1
|
Zabihi MR, Akhoondian M, Tamimi P, Ghaderi A, Mazhari SA, Farhadi B, Karkhah S, Ghorbani Vajargah P, Mobayen M, Norouzkhani N, Farzan R. Prediction of immune molecules activity during burn wound healing among elderly patients: in-silico analyses: experimental research. Ann Med Surg (Lond) 2024; 86:3972-3983. [PMID: 38989182 PMCID: PMC11230785 DOI: 10.1097/ms9.0000000000002055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/28/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Burn injuries lead to dysregulation of immune molecules, impacting cellular and humoral immune pathways. This study aims to determine the prediction of immune molecule activity during burn wound healing among elderly patients. Methods The current study utilized the Gene Expression Omnibus (GEO) database to extract the proper gene set. Also, the literature review was conducted in the present study to find immune signatures. The study used the "enrich r" website to identify the biological functions of extracted genes. The critical gene modules related to mortality were identified using the weighted gene co-expression network analysis (WGCNA) R package. Results The appreciated GSE was extracted. According to the data, the most upregulated signatures were related to natural killer (NK) cells, and the most downregulated signatures were associated with M1 macrophages. Also, the results of WGCNA have shown that the most related gene modules (P<107 and score 0.17) to mortality were investigated, and the modules 100 first genes were extracted. Additionally, the enrich r analysis has demonstrated related pathways, including the immune process, including regulation of histamine secreted from mast cell (P<0.05), T helper 17 cell differentiation (P<0.05), and autophagy (P<0.05) were obtained. Finally, by network analysis, the critical gene "B3GNT5" were obtained (degree>ten and "betweenness and centrality">30 were considered). Conclusion The study identified significant changes in macrophage and NK cell expression patterns post-burn injury, linking them to potential improvements in clinical outcomes and wound healing. The gene B3GNT5, associated with mortality, was highlighted as a key marker for prognostic evaluation.
Collapse
Affiliation(s)
- Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akhoondian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pegah Tamimi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliasghar Ghaderi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahar Farhadi
- School of Medicine, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Samad Karkhah
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooyan Ghorbani Vajargah
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramyar Farzan
- Department of Plastic & Reconstructive Surgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Hernandez-Corbacho M, Canals D. Drug Targeting of Acyltransferases in the Triacylglyceride and 1-O-AcylCeramide Biosynthetic Pathways. Mol Pharmacol 2024; 105:166-178. [PMID: 38164582 DOI: 10.1124/molpharm.123.000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Acyltransferase enzymes (EC 2.3.) are a large group of enzymes that transfer acyl groups to a variety of substrates. This review focuses on fatty acyltransferases involved in the biosynthetic pathways of glycerolipids and sphingolipids and how these enzymes have been pharmacologically targeted in their biologic context. Glycerolipids and sphingolipids, commonly treated independently in their regulation and biologic functions, are put together to emphasize the parallelism in their metabolism and bioactive roles. Furthermore, a newly considered signaling molecule, 1-O-acylceramide, resulting from the acylation of ceramide by DGAT2 enzyme, is discussed. Finally, the implications of DGAT2 as a putative ceramide acyltransferase (CAT) enzyme, with a putative dual role in TAG and 1-O-acylceramide generation, are explored. SIGNIFICANCE STATEMENT: This manuscript reviews the current status of drug development in lipid acyltransferases. These are current targets in metabolic syndrome and other diseases, including cancer. A novel function for a member in this group of lipids has been recently reported in cancer cells. The responsible enzyme and biological implications of this added member are discussed.
Collapse
Affiliation(s)
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
3
|
The Landscape of Lipid Metabolism in Lung Cancer: The Role of Structural Profiling. J Clin Med 2023; 12:jcm12051736. [PMID: 36902523 PMCID: PMC10002589 DOI: 10.3390/jcm12051736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
The aim of this study was to explore the relationship between lipids with different structural features and lung cancer (LC) risk and identify prospective biomarkers of LC. Univariate and multivariate analysis methods were used to screen for differential lipids, and two machine learning methods were used to define combined lipid biomarkers. A lipid score (LS) based on lipid biomarkers was calculated, and a mediation analysis was performed. A total of 605 lipid species spanning 20 individual lipid classes were identified in the plasma lipidome. Higher carbon atoms with dihydroceramide (DCER), phosphatidylethanolamine (PE), and phosphoinositols (PI) presented a significant negative correlation with LC. Point estimates revealed the inverse associated with LC for the n-3 PUFA score. Ten lipids were identified as markers with an area under the curve (AUC) value of 0.947 (95%, CI: 0.879-0.989). In this study, we summarized the potential relationship between lipid molecules with different structural features and LC risk, identified a panel of LC biomarkers, and demonstrated that the n-3 PUFA of the acyl chain of lipids was a protective factor for LC.
Collapse
|