21124392. [PMID: 32575682 PMCID: PMC7352242 DOI: 10.3390/ijms21124392] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Resistance to chemotherapeutics and targeted drugs is one of the main problems in successful cancer therapy. Various mechanisms have been identified to contribute to drug resistance. One of those mechanisms is lysosome-mediated drug resistance. Lysosomes have been shown to trap certain hydrophobic weak base chemotherapeutics, as well as some tyrosine kinase inhibitors, thereby being sequestered away from their intracellular target site. Lysosomal sequestration is in most cases followed by the release of their content from the cell by exocytosis. Lysosomal accumulation of anticancer drugs is caused mainly by ion-trapping, but active transport of certain drugs into lysosomes was also described. Lysosomal low pH, which is necessary for ion-trapping is achieved by the activity of the V-ATPase. This sequestration can be successfully inhibited by lysosomotropic agents and V-ATPase inhibitors in experimental conditions. Clinical trials have been performed only with lysosomotropic drug chloroquine and their results were less successful. The aim of this review is to give an overview of lysosomal sequestration and expression of acidifying enzymes as yet not well known mechanism of cancer cell chemoresistance and about possibilities how to overcome this form of resistance.
Collapse
Affiliation(s)
- Jan Hraběta
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
| | - Marie Belhajová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
| | - Hana Šubrtová
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
- Central European Institute of Technologies, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
- Central European Institute of Technologies, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Tomáš Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
- Correspondence: ; Tel.: +420-606-364-730
| |
Collapse
|